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Abstract. A combination of linear and nonlinear methods for feature fusion is introduced and the performance

of this methodology is illustrated on a real-world problem: the detection of sudden and non-anticipated lapses of

attention in car drivers due to drowsiness. To achieve this, signals coming from heterogeneous sources are

processed, namely the brain electric activity, variation in the pupil size, and eye and eyelid movements. For all

the signals considered, the features are extracted both in the spectral domain and in state space. Linear features

are obtained by the modified periodogram, whereas the nonlinear features are based on the recently introduced

method of delay vector variance (DVV). The decision process based on such fused features is achieved by

support vector machines (SVM) and learning vector quantization (LVQ) neural networks. For the latter also

methods of metrics adaptation in the input space are applied. The parameters of all utilized algorithms are

optimized empirically in order to gain maximal classification accuracy. It is also shown that metrics adaptation

by weighting the input features can improve the classification accuracy, but only to a limited extent. Limited

improvements are also obtained when fusing features of selected signals, but highest improvements are gained

by fusion of features of all available signals. In this case test errors are reduced down to 9% in the mean, which

clearly illustrates the potential of our methodology to establish a reference standard of drowsiness and

microsleep detection devices for future online driver monitoring.

Keywords: feature fusion, microsleep events, delay vector variance, support vector machines, learning vector

quantization, automatic relevance determination, genetic algorithms

1. Introduction

Data fusion aims at improving performance and

robustness in a variety of real-world problems by

processing complementary information coming from

different sources. In fields such as recognition, identifi-

cation, tracking, modality detection and decision mak-

ing, multi-source and oftentimes non-commensurate

signals are greatly benefiting from being processed

within the framework of data fusion.

When data fusion strategies are applied to biosignals

(especially to electrophysiological time series) then the

challenges arise from the necessity to process informa-

tion about the mental state which is acquired from



sensors recording a number of different underlying

processes. In such cases fusion at the measurement or

signal level, which is often called raw data fusion, is too

impractical. Note that an appropriate model of signal

generation in this field does not exist and that the

observed signals contain large portion of irregularities. In

case of brain electric signals, such as the electroenceph-

alogram (EEG), the extent is not clear to which these

irregularities are caused by the corresponding non-

linearities in the underlying signal generating system [1].

Nevertheless, for relatively clear and abrupt changes

of the system behaviour it should be possible to detect

and perhaps to predict the events of interest. This is the

case with the detection of sudden and non-anticipated

lapses of attention in subjects, due to drowsiness and

monotony, the so-called microsleep events (MSE). In

case of car and train drivers such events are believed to

be a major factor causing accidents. In recent years this

topic has received broad attention from the government,

public and also the research community. Recent develop-

ments in this field have shown that most promising

approaches for this purpose are based on fusion of

multiple electrophysiological signals coming from dif-

ferent sources together with Soft Computing methods

[2–4].

When modelling on the signal level is too complex

then fusion on the second level, which is often called

attribute or feature fusion, is preferred. Besides its

advantage of a convenient multi-source integration

this allows us to process data coming from so-called

Btransform domains^, e.g. of spectral, wavelet, state

or some other space.

Another way of data fusion is on the decision level

[5]. Here, for each signal a classifier is trained and

after optimizing all parameters of each pattern

recognition step, the decisions are combined utilizing,

e.g. fuzzy logic based [4], statistical or voting

methods. It is also possible to combine decisions

coming from several experts. Here, decisions coming

of single classifiers are not fused, but instead we

based our analysis on subjective scores.

Contrary to data fusion, methods of input feature

selection and input feature weighting [6] aim to

reduce the amount of information utilizing machine

learning methods. It is assumed that processing of a

large number of features leads to performance

deteriorations because local classification approaches

suffer from the so-called Bcurse of dimensionality^.

Note that among high-dimensional input vectors the

ratio of the distance between the nearest and the

farthest distance converges to unity as the dimen-

sionality approaches infinity [7]. In this respect,

simple local algorithms such as the nearest-neigh-

bour classifier are bound to suffer more than non-

local learning algorithms such as SVMs.

Apart from improving the classification accuracy,

there is a further important advantage of feature

weighting, namely the capability of automatic rele-

vance determination (ARD). In many applications,

the usefulness of the extracted features is not known

a priori. Here, relevance determination provides a

way of knowledge extraction without explicitly

stated assumptions. Feature selection is working in

a discrete (binary) manner, that is, once unselected

those features are no more relevant. Notice that feature

weighting embodies the concept of feature relevance:

low weighting is not as relevant as high weighting,

since such features have lower impact on vector

distance calculations which are fundamental to many

classification algorithms, e.g. SVM and LVQ.

