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Multiscale Image Fusion Using Complex
Extensions of EMD

David Looney and Danilo P. Mandic

Abstract—Empirical mode decomposition (EMD) is a fully data driven
technique for decomposing signals into their natural scale components.
However the problem of uniqueness, caused by the empirical nature of the
algorithm and its sensitivity to changes in parameters, makes it difficult
to perform fusion of data from multiple and heterogeneous sources. A
solution to this problem is proposed using recent complex extensions
of EMD which guarantees the same number of decomposition levels,
that is the uniqueness of the scales. The methodology is used to address
multifocus image fusion, whereby two or more partially defocused images
are combined in automatic fashion so as to create an all in focus image.

Index Terms—Complex-valued signal processing, empirical mode
decomposition (EMD), image fusion.

I. INTRODUCTION

A significant challenge in data and information fusion is the fusion
of images with different focus points so as to create an all-in-focus
image. This is of particular importance, for example, in modern mi-
croscopy where the resolution is compromised by the limited depth
of focus. Existing solutions [1], [2] are based on the assumptions that
data exhibit some structure (linearity, sparsity), and on the subsequent
applications of projections onto a set of predefined basis functions.
For instance principal component analysis (PCA), commonly used for
image fusion [3], is based on linear projections and is hence suboptimal
for real-world data. Other established solutions include the wavelet
transform [4], which experiences problems (by design) when analyzing
high-frequency content, thus tending to lose spatial information.

The recently proposed empirical mode decomposition EMD [5] is a
fully data driven technique which decomposes the signal into narrow-
band oscillatory components called intrinsic mode functions (IMFs).
Unlike Fourier or wavelet based methods that project signals onto a
fixed basis set, EMD makes no prior assumptions about the data and
as such it belongs to the class of exploratory data analysis techniques
[6]. The original algorithm has been successfully applied to a number
of problems which require high resolution but are separable in the
time-frequency domain, such as in ocean engineering [7], biomedical
signal processing [8] and seismics [9].

Recently, EMD has been proposed for data fusion, within the
so-called “information fusion via fission” framework [10], whereby
only the “relevant” IMFs are recombined into a restored signal. The
potential of EMD in this context has been demonstrated by a variety
of related tasks from signal restoration [11] to feature extraction [12].
Considering its ability to separate spatial frequencies, it is natural to
consider EMD for the problem of heterogeneous image fusion.
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A significant obstacle to heterogeneous fusion applications, how-
ever, is the problem of uniqueness within EMD. That is there is no
guarantee that decompositions of different sources are matched, either
in number or their properties (frequency), making a multiscale compar-
ison often very difficult. Thus, a set of common frequency scales must
be determined in order to facilitate multiscale image fusion.

In [13], the use of EMD was proposed for the fusion of visual and
thermal images, it was shown how EMD outperformed wavelet and
PCA based approaches, particularly in retaining edge-based informa-
tion from the different image modalities. Although aided by a mu-
tual information measure, the approach [13] revealed the difficulties
in combining IMFs from heterogeneous sources as it relied on visual
inspection to determine the most informative components. More recent
work [14] considers a 2-D (two-dimensional) extension for the related
task of multispectral image fusion. Although fusion is performed in an
automatic fashion, the solution does not address the problem of unique-
ness.

In this correspondence we propose to use recent complex extensions
of EMD [15], [16] , originally designed for naturally bivariate or com-
plex signals, to circumvent the problem of uniqueness. This makes it
possible to perform heterogeneous image fusion based on the common
spatio–temporal scales.

II. THE EMD ALGORITHM

Empirical mode decomposition [5] is a data driven time-frequency
technique which adaptively decomposes a signal, by means of a process
called the sifting algorithm, into a finite set of AM/FM modulated com-
ponents. These components, called “intrinsic mode functions” (IMFs),
represent the oscillation modes embedded in the data. By definition, an
IMF is a function for which the number of extrema and the number of
zero crossings differ by at most one, and the mean of the two envelopes
associated with the local maxima and local minima is approximately
zero. The EMD algorithm decomposes the signal ���� as

���� �

�

���

����� � ����� (1)

where ������ � � �� � � � �� , are the IMFs and ����� is the residue.
The first IMF is obtained as follows [5].

