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Abstract— A framework for automated scoring of sleep stages
during afternoon naps of healthy humans is introduced. This
is achieved by sequential fusion of nonlinear features extracted
from three physiological channels: the electroencephalogram
(EEG), electrooculogram (EOG) and respiratory trace (RES).
These features are generated by means of the recently intro-
duced “Delay Vector Variance” (DVV) method which examines
local predictability of a signal in phase space. The analysis is
accompanied by a set of comprehensive simulations, supporting
the approach.

I. INTRODUCTION

The goal of the data fusion is to combine data collected
from different sensors to make better use of the available
information and achieve improved performance which could
not be achieved by the use of only a single sensor only [1][2].

Data fusion can occur at a low, intermediate or high level
of abstraction, which corresponds to the:- i) Observation/
measurement level, which contains vectors of measure-
ments [3]; ii) Feature level, which seeks features from
time/frequency models (FFT, (N)ARMA [4], particle/Kalman
filter [5], information flow [6]); iii) Decision level, where the
classes are mapped onto decisions (SVM [7], kernel ICA).

One of the main problems associated with data fusion
for real-world applications is related to combining the
information coming from heterogeneous sensors, acquired
at different sampling rates and at different time scales.
Data/sensor fusion approaches dealing with combining data
from homogeneous sensors are normally based either in the
time domain, or in some transform domain, for instance on
features coming from the frequency representation of signals,
their time-frequency, or state-space features [8]. Notice that
in this framework we deal with multivariate and multimodal
processes, for which either there are no precise mathematical
relationships, or if they exist they are too complex. Such is
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the case with the segmenting different stages of human sleep,
e.g., sleep stage scoring, to automate scoring of sleep stages
is a major challenge.

In general, there are two standard approaches to combine
multiple electroencephalogram (EEG) and electrooculogram
(EOG) signals. In the first approach, or so–called “Raw
Data Fusion”, the sensor data are merged without prior
preprocessing or dimensionality reduction. Despite its sim-
plicity, the major disadvantage here is the potentially vast
amount of data to be handled. In the second approach, the
so–called “Feature Fusion”, features extracted from signals
coming from different sources and/or extracted by different
methods are fused [9][10]. In our experiments, the state
space features obtained from the “Delay Vector Variance”
(DVV) [11] method from different sensors are investigated
to show whether such a fusion of “nonlinear” features yields
improvement in automated sleep stage scoring over the
standard approaches using only one of the signals.

The recently introduced DVV approach is a signal modal-
ity detection method based on the local predictability in
the state space. The virtue of the DVV approach is that
it can show both qualitatively and quantitatively whether
the linear, nonlinear, deterministic or stochastic nature of a
signal has undergone a modality change or not. This way, the
DVV methodology represents a complement to the widely
used linear Power Spectral Density (PSD) estimation. Notice
that the estimation of nonlinearity associated with the DVV
method is intimately related to non-Gaussianity.

Hence, we also set ourselves to investigate whether and
how this information, which cannot be estimated by standard
methods focusing on frequency domain, contributes to the
discrimination ability, and if so, to estimate its importance
level, as compared to the PSD based discrimination. The
purpose of this paper is therefore to provide a theoretical and
computational framework for DVV functioning as sequential
data fusion tool and to show whether such a fusion of
signals obtained from different sensors has the potential in
multivariate and multimodal signal processing.

The paper is organised in the following manner. In Section
II, some background is given and the DVV method is
described and examples are given to illustrate the merits of
the method. In Section III, the framework of utilising DVV
method as a sequential data fusion tool to perform automated
sleep stage scoring is described and the experiments are
conducted in several steps. In Section IV, the main results
presented in the paper are summarised.
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II. “DELAY VECTOR VARIANCE” METHOD

In the following paper, we will refer to four important
properties1 of a signal [11], defined as follows:-

i) Linear (strict definition) – A linear signal is generated
by a linear time-invariant system, driven by white
Gaussian noise;

ii) Linear (commonly adopted) – Definition i) is relaxed
somewhat by allowing the distribution of the signal to
deviate from the Gaussian one, which can be interpreted
as a linear signal from i), measured by a static, mono-
tonic, and possibly nonlinear observation function;

iii) Nonlinear – A signal that cannot be generated in the
above way is considered nonlinear;

iv) Deterministic (predictable) – A signal is considered
deterministic if it can be precisely described by a set
of equations;

v) Stochastic – A signal that is not deterministic.