The paper is organized as follows: In Section 2 we

give a short introduction to driving simulation

experiments, measurements, observations of micro-

sleep events during driving, and pre-processing of

the resulting data. The methods of feature extraction

are described in Section 3. We also introduce our

methodology utilized for data fusion on the feature

level and provide some theoretical background. The

presented methodology is generally applicable to

other stochastic time series irrespective if they are

originated by the same or by several distinct

underlying generating processes. The results in

Section 4 provide answer to the following important

questions: (1) The extent to which it is possible to

improve classification accuracy due to fusion of

linear and non-linear features? (2) The extent to

which it is possible to improve classification accura-

cy due to fusion of feature vectors of different and

non-commensurate biosignals? (3) The extent to

which it is possible to improve classification accura-

cy due to feature weighting and ARD? (4) How large

are the computational costs of different classification

algorithms applied to the given data set?

2. Experimental Study on Microsleep Detection

In this section we provide short description of the

recorded signals and microsleep experiments. For

further insight into this topic the reader is referred to

[2–4, 8] and references herein.
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Twenty-three young adults started driving in our

real car driving simulation lab (Fig. 1) at 1:00 A.M.

after a day of normal activity and of at least 16 h of

incessant wakefulness. All in all, they had to complete

seven driving sessions lasting 40 min, each followed by

a 15 min long period of responding to sleepiness

questionnaires and of vigilance tests and of a 5 min

long break. Experiments ended at 8:00 A.M. Driving

tasks were chosen intentionally monotonous to sup-

port drowsiness and occurrence of MSE. The latter

are defined as short intrusions of sleep into wakeful-

ness under demands of attention. They were detected

by two experimenters who observed the subject

utilizing three video camera streams: (1) of subjects

left eye region, (2) of her/his head and of upper part of

the body, and (3) of driving scene. Typical signs of

MSE are e.g. prolonged eyelid closures, nodding-off,

driving incidents and drift-out-of-lane accidents.

This step of online scoring is critical, because

there are no unique signs of MSE, and their exact

beginning is sometimes hardly to define. Therefore,

all events were checked offline and were eventually

corrected by an independent expert. Unclear MSE

characterized by e.g. drifting of eye gaze, short

phases with extremely small eyelid gap, inertia of

eyelid opening movements or slow head down move-

ments were excluded from further analysis. Non-MSE

were selected at all times outside of clear and of

unclear MSE. All in all we have found 3,573 MSE

(per subject: mean number 162T91, range 11–399)

and have picked out the same amount of non-MSE in

order to have balanced data sets.

Our intention was to design a detection system for

clear MSE versus clear Non-MSE classification,

assuming that such a system can not only detect the

MSE recognized by human experts, but would also

offer a possibility to detect unclear MSE cases which

are not recognizable by experts.

Seven signals of EEG (C3, Cz, C4, O1, O2, A1,

A2, common average reference) and two EOG

channels (vertical, horizontal) were recorded by an

electrophysiological polygraphy system at a sam-

pling rate of 128 Hz. The electrode locations are

typically used in sleep and vigilance research. The

first three locations are related to electrical activity in

somato-sensoric and motoric brain areas, whereas

O1, O2 are related to electrical activity in the

primary and secondary visual areas, and A1, A2 are

assumed to be functionally less active and often

serve as reference electrodes.

Further six signals were recorded by an eye

tracking system (ETS, binocular). This device sam-

ples at a rate of 250 Hz and is not strictly

synchronized to the polygraphy system which is not

problematic for later fusion on the feature level. For

each eye of the subject three signals are recorded,

namely the pupil size and the two coordinates of eye

gaze on the plane of projection.

All in all, 15 different signals were recorded. In

subsequent pre-processing stages mainly three steps

have to be performed: signal segmentation, artefact

removal and missing data substitution.

Segmentation of all signals was done with respect to

the observed temporal starting points of MSE/Non-

MSE using two free parameters, the segment length and

the temporal offset between first sample of segment and

starting point of an event. The trade-off between

temporal and spectral resolution is adjusted by the

Figure 1. Real car driving simulation lab.

Feature Fusion for the Detection of Microsleep Events 331



segment length and the location of the region-of-interest

on the time axis is controlled by the temporal offset.

Therefore, both parameters are of high importance and

have to be optimized (Section 4).

Artefacts in the EEG are signal components which

are presumably originated extracerebrally and often

exhibit as transient, high-amplitude voltages. For their

detection a sliding double data window is applied, in

order to compare the power spectral densities in both

windows. When the mean squared difference of them is

higher than a thoroughly defined threshold value, then

the condition of stationarity should be evidently

violated and as a consequence this example of MSE

or NMSE is excluded from further analysis.

Missing data problem occurred in all six eye-

tracking signals during every eyelid closures. This is

caused by the measuring principle. They are substi-

tuted by data generated by an auto-regressive model

which is fitted to the signal immediately before the

eyelid closure. This way, artificial data replace

missing data under the assumption of stationarity.

Nevertheless, this problem should be not important

enough to give more insight. For instance, periods of

missing data are in the size of 150 ms which is small

compared to the segment length of 8 s (Section 4).