1) Let ����� � ����.
2) Identify all local maxima and minima of �����.
3) Find an “envelope,” ������� (respectively �������) that interpo-

lates all local minima (respectively maxima).
4) Extract the “detail,” ���� � ����� ��	����������� ��������.
5) Let ����� � ���� and go to step 2); repeat until ���� becomes an

IMF.
Once the first IMF is obtained, the procedure is applied iteratively to
the residual 
��� � ����� ���� to obtain all the IMFs.

For notational convenience, in the sequel the residue is included as
the last IMF, that is, ����� � �����.

III. FUSION OF HETEROGENEOUS SOURCES

In theory, it is natural to consider EMD for fusion due to its ability
to separate spatial frequencies in an adaptive way. However, because it
is fully data-driven, it is unlikely that matching IMFs will be produced
for heterogeneous sources. Thus, making fusion difficult. Furthermore,
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Fig. 1. Real EMD: Signals with similar statistics often produce IMFs that are
different in number [� � � for (a) and� � � for (b)] and frequency [note
the mode-mixing in (b)].

the local operation of EMD makes it sensitive to changes in parame-
ters (stopping criterion, choice of interpolation) and also to local signal
variations caused by added noise [17]. In short, its local and data-driven
nature cause two significant problems:

1) uniqueness of the decomposition—signals, even with similar sta-
tistics, give different IMFs;

2) mode-mixing—the phenomenon whereby similar modes appear
across different frequency scales.

To illustrate these problems, consider a sinusoid � with added white
Gaussian noise (AWGN), denoted by � in the top panel of Fig. 1(a).
Fig. 1(a) also shows the eight extracted IMFs where, for convenience,
the lower panel denotes �

���
�� � �����������. Observe that

the original noise-free sinusoid corresponds to the fourth IMF and that
a standard way of applying EMD (denoising) would be to retain this
component and omit the rest. Performing EMD on the same sinusoid
corrupted by a different realization of AWGN, but with the same statis-
tics as before (mean, variance), nine IMFs were obtained, as shown in
Fig. 1(b). In addition to a different number of IMFs (uniqueness), the
signal of interest is now spread across different scales (�� and ��) il-
lustrating mode-mixing. Therefore, even though the statistical (global)
properties of the signal remain the same, the difference in local prop-
erties have affected the decomposition.

The problem of uniqueness can be addressed by stopping the decom-
position once a given number of IMFs have been obtained, however,
this is suboptimal as a guarantee on the number of IMFs is only a nec-
essary requirement which does not uniquely facilitate that the decom-
position properties are matched. One solution for mode-mixing is En-
semble EMD [17], however this does not solve the uniqueness problem
and is further limited by its computational complexity. To use EMD for
data fusion, the following problems have to be addressed:

• the number of IMFs from each source must be equal;
• the IMF properties from each source should also be matched to

enable a meaningful comparison.
To this end, we propose to apply recent complex extensions of the EMD
algorithm [15], [16], [18] so as to decompose data from heterogeneous
sources simultaneously. We illustrate that this guarantees the IMFs are
matched in number and properties, thus finding a set of common scales
which are unique to the sources being analyzed and facilitating fusion.

IV. COMPLEX EXTENSIONS OF EMD

Several extensions of EMD have been recently developed. These
include “complex empirical mode decomposition” [18], “rotation in-

variant empirical mode decomposition” [15] and “bivariate empirical
mode decomposition” [16].

Complex EMD is derived from the inherent relationship between the
positive and negative frequency components of a complex signal and
the properties of the Hilbert transform. The idea behind this approach is
rather intuitive: first note that a complex signal has a two-sided, asym-
metric spectrum. The complex signal can therefore be converted into
a sum of analytic signals by a straightforward filtering operation that
extracts the opposite sides of the spectrum. Direct analysis in can
subsequently be achieved by applying standard EMD to both the posi-
tive and negative frequency parts of the signal. Although it retains im-
portant properties of univariate EMD, such as its behavior as a dyadic
filter bank, it is difficult to interpret the meaning of extracted IMFs and
the approach is not suitable for extensions to higher dimensions.

