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hypercomplex) by convenience of representation such as in
the case of complex valued wind model, shown in Fig. 1

Fig. 1. Wind recordings: Left: a complex-valued representa
tion, Right: wind lattice.
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Sequential data fusion via vector spaces becomes even more
interesting in the modeling of three- and four-dimensional
quantities, for instance, in the simultaneous modeling of a
three dimensional wind vector and air temperature. It is there
fore natural to ask whether the different dynamics ofthe wind
speed components and air temperature and the different time
scales within these components can be simultaneously mod
eled in a four dimensional quatemion space lHI.

Here the wind speed and direction exhibit very different dy
namics but are correlated (right hand plot of Fig. 1), and the
complex model is very natural for their simultaneous model
ing. Other multi-dimensional signal processing techniques in
clude the concept of "long vector" [6], and real-valued multi
channel LMS [7].

The aim ofthis paper is to introduce sequential data fusion via
quatemion hypercomplex spaces, in order to enable simulta
neous modeling of three- and four-dimensional quantities. To
achieve this, we first introduce a quatemion LMS (QLMS) al
gorithm and then illustrate its usefulness for the modeling of
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From the viewpoint of machine learning and signal process
ing, sequential fusion is most interesting since it facilitates the
adaptive online mode of operation, and the use of well under
stood adaptive filters in this context. One recently proposed
sequential data fusion model is so-called "data fusion via vec
tor spaces", where heterogeneous quantities are conveniently
modeled as a single higher dimensional quantity. One such
example is in wind modeling [3,4], where wind speed and
direction are fused into a complex-valued quantity and the
modeling is performed simultaneously for both the speed and
direction using modular nonlinear adaptive filtering architec
tures such as the complex pipelined recurrent neural network
(PRNN) [1,5]. This way, the wind vector v(k) is expressed
as

v(k) == Iv(k)1 exptOCk) == vE(k) + 'lvN(k) (1)

where 0, Iv(k)l, vE(k), andvN(k) denoterespectivelythedi
rection, magnitude, wind speed in the east direction, and wind
speed in the north direction. Data fusion via vector spaces is
particularly useful for processes which are made complex (or

ABSTRACT

1. INTRODUCTION

Data fusion offers enhanced capability to exploit the avail
able information within homogeneous or heterogenous data
sources. This is particularly important when modeling multi
channel processes with time varying degree ofcorrelation and
coupling between the channels. There are several established
data fusion approaches, those include the hierarchical, decen
tralized and sequential fusion [1,2].

Sequential fusion of three- and four- dimensional heteroge
neous data is achieved in the quatemion space IHI. This way,
data from multiple sensors are combined in order to achieve
"improved accuracies" and more specific inferences that could
not be performed by the use of only a single sensor. To this
end, the quatemion LMS (QLMS) is proposed for the online
fusion of hypercomplex data within the "data fusion via vec
tor spaces" framework. Case studies on real-world signals
such as environmental and financial time series are provided
to support the proposed approach.
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earthquake time series, environmental time series, and finan
cial indexes.

filters. The cost function :J(n) is the instantaneous squared
error given by

2. QUATERNION ALGEBRA

Properties of the orthogonal unit vectors, 'l, J, '" describing
the three vector dimensions of a quatemion are

(6)

e(n)e*(n)

e~(n) + e~(n) + e~(n) + e~(n)

d(n)d*(n) + y(n)y*(n)

- y(n)d* (n) - d(n)y* (n)

:J(n)

VWm(:J(n)) = VWm(y(n)y*(n)) - VWm(y(n)d*(n))

- VWm(d(n)y* (n)) (8)

L

y(n) = wT(n)x(n) = E wm(n)x(n - m) (7)
m=l

where

To update the mth coefficient wm(n), we need to calculate
the following gradient

wheretheerrore(n) = d(n)-wT(n)x(n), withd(n), w(n),
and x(n) denoting respectively the teaching signal, the adap
tive weight vector, and the filter input. Symbols (.)T, and (. )*
denote respectively the vector transpose, and quatemion con
jugate operator. The filter output y(n) can be computed as