Several methods for detecting nonlinear nature of a signal
have been proposed over the past few years, which include
the “Deterministic versus Stochastic” (DVS) plots [15], the
Correlation Exponent, and “δ-ε” method [16]. The recently
introduced DVV method [11] is shown to be particularly well
suited for applications in the signal processing context, since
it simultaneously examines both the nonlinear/linear and
deterministic/stochastic nature of a signal. This method is
based on the local predictability of a signal in the phase space
and can be summarised as follows: For an given embedding
dimension m:

• Generate delay vectors (DVs):
x(k) = [xk−m, . . . , xk−1]T and the corresponding tar-
get xk,

• The mean μd and standard deviation σd are computed
over all pairwise Euclidean distances between DVs,
‖x(i) − x(j)‖ (i �= j),

• The sets Ωk(rd) are generated such that Ωk(rd) =
{x(i)|
‖x(k)−x(i)‖ ≤ rd}, i.e., sets which consist of all DVs
that lie closer to x(k) than a certain distance rd, taken
from the interval [max{0, μd − ndσd}; μd + ndσd],
where nd is a parameter controlling the span over which
to perform the DVV analysis,

• For every set Ωk(rd), the variance of the corresponding
targets, σ2

k(rd), is computed. The average over all sets
Ωk(rd), normalised by the variance of the time series,
σ2

x, yields the ‘target variance’, σ∗2(rd):

σ∗2(rd) =

1
N

N∑

k=1

σ2
k(rd)

σ2
x

(1)

As rd increases, the target variance smoothly converges
to unity. This is because all DVs start to belong to the

1These definitions are from physics literature, and might be different from
what we are commonly familiar with. For more information, please refer to
[12][13][14].

same universal set, and the variance of targets is equal to
the variance of the time series.

To illustrate the meaning of ‘signal nature’, consider a
linear benchmark signal (AR(4)), given by [4]

x(k) = 1.79 x(k − 1) − 1.85 x(k − 2) + 1.27 x(k − 3)
− 0.41 x(k − 4) + n(k) (2)

and a nonlinear benchmark signal (a Narendra Model Three
realisation), given by [17]

z(k) =
z(k − 1)

1 + z2(k − 1)
+ r3(k)

r(k) = 1.79 r(k − 1) − 1.85 r(k − 2) + 1.27 r(k − 3)
− 0.41 r(k − 4) + n(k) (3)

where {n(k)} is white Gaussian noise n(k) ∈ N (0, 1).
As a result of the standardisation of the distance axis, the

resulting ‘DVV plot’ (target variance, σ∗2(rd) as a function
of the standarised2, rd−μd

σd
distance), are easy to interpret, as

illustrated in Figure 1(a) and Figure 1(b). The minimal target
variance, e.g., the lowest point of the curve, is a measure
for the amount of noise which is present in the time series.
The presence of a strong deterministic component will lead
to small target variances for small spans. At the extreme
right, the DVV plots smoothly converge to unity, since for
maximum spans, all DVs belong to the same set, and the
variance of the targets is equal to the variance of the time
series.
In the following step, the linear or nonlinear nature of the

time series is examined by performing DVV analyses on
both the original and a number3 of surrogate time series4,
using the optimal embedding dimension of the original time
series. Due to the standardisation of the distance axis, these
plots can be conveniently combined within a scatter diagram,
where the horizontal axis corresponds to the DVV plot of the
original time series, and the vertical to that of the surrogate
time series. If the surrogate time series yield DVV plots
similar to that of the original time series, as illustrated by
Figure 1(a), the DVV scatter diagram coincides with the
bisector line, and the original time series is judged to be
linear, as shown in Figure 1(c) (for the linear signal (2)). If
not, as illustrated by Figure 1(b), the DVV scatter diagram
will deviate from the bisector line and the original time series
is judged to be nonlinear, as depicted in Figure 1(d) (for the
nonlinear signal (3)).