3. Methodology

This section introduces methods to process all 15

different signals coming out of the experiments with

the objective to fuse them on a higher level. At first,

characteristic features of each segment of the signals

have to be extracted. Ideally, features which support

sufficiently compact regions in the feature space are

ideally sought. This can be achieved in the original

time domain, or in the spectral or wavelet or some

other transform domain. Here we propose to apply

the frequently applied power estimation in the

spectral domain and a new method in the state space,

the recently introduced method of delay vector

variance estimation (DVV). Obviously, there are a

lot of alternatives or of supplementary methods

imaginable.

Having extracted several features, then, secondly,

they have to be fused. This can be done by machine

learning methods of classification. Here we compare

several methods. In addition to some simple classi-

ficators we have applied modern methods without

and with metrics adaptation in the feature space.

3.1. Feature Extraction

Irregularities in signals have at least two possible

sources: stochasticity and nonlinearity of the under-

lying signal generating system [1]. In the following

we will characterize a signal as linear when it is

generated by a linear time–invariant system, driven by

white Gaussian noise; otherwise it is considered as

nonlinear. Mostly the definition of linearity is not strictly

applied. Then, the distribution of the signal is allowed to

deviate from the Gaussian form, to take into account that

a linear signal may be measured by a static, monotonic,

and possibly non-linear observation function.

A signal is characterized as deterministic or predict-

able, if it is possible to formulate a set of equations

which precisely describe the signal; otherwise it is

considered as stochastic. In general, a signal will be

deterministic if all possible states of the generating

system are located in a finite dimensional state space.

Every transition from one state to another can then be

formulated by a deterministic rule [1].

3.1.1. The Periodogram. The periodogram has

been widely used in quantitative biosignal analysis.

When doing so, the signals are assumed to be

outcomes of a linear, stochastic process which has

to be stationary. The fact that the periodogram is an

asymptotically unbiased estimator of the true power

spectral density (PSD) S(f) does not mean that its

bias is necessarily small for any particularly sample

size N. If S(f) is a smooth function then the

estimation bias decreases at the rate of 1/N, but

nothing is stated about the absolute magnitude of the

bias. If we define the dynamic range of S(f) by 10

log10[max S(f)/min S(f)] then this value is zero for a

white noise process and the periodogram is in this

case an unbiased estimator. In [9] it is shown on two

examples, that if the dynamic range is 14 dB for a

second order autoregressive process then the bias is

within a 2 dB range if N=16, and is within 0.2 dB

range if N=64. On the other hand, for a fourth order

autoregressive process with a dynamic range of 65

dB the bias of the periodogram for N=64 is within a

range of 30 dB which corresponds to three orders of

magnitude, and is for N=1024 within a range of 20

dB which corresponds to two orders of magnitude.

This impressively shows that this estimator is only

then largely unbiased for autoregressive processes, if

their PSD S(f) has low dynamic range. Here we have
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applied the modified periodogram which uses data

tapering to control between bias and variance. After

linear trend removal the PSD is directly estimated.

This step is commonly followed by a feature reduction

step of simple summation of PSD values over

equidistantly frequency intervals (spectral bands). As

a consequence, three further parameters have to be

optimized, namely the lower and upper cut-off fre-

quency and the width of the bands. Finally, PSD values

have been logarithmically scaled. It can be shown that

both operations, summation in spectral bands and

logarithmic scaling, are of high value to improve the

classification accuracy [3].

Besides the assumption of linearity and stationar-

ity estimators of PSD generally rely solely on a

second order statistics. This is not the case with the

following method of signal characterization.

3.1.2. Delay Vector Variance. The recently intro-

duced method of DVV [10] provides an estimate to

indicate to which extend a signal has a nonlinear or a

stochastic nature, or both. The stochasticity is

estimated by the variance of time-delayed embed-

ding of the original time series, whereas nonlinearity

is estimated by relating the variance of delay vectors

of the original time series to the variance of delay

vectors of surrogate time series.

In the following we want to give as a short

summarize of three virtually important steps of the

DVV method:

1. Transformation from the original space into the state

space by time-delay embedding: Given a segment of

a signal with N samples s1, s2,..., sN as a realization

of a stochastic process. For each target sk generate

delay vectors s kð Þ ¼ sk�m; :::; sk�1ð ÞT , where m is

the embedding dimension and k=m+1,..., N.

2. Similarity of states of the generating system: For

each target sk establish the set of delay vectors

Wk m; rdð Þ ¼ s ið Þj s kð Þ � s ið Þk k � rdf gwhere rd is

a distance equidistantly sampled from the interval

[max 0; �d � nd�dð Þ; �d þ nd�d ]. The free pa-

rameter nd controls the level of details if the

number of samples over the interval Nr is fixed

(here, we have chosen Nr=35). All delay vectors

of Wk(m, rd) are assumed to be similar. The mean

md and standard deviation sd have to be estimated

over the Euclidian distances of all pairs of delay

vectors s ið Þ � s jð Þk k8i 6¼ j.

3. Normalized target variances: For each set Wk(m, rd)

compute the variances � 2
k rdð Þ over the targets sk.