(3)

'lJ '"
JK,

"''l J

'lJ'" 'l2 = J2 = ",2 = -1

q [qa,q]

[qa, (qb' qc, qd)]

qa + qb'l + qcJ + qd'"

Quatemions can be considered as non-commutative exten
sions of complex numbers, and comprise at most four vari
ables [8]. A quatemion variable q E IHI has a real part (de
noted with subscript a), and three imaginary parts (denoted
with subscripts b, c, d), and can be expressed as:

Due to the non-commutivity of the quaternion, for example,
J'l 1= 'lJ, instead J'l = - 1'\,. Likewise, the product of quater
nions wand x is given by

WX [wa , w][xa , x]
[waxa - W . x, WaX + X aW + W X x]

VWm(y(n)y*(n))

VWm(y(n)d*(n))

V Wm (d(n)y*(n))

4y(n)x*(n - m) - 2x*(n - m)y*(n)

-2x*(n - m)d*(n)

4d(n)x*(n - m)

(9)

(4) which yields

where symbols"·" and" x" denote respectively the dot-product
and the cross-product. Elementwise, the quatemion product
can be evaluated as

(5)

It is clear that the quatemion product is non-commutative,
however, similarly to the complex numbers, the conjugate
of a quatemion q* = [qa, q]* = [qa, -q], and the nonn
Ilqll~ = qq*; for more detail, see [8]. For clarity, in this work
we consider scalar quatemion quantities, since we can also
have a vector of quatemions. We will next exploit the inti
mate relationships between the components of a quatemion
to model the coupling between the channels of a 4D signal.

4y(n)x*(n - m) - 2x*(n - m)y*(n)

+2x*(n - m)d*(n) - 4d(n)x*(n - m)

4(y(n) - d(n))x*(n - m)

-2x*(n - m)(y*(n) - d*(n))

-2(2e(n)x*(n - m) - x*(n - m)e*(n))

(10)

Before calculating the above gradients, notice that the cost
function (6) is real valued, and not quatemion-valued as in
[9,10]. Furthennore, the non-commutativity ofthe quatemion
product must be taken into account, that is

VWm(:J(n)) e(n)VWm(e*(n)) + VWm(e(n))e*(n)

1= e(n)VWm (e*(n)) + e*(n)VWm (e(n))
(11)

3. DERIVATION OF QUATERNION LMS (QLMS)

Finally, the update of the adaptive weight vector of QLMS
can be expressed as:

Based on the properties ofquatemion algebra and by employ
ing stochastic gradient descent, we shall now introduce the
QLMS algorithm for finite impulse response (FIR) adaptive

wm(n + 1) = wm(n) + jl(2e(n)x*(n - m) -x*(n-m)e*(n)), .,
'V

complexLMS

(12)
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Fig. 2. Accelerometer readings of Loma Prieta Earthquake in the east-west, north-south, and vertical direction. The prediction
gains for the triple univariate LMS (a separate real value LMS per channel) and the QLMS were respectively Rp = 10 dB and
Rp = 16.66 dB.

(15)(dB)

• The stepsize plays a key role in the performance of
stochastic gradient algorithms. Selection of four step
sizes and their manual "tuning in" for a reasonable per
formance can be time consuming and problematic when
processing each of the four dimensions separately with
LMS. QLMS circumvents this problem since it requires
only one stepsize.

We now present case studies, illustrating the potential of in
formation fusion based on the QLMS in the adaptive predic
tion setting. In multi-step ahead prediction, we need to esti
mate the signal M -samples ahead based on values in the past.
In our simulations, we have set M = 2; the extent of multi
step ahead prediction is also known as the prediction horizon.
For a quantitative evaluation of the performance, we employ
the standard prediction gain Rp [5], given by

4. CASE STUDIES

z[-e (n)xb(n-m)+3eb(n)x (n-m)]) . .
a a In most applIcatIons, the heterogeneous components ofa pro-

(13) cess are modeled separately, as univariate quantities. This is
typically due to their radically different natures, e.g. it is dif
ficult to model the air temperature and wind speed within the
same model, although they are correlated. Our aim is to il
lustrate that when heterogenous data sources are modeled as
a hypercomplex quantity by "convenience of representation",
this results in a greatly improved performance.

