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ABSTRACT

The Empirical mode decomposition (EMD) algorithm is a fully data-
driven method which is used to perform an adaptive decomposition
of nonlinear and nonstationary signals. It has been recently illus-
trated that its complex extensions can be used to carry out fusion of
multiple images. This is possible because the complex EMD allows
comparison between common frequency scales, by aligning them
within a single complex IMF. In this paper, complex extensions of
EMD are proposed for the fusion of two images; the fusion method-
ologies are presented for both gray-level and RGB based color im-
ages. The potential of the proposed scheme is highlighted by show-
ing its superiority to wavelet based fusion schemes, through simula-
tions on real world multi-exposure images.

Index Terms— Empirical Mode Decomposition, complex sig-
nals, complex/bivariate EMD, image fusion, multi-exposure images.

1. INTRODUCTION

The fusion of multiple images is aimed at producing a single output
image which carries salient features of all fused images [1]. Fu-
sion techniques are particularly relevant in cases where it is diffi-
cult to obtain an image in which all relevant objects are ‘in-focus’,
and multiple ‘out-of-focus’ images must be combined to to yield a
single ‘in-focus’ image. Another important application is the fu-
sion of multiple multi-exposure images from a static scene, which
is required when a wide range of luminosity/irradiance inhibits the
camera to capture all features of a scene in a single shot. In such
cases, there will always be regions of an image which are either
over-exposed or under-exposed. These over- and under-exposed re-
gions usually carry less information as compared to regions which
are properly exposed to light, and therefore need to be fused. For
fusion of multiple images, one class of techniques perform ‘local’
fusion by obtaining local details from images by dividing them into
several non-overlapping blocks. Subsequently, image block carry-
ing greater information is selected in the fused image. Using this
methodology, Goshtasby proposed entropy as an information mea-
sure for the fusion of multiple exposure images [2]. This technique,
however, does not perform local fusion on decomposed images cor-
responding to multiple natural frequency scales of the input signal
(multi-scale fusion), and is therefore sub-optimal.

Other established techniques for the fusion of multiple images
are mostly based on combining multi-scale decompositions of in-
put images using some information measure. The multi-resolution
wavelet transform is commonly used to provide the required decom-
position, after which the coefficients corresponding to decomposed
signals are conveniently combined to yield coefficients of the fused
image [3]. The inverse wavelet transform of the fused coefficients
yields the well-exposed fused image. Fusion has also been achieved

recently with the Discrete cosine transform (DCT) domain [4], and
in the Fourier domain. However, these techniques fail to extract the
details of an image at the ‘local’ level, and hence are not able to per-
form fusion ‘locally’, due to their non-adaptive nature. Furthermore,
the Fourier analysis and DCT project the input signal on orthogonal
sinusoids, regardless of the nature of input data; whereas wavelets
are also based on projecting the input signal on some fixed a priori
basis function which makes them unsuitable for processing nonsta-
tionary signals. As real world images are typically nonlinear and
nonstationary, a fully adaptive approach is required for their fusion.

The empirical mode decomposition (EMD) algorithm, recently
proposed for the processing of nonlinear and nonstationary signals,
creates an adaptive decomposition of the signal in hand [5]. The
fully adaptive and data driven nature of EMD algorithm makes it su-
perior to other established signal processing tools (Fourier, wavelet
analysis), which employ projections on fixed basis functions to de-
compose an input signal. In [6], real-valued EMD was used for
the fusion visual and thermal images, and was shown to outperform
wavelets and PCA based approaches. However, due to the empirical
nature of EMD, it is not guaranteed to obtain the same number of
IMFs from two sources, which makes ‘scale by scale’ comparison
difficult. Also, even if the same number of IMFs are generated, it
is not possible to align the similar frequency modes from different
sources using the real-valued EMD. This problem of uniqueness was
solved by Looney and Mandic using bivariate extensions of EMD to
process two images simultaneously in the context of fusing multi-
focus images [7]. This way, not only the same number of IMFs are
generated by the two sources, but the frequency scales from both im-
ages are aligned in single complex IMFs, which facilitates a better
comparison between the relevant scale-images from input data.