Average the variances � 2
k rdð Þ over all k=m+1,..., N

and normalize this average by the variance of all

targets in state space (rd Y V).

In general, the target variances are monotonically

converging to unity as rd increases, because more

and more delay vectors are belonging to the same set

Wk(m, rd) and its target variance tends to the variance

of all targets which is identical to the variance of the

signal. If the signal contains strong deterministic

components then small target variances will result

[10]. Therefore, the minimal target variance is a

measure of the amount of noise and should diminish

as the SNR becomes larger. If the target variances are

related to them of surrogate time series then implica-

tions on the degree to which the signal deviates from

linearity can be made. For linear signals it is expected

that the mean target variances of the surrogates are as

high as them of the original signal. Significant

deviations from this equivalence indicate that nonlinear

components are present in the signal [10].

For each segment of a signal, the DVV method

results in Nr different values of target variances.

They constitute the components of feature vectors x
which feed the input of the next processing stages

and represent a quantification to which extend the

segments of the measured signals has a nonlinear or

a stochastic nature, or both.

3.2. Classification Methods

After having extracted a set of features, they are to

be combined in order to obtain a suitable discrimi-

nation function. This feature fusion step can be

performed in a weighted or unweighted manner. Two

methods of unweighted feature fusion are introduced

in this section and two methods of weighted fusion

are introduced in the next (Section 3.3).

We begin with learning vector quantization be-

cause it is also the central part of the methods in

Section 3.3 and it is a useful method for relatively

quick optimization of free parameters in the pre-

processing and feature extraction stages. Support

vector machines attract attention because of their

good theoretical foundation and their coverage of

complexity as demonstrated in different benchmark

studies of several pattern recognition problems.
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3.2.1. Learning Vector Quantization. Optimized

learning vector quantization (OLVQ1) is a robust, very

adaptive and rapidly converging classification method

[11]. Like the well-known k-Means algorithm it is

based on adaptation of prototype vectors. But instead

of utilizing the calculation of local centres of gravity

LVQ is adapting iteratively based on Riccati-type of

learning and aims to minimize the mean squared error

between input and prototype vectors.

Given a finite training set S of NS feature vectors

xi ¼ x1; :::; xnð ÞT assigned to class labels yi:

S ¼ xi; yið Þ � <n � 1; :::;NCf g i ¼ 1; :::;NSjf g
where NC is the number of different classes, and

given a set W of NW randomly initialized prototype

vectors wj assigned to class labels cj: W ¼
wj; cjð Þ � <n � 1; :::;NCf g j ¼ 1; :::;NWjf g . In this

paper superscripts on a vector always describe the

number out of a data set, and subscripts on a vector

describe vector components.

The following equations define the OLVQ1 process

[11]:

For each data vector xi, randomly selected from S,

find the closest prototype vector wjC based on a

suitable vector norm in <n:

jC ¼ arg min
j

xi � wj
�
�

�
�8j ¼ 1; :::;Nw: ð1Þ

Adapt wjC due to the following update rule,

whereby the positive sign has to be used if wjC is

assigned to the same class as xi, i.e., yi ¼ cjC ,

otherwise the negative sign has to be used:

Dw jC ¼ ��jC xi � w jC
� �

: ð2Þ

The learning rates �j
C

are computed by:

�jC tð Þ ¼ �jC t� 1ð Þ
1� �jC t� 1ð Þ ; ð3Þ

whereby the positive sign in the denominator has to

be used if yi ¼ cjC and hence �j
C

is decreasing with

iteration time t. Otherwise it is increasing because

the negative sign has to be used if yi
mcjC. That is to

say, whensoever a prototype vector is closest, then

and only then, the vector and the assigned learning

rate �j
C

is updated following Eqs. (2) and (3),

respectively.

3.2.2. Support Vector Machines. Given a finite

training set S of feature vectors as introduced above,

one wants to find among all possible linear separa-

tion functions wx+b=0, that one which maximizes

the margin, i.e. the distance between the linear

separation function (hyperplane) and the nearest data

vector of each class. This optimization problem is

solved at the saddle point of the Lagrange functional:

L w; b; �ð Þ ¼ 1

2
wk k2

�
XNs

i¼1

�i yi wxi
� �

þ b
� �

� 1
� �

ð4Þ

using the Lagrange multipliers ai. Both the vector

w and the scalar b are to be optimized. The solution

of this problem is given by

w ¼
XNs

i¼1

�iy
ixi; and b ¼ � 1

2
w xþ þ x�ð Þ ð5Þ

where x+ and x- are support vectors with �þ >
0; yþ ¼ þ1 and �� > 0; y� ¼ �1, respectively. If

the problem is not solvable error-free then a penalty

term p �ð Þ ¼
PNs

i¼1 �i with slack variables xiQ0 as a

measure of classification error has to be used [12].