whereas the CLMS update is given by

From (12), there is similarity between the updates ofcomplex
LMS (CLMS) [11] and QLMS. Therefore, it is natural to ask
whether QLMS is a generic extension of CLMS. If the imag
inary parts J and"" of quatemions x(n - m) and e(n) vanish,
the quatemion representation has only the real and one imag
inary dimension and the QLMS update becomes

wm(n+l) = wm(n)+J.t([ea(n)xa(n-m)+eb(n)Xb(n-m)]+

z[- ea(n)Xb(n-m)+eb(n )xa(n-m)])

(14)
A comparison between (13) with (14) shows that QLMS does
not degenerate into CLMS, highlighting the fact that QLMS is
not a trivial extension of CLMS. The potential advantages of
QLMS over multiple LMS for the fusion applications) include

• Since both QLMS and LMS are online algorithms, it
is important to utilize fully the available information.
From the quatemion product (5), unlike a quadruple
univariate LMS, the QLMS exploits the cross-correlation
and the coupling between each dimension to process
the hypercomplex signal;
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Fig. 3. Comparison of prediction results for the quadruple LMS and QLMS. The prediction gain for the four univariate LMS
and the QLMS were respectively Rp == 9.98 dB and Rp == 29.78 dB.

where a 2 and a 2 denote respectively the estimated variancesx e

of the input and the error.

Prediction plays a pivotal role in the forecasting of earth
quakes, wind, and in financial markets and is rarely conducted
based on data fusion principles. To this end, we compare the
results obtained by four independent LMS algorithms, with
those obtained by direct QLMS. For each scenario, the step
sizes were chosen manually to ensure optimal performances.

4.1. The Loma Prieta Earthquake

Seismic signals!, shown in Fig. 2 occur naturally as three
dimensional, and can therefore be modeled as a pure quater
nion (apure quatemion has zero real part). In the simulations,
the stepsizes for the three independent LMS algorithms were
selected as: ILl == 8 X 10-6 (vertical), IL2 == 2 X 10-5 (north
south), and IL3 == 3 X 10-6 (east-west), while the stepsize for
the QLMS was set to J-L == 5 X 10-9 •

Fig. 2 shows that estimates for both the LMS (dash-dot line)
and QLMS (broken line) were reasonable. In fact, the QLMS
and LMS had similar performance for the east-west direction.
On the other hand, QLMS outperformed LMS in the north
south and vertical estimates of Lorna Prieta Earthquake. The
overall prediction gain for the quadruple LMS was Rp == 10
dB, whereas that of QLMS was Rp == 16.66 dB.

1The Lorna Prieta Earthquake data was recorded from an accelerometer
by Joel Yellin at the Charles F. Richter Seismological Laboratory, University
of California.

4.2. Fusion of wind and temperature

The wind data (a segment shown in Fig. 3) was initially sam
pled at 50 Hz, but re-sampled at 5 Hz for simulation pur
poses. To illustrate the benefits of the quatemion represen
tation in the fusion of heterogeneous data sources, we com
bined the air temperature with the three wind directions. The
stepsizes for the quadruple univariate LMS were selected as:
ILl == 1.03 X 10-7 (temperature), IL2 == 9 X 10-3 (verti
cal), IL3 == 1.5 X 10-3 (north-south), and IL4 == 2 X 10-3

(east-west), whereas the stepsize for the QLMS was set to
IL == 10-5 .

Notice that the dynamics oftemperature is quite different from
that for the three orthogonal wind speeds, that is, the fluctu
ation of the temperature is relatively small compared to wind
speeds. Fig. 3 shows that QLMS converged much faster than
the quadruple LMS.