For a more detailed explanation of how DVV method
operates, please refer to Appendix I.

III. CASE STUDY: AUTOMATIC SLEEP-STAGE SCORING

Before we continue to introduce the novel framework for
automated sleep stage scoring, there is a need for us to first
describe the physiology data used in our experiments.

2Note that we use the term ‘standarised’ in the statistical sense, namely
as having zero mean and unit variance.

3In all of our simulations, we choose to generate 25 surrogate each time
as increasing the number of surrogate will not improve experiment results
but increase the computational complexity.

4Surrogate data are nonparametric linear versions of the original data.
For more detailed information on surrogate data, please refer to [12][13].
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(a) DVV plot for a linear sig-
nal (AR(4) signal). The line with
crosses denotes the DVV plot for
the average of 25 iAAFT-based sur-
rogate while the solid line denotes
that for the original signal.
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(b) DVV plot for a nonlinear sig-
nal (Narendra Model 3). The line
with crosses denotes the DVV plot
for the average of 25 iAAFT-based
surrogate while the solid line de-
notes that for the original signal.
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(c) DVV scatter diagram for a
linear signal (AR(4) signal). Error
bars denote the standard deviation
of the target variances of surro-
gates.
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(d) DVV scatter diagram for a
nonlinear signal (Narendra Model
3). Error bars denote the standard
deviation of the target variances of
surrogates.

Fig. 1. Nonlinear and deterministic nature of signals.

A. Data Description

A set of multi-dimensional physiological recordings of five
healthy humans during three consecutive afternoon naps were
used in our experiment. These data sets are publicly avail-
able5 and have been widely used for automatic sleep-stage
scoring purpose [18]. There are three physiological signals
for every patient and each nap: the electroencephalogram
(EEG), electrooculogram (EOG) and respiratory trace (RES).
These three signals are of different length, and carry different
dynamic information of the subjects. Manual scoring label
by medical experts divides these signals into six classes:

1) awake, eye open (W1);
2) awake, eye closed (W2);
3) sleep stage I (S1);
4) sleep stage II (S2);
5) no assessment (NA);
6) artifact in EOG-signal (AR).

Figure 2 illustrates the time series representation of three
signals of the first nap of patient 1 and the manually
assigned label for sleep stage. From Figure 2, these three
physiological signals have have complete different natures,
even the sampling rate is not the same. Manually labelling
(scoring) all those data sets is a very tedious and error-
intolerant process. Therefore, an automated scoring method
would be much needed and have been pursued over the past
few years [18][19][20].

5http://www.first.gmd.de/persons/Kohlmorgen.Jens/publications.html
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Fig. 2. Physiological data used in the experiments. Top left: Time series
representation of EEG signal. Top Right: Time series representation of EOG
signal. Bottom Left: Time series representation of RES signal. Bottom Right:
Label for sleep stage scores assigned by a medical expert.

B. Experiment Settings and Simulation Results

Similar to effect of the Fourier transform, the DVV method
transfers a signal from time domain into state-space feature
domain. In other words, it converts a time series into a
small set of data points containing sufficient information
to describe the entire dynamics of the original time series.
Due to the considerable length of the physiology signals, we
divided them into smaller segments using a sliding window
with 50% overlapping to avoid the boundary effect. The
manually assigned sleep stage labels (by medical experts)
are taken as the desired labeling in the training phase. Also,
to simplify the experiment, we take the label which occurs
most frequently in a window as the correct sleep stage label
for that segment window.