This leads to a restriction of the Lagrange multipliers

to the range 0eaieCOi=1,...,Ns. The regularization

parameter C can be estimated empirically by

minimizing the training errors in a cross validation

scheme. In order to adapt nonlinear separation

functions the SVM should be extended by kernel

functions k(xi,x):

XNs

i¼1

�iy
ik xi; x
� �

þ b ¼ 0 ð6Þ

In this paper we compare results of four different

kernel functions, because it is not known a priori

which kernel matches best for the given problem: (1)

linear kernel k(xi,x)=xi,x, (2) polynomial kernel:

k(xi,x)=xix+1)d, (3) sigmoidal kernel: k(xi,x)=

tanh(bxix+q), and (4) radial basis function kernel

(RBF): k xi; xð Þ ¼ exp �� xi � xk k2
� �

for all xi
ZS

and x Z<n.
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3.3. Automatic Relevance Determination

There is a large variety of methods of input feature

weighting not only for classification tasks, but also

for problems like clustering, regression and associ-

ation, to name just a few. If the given problem is

solved satisfactory then the weighting factors are

interpretable as feature relevances. Provided that a

suitable normalization of all features was done a

priori, features which are finally weighted high have

large influence on the solution and are relevant.

While on the contrary features of zero weight have

no impact on the solution and are irrelevant. On the

one hand such outcomes constitute a way for

determining the intrinsic dimensionality of the data,

and on the other hand, features ranked as least

important can be removed and thereby a method for

input feature selection is provided. In general, an

input space dimension as small as possible is

desirable, for the sake of efficiency, accuracy, and

simplicity of classifiers.

3.3.1. Generalized Relevance Learning Vector
Quantization. One comprehensive ARD method is

the generalized relevance LVQ (GRLVQ) [13]. It

defines a diagonal metric in input space which is

adapted during training according to a plausible

heuristic. Moreover, in comparison to other ARD

methods GRLVQ benefits of a gradient dynamics on

an appropriate objective function.

Given a finite training set S of NS feature vectors

and a set W of NW randomly initialized prototype

vectors wj as introduced in Section 3.2.1.The

objective function to be minimized is given by:

EGRLVQ ¼
XNs

i¼1

sgd "� xi
� �� �

ð7Þ

with "� xið Þ ¼ dþ
�

xið Þ�d�
�

xið Þ
dþ
�

xið Þþd�
�

xið Þ and sgd xð Þ ¼ 1
1þe�x ; dþj

denotes the squared distance of xi to the closest wjC

of the same class as xi, i.e. yi ¼ cjþ , and d�j denotes

the squared distance of xi to the closest wj� of a

different class as xi, i.e. yi 6¼ cj� . The distances have

to be calculated according to the weighted Euclidian

metric:

x� wk k2
� ¼

Xn

k¼1
�k xk � wkj j2 ð8Þ

where the weights lk are the relevance values. The

terms "� xið Þ are negative if and only if xi is classified

correctly. Therefore, maximizing the number of

correctly classified input vectors aims at minimizing

the objective function.

Taking the gradient of Eq. (7) yields the adapta-

tion rule for the prototype vectors which is qualita-

tively the same as of basic LVQ [11]:

Dwjþ ¼ þ�	þ xi � wjþ
� �

for the closest correct prototype vector wjþ and

ð9aÞ

Dwj� ¼ ��	� xi � wj�� �

for the closest incorrect prototype vector wj� ;

ð9bÞ

where h is the learning rate which is equal for all

prototype vectors and has to be monotonically

decreasing with increasing iteration time.

In Eq. (9a) and (9b) the learning rate is modulated

by two factors k+, k- which depend on dþj , d�j :

	þ ¼ d��

dþ� þ d��
� �2

sgd0 "� xi
� �� �

;

	� ¼ dþ�

dþ� þ d��
� �2

sgd0 "� xi
� �� �

ð10Þ

with sgd ¶(x) being the first derivative of sgd(x).

Next, the relevance values have to be adapted by

D�k ¼ ��� 	þ xi
k � wjþ

k

� �2

� 	� xi
k � wj�

k

� �2
	 


ð11Þ
utilizing another learning rate hl than in Eq. (9a) and

(9b). Finally, thresholding and normalization should

be executed in order to avoid negative relevance

values: lk=maxk(lk, 0) to obtain �k k ¼ 1 . The

update Eq. (11) can be interpreted in a Hebbian

way: those weighting factors are reinforced, which

coefficients are closest to the input vector xi if

classified correctly. And on the contrary, those

weighting factors are faded, which coefficients are

closest to the input vector xi if classified incorrectly.
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3.3.2. Combining Optimized Learning Vector
Quantization with Genetic Algorithms. In the

same line as GRLVQ, we have proposed an adaptive

metric optimization approach [14]. Based on the fast

converging and robust OLVQ1 algorithm [11] the

same weight values lk as in Eq. (8) are adapted

utilizing genetic algorithms (GA). In the following it

is labelled as BOLVQ1 + GA^. As already men-

tioned, OLVQ1 is relatively fast converging. There-

fore, this algorithm is suited to involve into a

computationally intensive framework like the genetic

algorithms (Fig. 2).