The rotation invariant EMD (RIEMD) operates completely within
based on the direct application of complex splines. The complex

envelope approximation is characterized by the definition of suitable
extrema in . This is not straightforward since is not an ordered
field [10], and RIEMD defines an extrema as a locus where the angle
of the complex-valued first derivative becomes zero, that is, it is based
on a change in the phase of the signal. This definition is equivalent to
the extrema of the imaginary part, that is, for a complex signal ����
(for convenience a continuous time index � is used)

� ����� � �� � � ����� � � � ������ ��

� ��	��
�����

�����
� � � ����� � �� (2)

Unlike complex EMD, the IMFs of rotation invariant EMD possess a
physical meaning as is illustrated by its analysis of real-world complex
quantities such as wind data [15].

Bivariate EMD [16] operates in a similar fashion to rotation invariant
EMD. By projecting the data in � directions, the approach can consider
extrema in several directions and construct a 3-D tube to enclose them.
The local mean is defined as the center of the tube which is described,
at each interval, by � points (with each point being associated with a
specific direction). Assuming � � 
 directions, the center of the tube
at a point is given by either the barycenter of the four points or the
intersection of straight lines passing through the middle of the tangents.
RIEMD and bivariate EMD are equivalent for the case of � � �. Both
algorithms operate fully in , generating an equal number of IMFs for
the real and imaginary components, thus making it possible to analyze
two-dimensional data.

Since bivariate EMD can operate for � 	 �, this method was used
for simulations using � � � directions and defining the center of the
3-D tube as the intersection of straight lines passing through the middle
of the tangents.

V. MULTISCALE FUSION VIA EMD

We propose to regard data from multiple sources as a single multidi-
mensional entity which, for two sources, facilitates the use of a complex
extension of EMD (either [15] or [16]). Under the assumption that the
analysis determines common oscillations on a scale by scale level, the
source which contains locally the most information can be determined
by performing a comparison between the real and imaginary compo-
nents of the IMFs. One suitable feature choice is local changes in the
variance of the IMFs, as shown in [14].

For rigor, simulations were initially performed on artificially gener-
ated data sets so as to illustrate its potential in finding “common data
scales.” Next, an automatic fusion algorithm is proposed and applied
to a real-world fusion problem, creating an all-in-focus image from im-
ages which are partially out of focus.
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Fig. 2. Simultaneous decomposition of two test signals (���� and ����)
using bivariate EMD gives matched scales, highlighting its ability to find
common scales in heterogeneous sources.

A. Test Sets

In the first experiment, two signals were constructed from a set of
three sinusoidal components. These signals are visible in the top panels
(denoted by ���� and ����) of Fig. 2. Common to each test signal
were the frequencies of two of the sinusoids, although their amplitudes
and phases were different. A third high-frequency sinusoid was added
to ���� only. Performing bivariate EMD on the complex signal con-
structed from each of these signals (����������), a set of complex
IMFs were obtained, for which the real and imaginary values of which
are shown in Fig. 2.

Observe the high-frequency sinusoid, contained only within ����,
in the real part of the first IMF. On the other hand, the imaginary com-
ponent,�����, shows comparatively less high-frequency content. The
methodology can determine, however, common frequency scales as
is evident by comparing ����� and ����� as well as ����� and
�����. Note that the approach is robust to changes in scale amplitude
as well as phase, thus solving the problem of uniqueness.

In the next experiment, bivariate EMD was performed on a com-
plex signal, the real and imaginary components of which are shown
respectively in the top panels (denoted by ���� and ����) of Fig. 3.
The real component was a sinusoid corrupted by AWGN. The imagi-
nary component was the same sinusoid, shifted by an arbitrary phase
value and with its amplitude reduced by a factor of 2, corrupted by dif-
ferent AWGN but with the same statistics as the AWGN affecting the
real component. The set of complex IMFs are shown componentwise
in Fig. 3.