The first step of the automated sleep stage scoring process
is to extract the feature vectors from each segment window,
which is achieved by performing the DVV transform and
obtaining the target variance Eq.(1), e.g., DVV values, for
each data window. The embedding dimension m, span nd

were both set to four, and each initial feature vector was
composed of 100 samples, evaluated over the entire span of
the standarised distance. As this feature vector still contains
redundant information, we perform Principle Component
Analysis (PCA) to further reduce the number of dimensions.
In fact, we only consider those components that account for
99.9% of the variance, which yields a final set of 10 principle
components. Each feature vector is reduced in dimensionality
by retaining only the length of the projections onto these
10 principle components. The actual segmentation is then
performed by a perceptron, chosen for its robustness and
easy implementation without bringing too much additional
computation demands. In all simulations, single-layer per-
ceptrons with sigmoid transfer function, followed by winner-
take-all step, are trained to converge using the resilient back-
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propagation training algorithm [21].
In the first experiment, we analysed the three signals

relating to the first nap of the first patient separately. A
wide range of different window sizes were used and for each
combination of a window size and signal (EEG or EOG or
RES), in order to find a optimal window size for the rest
of the experiments. The perceptron served as the classifier,
and was trained with different initial seeds. The goal of the
training was to correctly classify each segment according to
the 6 manually assigned labels. The RES signal exhibited
the highest median accuracy (75%) for a window size of
450 samples. The EEG and EOG yielded the highest median
accuracy with a windows size of 4000 and 300 respectively.

Now we provide an extension of the method used in
the previous experiment which allows for an analysis on
the fused signal of all the three signals of interest. Since
these three signals are of different nature, dynamics and
sampling rate, it is not possible to fuse them in the time
domain. However, the DVV transformation allows for a uni-
fied analysis irrespective of the signal length and recording
conditions. Therefore, we perform the sequential data fusion
by concatenating the respective DVV feature vector for each
data window. Next, PCA-based dimensionality reduction was
performed as explained above. Training a perceptron with
different initial seeds on these components yielded a median
classification accuracy of 88%; a significant 10% increase
compared to the best among the individual signal analysis.
Figure 3 illustrates the labels assigned by the medical expert
(left diagram) and by the perceptron (right diagram) for the
first nap of patient 1. From the figure, it is clear that these
two labels are a close match.

In the third experiment, we take the analysis is one
step further by investigating the generalisation ability of the
classifiers. Perceptrons, trained on signals from one particular
nap, are now used to segment the data from other naps.
The data set contains all three signals (EEG, EOG and
RES) for two more naps of Patient 1. Poor classification
performance was achieved with the highest median accuracy
55%. To show the principle, we make a few simplification to
those classes in the following experiment: All the transients
(NA and AR) were abandoned, sleep stages S1 & S2 were
grouped into one sleep class and the same for wake stage
W1 & W2.

With the new setting, we analysed the signals individually.
The perceptrons trained on nap 1 of the training set were
next used to predict the labels of nap 2 and nap 3. The
highest accuracies were achieved on the EEG signal and
are summarised in the first row of Table 1. Next, for the
analysis on fused data, the respective feature vector were
concatenated, and the result is shown as the third row of
Table I, a significant improvement in accuracy as compared
to the individual signal analysis was obtained. It is interesting
to see whether the fused signal carries sufficient information
to assign labels correctly. To this end, we repeated the
third experiment with a much more powerful classifier,
Support Vector Machine (SVM) to perform the classification
procedure, which is an almost unbiased estimator of the true
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Fig. 3. Labels for sleep stage scoring. Top: True labels assigned by the
medical expert. Bottom: Labels assigned by the perceptron

TABLE I

MEDIAN CLASSIFICATION ACCURACY ON TRAINING AND TEST DATA.

nap 1 (training) 2 (test) 3 (test) classifier

EEG 92% 73% 79% perceptron

EEG 93% 76% 81% SVM

Fused features 98% 77% 83% perceptron

Fused features 99% 82% 89% SVM

classification error [22]. With the utilisation of SVM, features
obtained from single EEG channel yields improvement over
perceptron classifier. The highest classification accuracy was
achieved for fused signal, as shown in the bottom row of
Table I. This is the demonstration for that the sequential data
fusion of DVV features can provide significant improvement
in the automated sleep stage scoring.
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IV. CONCLUSIONS