In this work, we propose to use complex extensions of empiri-
cal mode decomposition algorithm to simultaneously achieve both
‘multi-scale’ and ‘local’ fusion of multiple images. For that pur-
pose, we present separate fusion methodologies for both gray-level
and RGB based colored images. The results of the proposed scheme
are compared against the standard wavelet based fusion approach via
simulations on real world multi-exposure images.

2. EMPIRICAL MODE DECOMPOSITION

Empirical mode decomposition is a fully adaptive method for de-
composing nonlinear and nonstationary signals [5]. It uses the ‘sift-
ing process’ to obtain a finite set of oscillatory components, also
known as intrinsic mode functions (IMFs), from the input signal.
These intrinsic mode functions are designed to ensure that each IMF
carries a local, natural oscillatory mode embedded in the original
signal, and that it exhibits well-behaved time-frequency spectra [5].

For an input real-valued signal x(k), application of EMD algo-

57978-1-4244-2710-9/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: Imperial College London. Downloaded on October 20, 2009 at 11:52 from IEEE Xplore.  Restrictions apply. 



rithm results in the decomposition of the signal into M oscillatory
modes, IMFs, and a residue signal r(k), given by

x(k) =
M

j=1

dj(k) + r(k) (1)

The residual r(k) is a monotonic function, and represents an overall
trend within the signal. To extract the individual IMFs from the
input signal, an iterative procedure known as sifting algorithm is
used. The details of sifting algorithm for obtaining the first IMF
from a signal x′(k) are as follows:

1. Find the locations of all the extrema of x′(k);

2. Interpolate (using spline interpolation) between all the minima
(resp. maxima) to obtain the signal envelope passing through
the minima, emin(k) (resp. emax(k));

3. Compute the local mean m(k) = (emin(k) + emax(k))/2;

4. Subtract the mean from the signal to obtain the “oscillating”
signal s(k) = x′(k) − m(k);

5. If the resulting signal s(k) obeys the stopping criteria,
d(k) = s(k) becomes an IMF, otherwise set x′(k) = s(k)
and repeat the process from Step 1.

The stoppage criterion used in the final step can be taken as the
normalized squared difference between two successive sifting iter-
ates sn(k) and sn−1(k) [5].

3. COMPLEX EXTENSIONS OF EMPIRICAL MODE
DECOMPOSITION

Recently, several extensions of EMD have been proposed for com-
plex/bivariate signals. An extension of EMD which operates fully
in the complex domain was first proposed in [8], and termed
as rotation-invariant EMD (RI-EMD). The extrema of a com-
plex/bivariate signal are chosen to be points where the angle of the
derivative of the complex signal becomes zero, which is based on
the change in the phase of the signal. Mathematically, this definition
is equivalent to the extrema of the imaginary parts of the complex
signal, as given for a complex signal z(t) as:

∠ż(t) = 0 ⇒ ∠{ẋ(t) + ẏ(t)} = 0

⇒ tan−1 ẏ(t)
ẋ(t)

= 0 ⇒ ẏ(t) = 0. (2)

The envelopes are calculated using component-wise spline interpola-
tion, corresponding to the maxima and minima points which are then
averaged to obtain the local mean of the bivariate signal. The rest of
the process is same as that of the real-valued EMD. The complex
IMFs obtained from the sifting process are physically meaningful as
the process operates directly in the complex domain.

The RI-EMD algorithm uses only the extrema of the imaginary
part of the complex signal to calculate the local mean, which re-
sults in envelopes corresponding to only two directions. To estimate
an accurate value of the local mean of the complex signal, the en-
velopes corresponding to the multiple directions must be considered
in complex domain. Bivariate EMD [9] achieves this by projecting
the complex signal in multiple directions in 2D spaces and calcu-
lating the envelope corresponding to each direction. The envelope
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Fig. 1. Decomposition of a synthetic complex signal, with multiple
frequency modes, via the bivariate EMD algorithm.

curves are formed by interpolating between the extrema locations
of the projected signal component-wise. The resulting multiple en-
velopes are averaged to obtain the local mean signal. It can be no-
ticed that RI-EMD can be treated as a special case of bivariate EMD,
with two projected directions.