Note that most of the noise is contained within the first three IMFs
and the signal of interest (sinusoid) is spread across subsequent IMF
components. This result demonstrates that although the approach can
be affected by the problem of mode-mixing, it is irrelevant as it occurs
simultaneously in each channel as indicated by components �� and
��. Simulations with higher noise (up to 2.6 dB) support these results.
Thus, its robustness guarantees a meaningful comparison between
scales and forms the basis for the proposed image fusion algorithm.

B. Multi-Scale Image Fusion

Simultaneous decomposition of two partially defocused images, A
and B, is proposed as follows. The rows of each of the images are con-
catenated so as to construct two vectors (�� and ��) and, using bivariate
EMD, the complex vector �� � ��� is decomposed into � complex

Fig. 3. Simultaneous decomposition of two test signals (���� and ����)
using bivariate EMD, highlighting its robustness to mode mixing as it occurs
simultaneously (� and � ).

Fig. 4. Proposed framework for the simultaneous decomposition of two im-
ages.

IMFs.1 Separating the IMFs into their real and imaginary components
and reconverting each into their original 2-D form gives a set of �
scale images for both A and B, denoted by�� and�� for � � �� � � � �� .
This is illustrated in Fig. 4.

The fused image, � , is then given by

� 	�� 	
 �

�

���

�
�	�� 	
��	�� 	
 � ��	�� 	
��	�� 	
� (3)

where 	�� 	
 denotes the spatial location in the image and 
�	�� 	
 and
��	�� 	
 are weighted coefficients which satisfy 
�	�� 	
���	�� 	
 �
�. The values for the coefficients are determined by comparing the local
variance for each scale at each location as


�	�� 	
� �� ������	�� 	
��������	�� 	
���


�	�� 	
��� �� �������	�� 	
��������	�� 	
���


�	�� 	
 � � �� ������	�� 	
� � ������	�� 	
� �  (4)

where  �  and where ������	�� 	
� denotes the local variance at
	�� 	
 for ��, that is

������	�� 	
��

�

����

�

����

���	���� 	��
���� (5)

1It was found that the addition of low level white Gaussian noise to the real
and imaginary components, prior to their decomposition using bivariate EMD,
facilitated a more natural separation of the scale components. For more detail
we refer to [17].
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Fig. 5. Partially defocused images. Top: Foreground focus. Bottom: Back-
ground focus.

where � is the mean of all the elements contained within the window
and �� determines the window size. An advantage of the proposed ap-
proach is that�� can be increased as � increases to better accommodate
scale images with lower spatial information. Thus, the fused image re-
tains locally dominant features (in this case determined by local vari-
ance) at each scale.

An added obstacle in applying a 1-D algorithm to an image is caused
by its inherent 2-D structure. Consequently, some information is lost
in the vertical direction (if the rows are concatenated) which can cause
horizontal artifacts in the scale images. In general, it was found that
any such artifacts in the high-frequency scales were not significant.
However, in some cases, it was found that the loss in structure of the
lower scales became more pronounced. To circumvent this problem,
the scales with sufficiently low frequencies are added together to form
a composite residue scale image which was found to have greater struc-
ture than the individual low-frequency scale images. This way, the fu-
sion algorithm described above is performed on an alternate set of
� � � � scale images, �� and ��, given by

��

� �

�� for � � �� � � � �� �
� �

�

���

�� for � � � �

��

� �

�� for � � �� � � � �� �
� �

�

���

�� for � � � �.

if � �� ����� �� � � where ���� is an operator which deter-
mines the average spatial frequencies of the scale images and � is an
appropriate threshold.

In the next experiment, the proposed methodology was applied to the
images shown in Fig. 5. Observe the sharp edges and high level of detail
in the focused region of each image. This is a realistic situation as the

Fig. 6. Scale images for Fig. 5. Different spatial information is contained in
the scales such as edge information (high-frequency scales) and illumination
information (low-frequency scales).

Fig. 7. All-in-focus image obtained by bivariate EMD.

focused regions are located in a random fashion. Setting � � �	�����,
where �� denotes the image sampling frequency, a set of � � � 	�
scale images were obtained which are shown in Fig. 6. Observe that
the image edge information is contained in the high-frequency scales
and that illumination effects are contained in the low scales. Fusion
of the partially defocused images is shown in Fig. 7. As desired, the
fused image retains all the detail of the original images and any spurious
fusion artifacts are kept to a minimum.