Based on the given data set, several ten complete

training runs of an OLVQ1 network were performed.

For each run the data set is randomly partitioned in a

training and a test set following the scheme of

Bmultiple holdout^ cross validation. As an outcome

the mean classification error over the training set is

calculated. This value serves as fitness measure of

the GA. Consequently, training set errors and no test

set errors are used for this measure. The GA

generates populations of OLVQ1 networks with

different sets of relevance values. At the end of GA

optimization a population of well fitted OLVQ1

networks remains. Over the ten best fitting individ-

uals, ranked by their training errors, the relevance

values are finally averaged.

4. Results

As mentioned above, there are a number of free

parameters in the pre-processing, particularly the two

parameters of segmentation, and in the feature

extraction, particularly the three parameters of

summation in spectral bands. In order to optimize

them empirically, OLVQ1 was employed. The lower

and upper cut-off frequencies were found to be 0.5

and 23.0 Hz, respectively, and the width of the

spectral bands turned out to be 1.0 Hz. OLVQ1 has

at least one further free parameter to be optimized,

i.e. the number of prototype vectors. This parameter

controls the complexity of the classifier. During

parameter optimization the minimal test error was

searched following the scheme of Bmultiple-hold-out^
cross validation. Only when the support vector ma-

chine (SVM) was utilized, then Bleave-one-out^
scheme of cross validation was applied. The latter is

an almost unbiased estimator of the true classification

error [15], but is computationally much more expen-

sive than Bmultiple-hold-out^. In case of SVM an

efficient implementation exists [15].

Our data set consisted of a total of 3,573 evident

MSE and of the same amount of Non-MSE. The

latter amount was selected in order to have balanced

data sets. Non-MSE were picked out at all times

outside of clear and of unclear MSE. Five different

types of Non-MSE were selected to show their

influence on the detection accuracy:

– Non-MSE1: only episodes of first driving session

(1:00 until 1:40 A.M.)

– Non-MSE2: episodes of first driving session and

only during eyelid closures

– Non-MSE3: episodes in the first five minutes of

each driving session

– Non-MSE4: only episodes between MSE where

subject is drowsy

– Non-MSE5: like Non-MSE4, but only during

eyelid closures.

The variation of the free parameter segment offset

has led to a relatively steep error function (Fig. 3).

An optimal offset value was found to be around j3

s. In the same way an optimal segment length of 8 s

was found. This means that classification is working

best when 3 s of EEG/EOG immediately before MSE

and 5 s during ongoing MSE are processed.

Classification of MSE versus Non-MSE1 resulted

best because it is easiest to discriminate between MSE,

which are always ongoing under a high level of fatigue,

and Non-MSE of the first driving session, which are at

a relatively low level of fatigue. The biosignals of both

classes must have characteristic differences, which

Figure 2. Scheme of our proposed feature weighting system utilizing OLVQ1 as classification method and a genetic algorithm as

optimization method. Mean empirical training errors are used as fitness measure.
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OLVQ1 is able to discriminate. Classification of MSE

versus Non-MSE3 was more erroneous because a lot of

segments under higher levels of fatigue are now to be

discriminated against MSE. Applying segments of

Non-MSE5 was much more difficult because segments

of both classes, MSE and Non-MSE5, are of the same

highest level of fatigue.

One could argue that mostly MSE are starting at

eyelid closures and, therefore, we did perhaps

nothing else than a simple detection of eyelid

closures. But this was clearly not the case, because

eyelid closures of MSE versus eyelid closures of

Non-MSE (type 4) were discriminated with nearly

equal test errors. Only the first mentioned case, MSE

against Non-MSE of the first session, was slightly

more difficult to discriminate if both comprise eyelid

closures (type 2). In the following, all results were

obtained from the most difficult types of Non-MSE

(Non-MSE4 and Non-MSE5), because this is of

highest interest for sensor applications.

Next, we investigated if spectral domain features

represented by the PSD can be interchanged or

complemented by state space features represented

by the recently introduced method of delay vector

variances (DVV). The motivation is as follows: PSD

estimation is a linear method which can be conve-

niently performed utilizing the periodogram and

which has been shown to perform particularly well

in applications related to EEG signal processing. But

PSD estimation is based solely on second order

statistics. In contrast, the DVV approach is based on

local predictability in state space. This approach can

show both, qualitatively and quantitatively, whether

the linear, nonlinear, deterministic or stochastic

nature of a signal has undergone a modality change

or not. Notice that the estimation of nonlinearity by

DVV is intimately related to non-Gaussianity, which

cannot be estimated by PSD. This way, it should be

possible that DVV contributes to the discrimination

ability of different classifiers.