As bivariate EMD uses multiple directions for taking projections,
it estimates multiple envelopes for calculating the local mean. The
resulting estimate of local mean is therefore more accurate than that
obtained by RI-EMD. For this paper, we performed all simulations
using bivariate EMD with eight directions for taking projections.

4. BIVARIATE EXTENSIONS FOR FUSION OF
MULTI-EXPOSURE IMGAES

We propose to use complex extensions of EMD for the fusion of
two images, performing both ‘local’ and multi-scale fusion simulta-
neously. In this section, we present two separate methodologies to
achieve fusion of both gray scale and RGB based color images using
a simple local variance-based fusion algorithm, which operates on
each scale.

4.1. Alignment of Common Frequency Modes

Firstly, it is necessary to illustrate how complex-valued IMFs align
‘common scales’ present within the input data [7], as this is vital for
multi-scale fusion of multiple images. For this purpose, a complex
signal was constructed from a set of three sinusoidal signals. The
real and imaginary components of a complex signal are shown in the
top row of Figure 1 (denoted by X and Y ). Common to both real
and imaginary parts are two sinusoidal frequency components, while
a high frequency sinusoid is added to the real part only. The bivariate
EMD algorithm was applied to the resulting complex signal yielding
multiple complex-valued IMFs, the components of which are shown
in Figure 1. Observe that the sinusoids common to both real and
imaginary parts are aligned in the second and third IMFs, while the
remaining high frequency mode is present in the real part of the first
IMF only. Common frequency modes are therefore aligned in corre-
sponding IMFs, which allows a meaningful comparison between real
and imaginary components, thus facilitating fusion at local level.
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Fig. 2. Multiple gray-scale image fusion methodology using the bi-
variate EMD.

4.2. Complex EMD based Local Image Fusion

In this section, we present an approach for the fusion of two images
to a single improved image using complex extensions of EMD. The
methodology employed is similar to the one used in [7] for the fusion
of two out-of-focus images. We propose a new fusion rule for multi-
scale image fusion, which is more suited for the fusion of exposure
images. Also, a method to fuse two color images using multiple
applications of the bivariate EMD is presented.
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Fig. 3. RGB color image fusion methodology using the bivariate
EMD.

4.2.1. Gray scale image fusion scheme

Two input gray scale images, each considered as a 2D array and
denoted by A and B, are first converted into row vectors by con-
catenating their rows. Two such row vectors are combined to form
the real and imaginary part of a complex signal. Bivariate EMD is
applied to the complex signal resulting in M complex IMFs. Real
and imaginary parts of each complex IMF are then separated, and re-
converted back to 2D images, resulting in M scale images for each
input image, denoted by Ai and Bi for i = 1, ..., M , as shown in
Figure 2. Scale images are then combined locally, based on values of
coefficients calculated from local variance estimates at each spatial
point, to give a fused image F given by

F (i, j) =
M

n=1

αn(i, j)Ai(i, j) + βn(i, j)Bi(i, j) (3)

where αi(i, j) and βi(i, j) are coefficients determined at each loca-
tion (i, j), based on the the relative values of the local variance for
each scale, and are given by

αn(i, j) =
var[An(i, j)]

var[An(i, j)] + var[Bn(i, j)]
(4)

βn(i, j) =
var[Bn(i, j)]

var[An(i, j)] + var[Bn(i, j)]
(5)

Fig. 4. Images of a work table at different exposures. In the image
shown at the top, the lower region of the image is severely under-
exposed. whereas in the second image, details on the table are hidden
due to overexposure to light.

Fig. 5. A fused image obtained using the discrete wavelet transform.

where var[An(i, j)] represents the local variance of An calculated
across a small block around (i, j).