The application of complex extensions of EMD to image fusion
clearly illustrates that they overcome the problems of mode-mixing
and uniqueness. Higher dimensional extensions should be developed
to facilitate the fusion of more than two images, a subject of our future
work.

VI. CONCLUSION

The potential of complex extensions of empirical mode decomposi-
tion (EMD) for information fusion has been verified. The analysis has
shown that a set of common frequency scales can be determined by si-
multaneously decomposing sources using the bivariate EMD. This en-
ables the proposed approach to overcome the problems of uniqueness
and mode-mixing, major obstacles to EMD-based fusion. The bene-
fits of the proposed framework have been demonstrated by simulations
both on test sets and real-world images.
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Semidefinite Programming Approach for Range-Difference
Based Source Localization

Kenneth Wing Kin Lui, Frankie Kit Wing Chan, and H. C. So

Abstract—A common technique for passive source localization is to
utilize the range-difference (RD) measurements between the source and
several spatially separated sensors. The RD information defines a set of
hyperbolic equations from which the source position can be calculated
with the knowledge of the sensor positions. Under the standard assumption
of Gaussian distributed RD measurement errors, it is well known that the
maximum-likelihood (ML) position estimation is achieved by minimizing
a multimodal cost function which corresponds to a difficult task. In this
correspondence, we propose to approximate the nonconvex ML optimiza-
tion by relaxing it to a convex optimization problem using semidefinite
programming. A semidefinite relaxation RD-based positioning algorithm,
which makes use of the admissible source position information, is proposed
and its estimation performance is contrasted with the two-step weighted
least squares method and nonlinear least squares estimator as well as
Cramér–Rao lower bound.

Index Terms—Range-difference measurements, semidefinite program-
ming, source localization, time-delay estimation.

I. INTRODUCTION

Source localization using measurements from an array of spatially
separated sensors has received significant attention in the signal pro-
cessing literature because of its important applications such as navi-
gation [1], wireless communications [2], telecommunications [3], and
sensor networks [4]. A common positioning approach is to use the
time-difference-of-arrival (TDOA) measurements, that is, the differ-
ences in arrival times between pairs of sensor outputs which receive the
radiated signal, assuming that the signal propagation speed is a known
constant. Multiplying the TDOA by the propagation speed yields the
range-difference (RD) and a hyperbola on which the source must lie
can be formed. At least three sensors are needed to uniquely estimate
the source position in the two-dimensional (2-D) plane while four or
more are required for three-dimensional (3-D) localization, with the
use of the knowledge of the sensor array geometry.

Basically, there are two approaches for source localization using
the hyperbolic equations constructed from the RD measurements. The
first approach is based on the nonlinear least-squares (NLS) framework
[5]–[7] where Taylor-series expansion is utilized for linearization
and the solution is solved in an iterative manner. Under the standard
assumption that the RD measurements are Gaussian distributed, the
global minimum of the multimodal NLS cost function corresponds to
the maximum-likelihood (ML) position estimate. Although optimum
estimation performance can be attained, it requires sufficiently precise
initial estimates for the global solution, which indicates the difficulty
of this approach because of the possibility of local convergence. The
second approach is to reorganize the nonlinear equations into a set
of linear equations [8]–[12] by squaring them and introducing an
extra variable that is a function of the source position, so that global

Manuscript received August 15, 2008; revised November 02, 2008. First pub-
lished December 09, 2008; current version published March 11, 2009. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Shahram Shahbazpanahi. The work described in this paper
was supported by a grant from CityU (Project No. 7002132).

The authors are with the Department of Electronic Engineering, City Univer-
sity of Hong Kong, Kowloon, Hong Kong (e-mail: hcso@ee.cityu.edu.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org

Digital Object Identifier 10.1109/TSP.2008.2010599

1053-587X/$25.00 © 2009 IEEE

Authorized licensed use limited to: Imperial College London. Downloaded on March 20, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.