In addition to this question, it is important to know

if one type of measurement (EEG, EOG, ETS)

contains enough discriminatory information and

which single signal inside of one type is the most

successful. Our empirical results suggest that the

vertical EOG signal is very important (Fig. 4)

leading to the assumption that modifications in eye

and eyelid movements have high importance, which

is in accordance to results of other authors [8]. In

contrast to the results of EOG, processing ETS

signals led to lower errors for the horizontal than

for the vertical component. This can be explained by

the reduced amount of information in ETS signals

compared to EOG. Rooted in the measurement

principle, the ETS measures eyeball movements

and pupil alterations, but cannot take measurements

during eye closures and cannot represent information

of the eyelid movements. Both aspects seem to have

a large importance for the detection task, because

errors were lower in EOG than in ETS. It turns out
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that also the pupil diameter (D) is an important

signal for microsleep detection.

Despite the problem of missing data of ETS

signals, their performance for microsleep detection

was in the same shape as the EEG signals. Compared

to the EOG, the EEG signals performed inferior,

among them the Cz location came out on top.

Relatively low errors were also achievable in other

central (C3, C4) and in occipital (O1, O2) electrode

locations, whereas both mastoid electrodes (A1, A2),

which are considered as least electrically active sites,

showed lowest classification accuracies (highest

errors), as expected. Similarities in performance

between symmetrically located electrodes (A1–A2,

C3–C4, O1–O2) meets also expectancy and supports

reliance on the chosen way of signal analysis.

Features estimated by DVV showed low classifi-

cation accuracies (Fig. 4) despite additional effort of

optimizing free parameters of the DVV method, e.g.

embedded dimension m and detail level nd. This is

surprisingly because DVV was successfully applied

to sleep EEG [16]. Processing EEG during micro-

sleep and drowsy states and, moreover, processing of

shorter segments seems to be another issue. PSD

performed much better and performance was only

slightly improved by fusion of DVV and PSD

features (DVV + PSD).

A further slight improvement was achievable for

each single signal if a scaling factor was assigned to

each input variable of the OLVQ1-network and if

these factors were adapted by genetic algorithms

(OLVQ1 + GA) utilizing training errors as fitness

variable (Fig. 4).

These results were outperformed by SVM (Fig. 4),

but only if Gaussian kernel functions were utilized

and if the regularization parameter and the kernel

parameter were optimized previously.

A pronounced improvement of the classification

accuracies was achievable by feature fusion of more

than one signal (Fig. 5). Compared to the best single

signal of each signal type (three left-most groups of

bars in Fig. 5), the feature fusion of vertical EOG

and central EEG has led to a more accurate solution of

the classification task, and has been also more

successful than the fusion of features of both EOG or

of all seven EEG signals. The feature fusion of 9

signals (all EOG + all EEG) and the feature fusion of

all 15 signals (all EOG + all EEG + all ETS) resulted in

slightly higher accuracies when OLVQ1 is applied as

classification method. But, classification accuracies

were considerably improved if OLVQ1 has been

extended by feature weighting utilizing genetic algo-

rithms (OLVQ1 + GA) or if SVM has been applied.

For the latter mentioned case best results were

achieved; the fusion of features of both types (PSD +

DVV) and of all seven EEG, of both EOG, and of all six

ETS signals utilizing SVM resulted in test errors lower

than 10%. SVM clearly outperformed OLVQ1 + GA.

Finally, we want to compare all introduced classifi-

cation methods and two standard methods of clas-

Figure 4. Mean and standard deviation of test errors for different single psychophysiological signals. A comparison of two different feature

types and three classification methods.
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sification, the well-known nearest neighbour (1-NN

and k-NN) algorithm and the linear discriminant

analysis (LDA). We want to extend our previous view

on test errors also to training errors, to the computa-

tional load and to outcomes of optimal parameter

values (Table 1). The parameters of all applied

methods (Section 3) have been found empirically in

order to minimize test errors. We present here only

the most important parameters and their optimal

values for the feature set of all different types of

signal sources, namely brain activity reflected by the

EEG, eye and eyelid movements reflected by the

EOG as well as by the ETS and pupil size changes

reflected by the ETS. The optimization of parameters

has been done on a single training/test partition and

does not influence results of other partitions. There-

fore, a separate validation set is not necessary.

The training errors are an empirical measure of the

adaptivity of the classifier to the given problem.

Relatively large training errors give indications that

the discrimination function is not flexible enough,

which was the case for global classifiers with a linear

Figure 5. Mean and standard deviation of test errors for feature fusion of different signals. A comparison of two different feature types

(PSD, DVV) and three classification methods (OLVQ1, GA + OLVQ1, SVM).

Table 1. Results of feature fusion of all 15 signals using different classification algorithms.