4.3. Stock market prediction

Another field where prediction plays a prominent role is in fi
nance. We will now demonstrate how we can exploit the dif
ferent features of stocks within the quatemionic data fusion
model. The stock market prices analyzed were obtained from
''http://biz.yahoo.com/r/'', under the tab "Historical Quotes"
for the period of25 April, 2003 to 24 April 2008, with a sam
pling period of one trading day. We considered two pa~ic

ular cases: 1) Four stock features of Citigroup: the tradIng
volume, and its high, low, and closing prices as illustrated
in Fig. 4; 2) Four stocks fused into the quatemionic model,
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Fig. 4. Prediction results for four features of Citigroup stock: the volume traded, the high, low, and closing prices per trading
day. The prediction gains for the quadruple univariate LMS and the QLMS were respectively Rp = 9.92 dB and Rp = 17.97
dB. The middle plot zooms the volume traded during a high activity period. Notice the negative correlation between the prices
and the volume traded.
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Fig. 5. The stock (high) price ofJPMorgan, UBS, Citigroup, and Credit Suisse, with one sample per trading day. The prediction
gains for the quadruple univariate LMS and the QLMS were respectively Rp = 9.99 dB and Rp = 35.88 dB. Observe the price
drop in the UBS stock at around the 800th sample; the accurate modeling of this feature enabled the QLMS to predict a dip
(shown by arrows) in the other stock prices.
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these were the JP Morgan, UBS, Citigroup, and Credit Suisse
stocks as illustrated in Fig. 5.

Fig. 4 illustrates the positive correlation between the price
features in the right-hand side plots, while the volume traded
for Citigroup exhibited a negative correlation with respect to
the prices. There was no significant fluctuations in the stock
features, until the 1000th trading day. From the 1000th trad
ing day on, the net decrease in price features prompts activity
on the trading floor, as shown by the high fluctuations of the
volume (middle plot). The quadruple LMS predicting the vol
ume traded failed to follow the dynamics ofthis feature, while
QLMS estimate was much better, especially during the high
fluctuations (shown by the arrows in the middle plot). Sub
sequently, QLMS predicted a net decrease in prices (pointed
by arrows in the right-hand plots), owing to the inherent cou
pling within the quatemionic model. If a trader was to follow
the prediction by QLMS, they would gain profit by selling
the stock, since the price was still on the decline. For this sce
nario, the prediction gain for the quadruple univariate LMS
was Rp = 9.92 dB, while that of QLMS was Rp = 17.97
dB. The optimal stepsizes for the four univariate LMS were
selected as: J.L1 = 8 X 10-19 (volume), J.L2 = 9 X 10-8 (high),
J.L3 = 1 X 10-7 (low), and J.L4 = 9 X 10-8 (close), highlighting
the different dynamics of each feature; while the stepsize of
QLMS was set to J-t = 10-5 .

Fig. 5 illustrates stock (high) prices of IP Morgan, Citigroup,
UBS and Credit Suisse. In this scenario, it is not clear whether
there exists a degree of correlation between the stock prices.
However, if we zoom in from the 1100th trading day, we no
tice a general decrease in stock prices, except for JP Morgan.
This arises in the aftemmath of the credit crunch market in
the USA. Due to its top-tier investment bank status, JP Mor
gan had more cushion against the credit crunch, and therefore
traders did not know if they were to sell or keep JP Morgan
stocks; this caused high fluctuations in the last trading days.
Despite this uncertainty, the QLMS estimate of the JP Mor
gan stock was quite reasonable. Also, observe the significant
dip in UBS stock price around the 800th trading day (pointed
by an arrow): inherent coupling within the dimensions of the
quatemionic model enabled QLMS to predict a drop in the
other stock prices. The prediction gain for the four univari
ate LMS was Rp = 9.99 dB, whereas that of QLMS was
Rp = 35.88 dB.

5. CONCLUSION

A vector space based approach for the fusion ofheterogeneuos
data sources has been proposed. This has been achieved in
the quatemion domain lHI for three- and four- dimensional
data. Next, the quatemion least mean square (QLMS) has
been introduced as a convenient collaborative signal process
ing tool for four-dimensional processes. Due to the inher-

ent coupling between the components within the quatemionic
signal model, we have obtained much improved results in the
prediction ofreal world processes such as 3D seismic signals,
wind data and air temperature, and financial stocks.
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