4.2.2. RGB based color image fusion scheme

In order to extend the fusion methodology to RGB based colored im-
ages, we propose to apply the methodology presented for gray scale
fusion to three channels (red, green, and blue) of a color image sep-
arately. That is, the red, green, and blue channels from two input
images are therefore processed by three separate applications of bi-
variate EMD algorithm, as shown in Figure 3. As a result, three sets
of complex valued IMFs are obtained which correspond to the red,
green, and blue channels of the two input images. These are denoted
by Rl, Gm, and Bn in Figure 3. Note that although the three in-
stances of bivariate EMD generally yield different numbers of com-
plex IMFs, each set is processed separately by the fusion algorithm
to yield the fused red, green and blue channel. The fused channels
are finally combined to form a fused RGB based color image.
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Fig. 6. A fused image obtained using complex extensions of EMD.

Fig. 7. (a) The fused color image obtained from ‘local’ fusion on
input images. (b) The fused color image obtained from complex
extensions of EMD.

5. RESULTS

The performance of our proposed method is evaluated on real-world
multi-exposure images shown in Figure 4; these are images of a work
table obtained at multiple exposures. Observe that the in the first in-
put image, the lower region is severely underexposed, whereas the
upper part of the image, showing details on the table itself, is well-
exposed. In the second input image, the details on the table are
hidden due to over-exposure, but the area below the table is well-
exposed.

For comparison, a multi-resolution wavelet fusion scheme is also
used to for multi-exposure image fusion. For wavelet fusion, the dis-
crete wavelet transform (DWT) is first applied to both input images
to obtain their multi-scale decompositions. The wavelet coefficients
corresponding to the same decomposition level of two images, are
combined to obtain fused multi-scale coefficients. Once the fused
multi-scale coefficients are obtained, they are converted back to the
fused image using the inverse wavelet transform. In our simulations,
we choose the largest coefficient which correspond to sharper bright-
ness changes in the image, such as edges, lines etc. The selection of
the largest wavelet coefficient is also consistent with the local vari-

ance based fusion algorithm chosen in our EMD-based approach,
since both criteria select variations in intensity as salient features in
an image.

Figure 5 shows the results of the fusion of images in Figure 4 us-
ing the discrete wavelet transform (DWT). In the fused image, dis-
tortions are clearly evident, especially in the upper part of the image
where details on the table are shown; observe the artifacts around
the cable and the paper. It can also be observed from the wavelet
fused image that the container on the right side of the table is still
overexposed. The fused image from the EMD-based fusion scheme
is shown in Figure 6; it is clear that EMD-based fusion outperforms
wavelet fusion, as less distortions are present.

The distortions around the wire and paper in wavelet-based fusion
arose due to the fact that the wavelet fusion is not performed at the
‘local’ level in the spatial domain; the coefficient merging occurs in
the transform domain. As a result, the wavelet-based fusion scheme
cannot accurately align, compare and process high frequency scales.
On the other hand, the adaptive and data driven nature of EMD fa-
cilitates fusion at the local level, yielding better results even at high
frequency scales.

To highlight the importance of ‘multi-scale’ processing in ob-
taining robust fusion results, we use our proposed scheme for RGB
based color image fusion (Figure 3). The results are compared with
those obtained from a fusion scheme which is ‘local’ but not multi-
scale, that is the fused image (Figure 7(a)) retains salient features
based on the local variance of the input images. Figure 7(b) shows
the results obtained from applying our proposed scheme; it can be
noticed that it clearly gives superior results to local fusion scheme,
as it performs both ‘local’ and ‘multi-scale’ fusion simultaneously.

6. CONCLUSIONS

We have used complex extensions of Empirical Mode Decomposi-
tion for the fusion of multiple images. Furthermore, novel method-
ologies for the fusion of both gray scale images and color images,
using the complex extensions of EMD, are presented. The pro-
posed method outperforms multi-resolution wavelet based fusion al-
gorithm and the local variance-based algorithm in simulations on
real world multi-exposure images. This is achieved because the pro-
posed methodology facilitates multi-scale and local fusion simulta-
neously, which is not possible using other existing fusion algorithms.
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