Method Optimal parameter values ETRAIN (%) ETEST (%) FLOAD

OLVQ1 NW=500 9.7T0.2 15.1T0.4 100

GRLVQ NW=500; hl =0.01 7.4T0.2 14.4T0.3 102

OLVQ1+GA #generat.=200, #pop.=128 6.2T0.2 12.3T0.4 104

SVM, linear kernel C=10j2.3 14.3T0.1 15.4T0.2 104

SVM, polynom. k. C=10j2.2; d=2 6.8T0.1 13.4T0.3 104

SVM, sigmoid k. C=10+3.8; b=10j2.9; q=j1.5 6.5T0.1 11.5T0.3 104

SVM, RBF k. C=10+0.24; g=10j2.8 0.1T0.0 9.1T0.2 104

LDA – 13.5T0.1 16.3T0.2 100

1-NN – 0.0T0.0 17.7T0.4 101

k-NN k=11 10.4T0.1 13.5T0.2 101

Parameters were optimized empirically. ETRAIN and ETEST contain mean and standard deviation of classification errors in the training and test

set, respectively. FLOAD is a rough estimate of typical computational load normalized to that of OLVQ1.
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separation function (SVM, linear kernel; LDA) and

was not the case with highly local operating

classifiers (SVM with RBF kernel; 1-NN, k-NN).

Test errors are an empirical measure of the general-

izability of the classifier, i.e. how accurate is the ability

to classify unseen examples of the same totality.

Simple local classifiers, such as 1-NN, are suffering

from the so-called Fcurse of dimensionality_. GRLVQ

showed lower test errors than OLVQ1 which is

founded by feature weighting. OLVQ1 + GA followed

the same way as GRLVQ, but uses another optimiza-

tion method which seems to be more suitable for the

given data set. All classifiers were outperformed by

SVM in conjunction with the RBF kernel function.

The computational load of the compared methods

was differing largely. OLVQ1 is unproblematic w.r.t.

to the choice of their parameters and they have

lowest computational costs, which were in the region

of 104 iterations. This takes about 102 sec on a

modern personal computer. This was the main reason

why we used OLVQ1 in our OLVQ1+GA approach.

GRLVQ was in the same shape as GLVQ. The same

problems as with LVQ2 were occurring and it

needed about 100 times longer than OLVQ1. Our

GA-OLVQ1 approach surpassed the computational

costs of all other methods. It took about 104 times

longer than OLVQ1. Therefore, we have distributed

the population of OLVQ1 networks over a pool of 32

top modern personal computers and achieved a

temporal consumption of about 1 day. The same

amount of computational cost was reached by SVM

because scanning for optimal values of the

hyperparameter and of the slack variable is

necessary. A single run of SVM adaptation needed

about 10 times longer as for OLVQ1, except when

the hyperparameter value was far from the optimum.

In these cases a single run of SVM can take more

than 104 times longer as for OLVQ1.

5. Summary and Conclusions

We have proposed a methodological framework for

adaptive signal processing in which feature sets of

different types of biosignal sources are fused. Fifteen

signals have been acquired by three different devices

which have delivered non-commensurate and asyn-

chronously sampled signals. Since fusion on the

signal level may prove problematic, we have opted

for the fusion on the feature level. The extraction of

relevant features has been achieved by one linear

method in the frequency domain (the well-known

periodogram) and one nonlinear method in the state

space, the delay vector variance.

The features are then processed as input vectors in

automatically learning classification algorithms. In

this step we have applied a neural network with

Euclidean metric (OLVQ1), two networks with

adaptive weighted Euclidean metric (GRLVQ,

OLVQ1 + GA), and support vector machines (SVM)

with four different kernel functions. The performance

of all stages of this framework is validated by the

scheme of Bmultiple-hold-out^ cross validation.

It has been shown that all the signal sources had

high importance when seeking for an optimal

solution for the task of microsleep detection. Among

the seven recorded brain electrical signals the

centrocentral (Cz) has found to be the most impor-

tant. Between both of the electrooculographical

signals, the vertical component was found to be

more important than the horizontal, and among six

signals of the binocular eyetracking system the two

signals representing pupil diameter of the left and of

the right eye were slightly more important than both

horizontal and both vertical eye gaze signals.

Unfortunately, the pupil diameter is largely influ-

enced by other processes like ambient light adapta-

tion which may complicate the detection in real

driving situations.

Best classification accuracies have been obtained

when not only the best performing single signals

were fused. The fusion of all signals coming from all

signal sources yielded highest accuracies. SVM

utilizing Gaussian kernel function clearly outper-

forms the other classificators with the corresponding

test errors down to 9%.

The results have shown the periodogram (PSD) to

be more effective as a feature extraction method than

the DVV method. Complementing PSD by DVV

features showed only small improvements, but there

were some indications that DVV is beneficial when

applied to the vertical channel of EOG which is

largely influenced by large-amplitude components of

eyelid movements.

Future research should also be concerned about the

large inter-individual differences in the character-

istics of all types of biosignals which we have

observed also in our previous studies. To date, the

required amount of microsleep examples is not
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available to conduct such data analysis. To include a

larger variety of features coming from different

extraction methods is another issue of future research.

This is likely to improve accuracy and robustness of

MSE detection, an issue for establishing a reference

standard of drowsiness and microsleep detection

devices for future online driver monitoring.
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