The “Delay Vector Variance” (DVV) method has been
employed as a sequential data fusion tool for automated
sleeps stage scoring. It has been shown that, in principle, the
nonlinear features generated by the DVV method enable the
fusion of scoring from multiple and heterogenous sensors,
and thereby improvement in the performance. The analysis
is supported by extensive simulations on multivariate multi-
modal physiological recordings and has been shown to yield
an close match with the scoring conducted by a medical
expert.

APPENDIX I
THE ‘DELAY VECTOR VARIANCE” (DVV) METHOD

The DVV method can be summerised in the following
steps:-

1) Generate certain number of iterative amplitude adjust
fourier transform (iAAFT) surrogate data of the input
signal, e.g., original data;

2) Apply DVV method on the original data and obtain
the target variance, σ∗2 and the standerised distance
using optimal embedding dimension m;

3) Apply DVV method onto the group of iAAFT sur-
rogate data using the same parameter settings as the
original signal and obtain the the target variance of
those surrogate data, {σ∗2

surr,k}, k = 1, . . . , N (N is
the total number of the surrogate data;

4) Plot σ∗2 and the mean of {σ∗2
surr,k}, e.g., σ̄∗2

surr against
the standerised distance, and obtain the DVV plot
where the minimal target variance indicates the un-
predictability;

5) Plot σ∗2 against σ̄∗2
surr, and obtain the DVV scatter

diagram with error bars denoting the standard deviation
of {σ∗2

surr,k}, where the nonlinear nature is examined
by checking whether DVV scatter diagram lies on the
bisector line or not.

This is illustrated in Figure 4.
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Fig. 4. Block diagram of the DVV method. The table below describes the
DVV data flow, operations and output.

REFERENCES

[1] D. Mandic, Su lee Goh, and K. Aihara, “Sequential data fusion via ve-
cotr spaces: Complex modular neural network approach,” Proceedings
of the IEEE Workshop on Machine Learning for Signal Processing,
pp. 147–151, 2005.

[2] D. Mandic, D. Obradovic, A. Kuh, T. Adali, U. Trutschel, M. Golz,
P. De Wilde, J. Barria, A. Constantinides, and A. Chambers, “Data
fusion for modern engineering applications: An overview,” Proceed-
ings of the International Conference on Artificial Neural Networks,
ICANN ’05, Warsaw, Poland, vol. 2, pp. 715–721, 2005.

[3] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, second
edn., JCambridge University Press, 2004.

[4] D. P. Mandic and J. A. Chambers, Recurrent Neural Networks for
Prediction: Learning Algorithms, Architectures and Stability, John
Wiley & Sons, 2001.

[5] G. Deco and D. Obradovic, An Information-Theoretic Approach
to Neural Networks (Perspectives in Neural Computing), Springer–
Verlag, 1996.

[6] Deco G. and B. Schuermann, Information Dynamics: Foundations and
Applications, Springer–Verlag, 2001.

[7] C. Zhu and A. Kuh, “Sensor network loc. using pat. rec,” Proceeding
of HISC, 2005.

[8] D. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proceedings of the IEEE, 1997.

[9] P. Van Hese, W. Philips, J. De Koninck, R. Van de Walle, and
I. Lemahieu, “Microsleep detection in electrophysiological signals,”
Proceedings on the 1st International Workshop on Biosignal Process-
ing and Classification (BPC 2005), Dinesh Kant Kumar and Hugo
Gamboa (Eds.), pp. 102–109, 2005.

[10] D. Sommer, M. Chen, M. Golz, U. Trutschel, and D. Mandic, “Fusion
of state space and frequency domain features for improved microsleep
detection,” Proceedings of the International Conference on Artificial
Neural Networks, ICANN ’05, Warsaw, Poland, vol. 2, pp. 753–759,
2005.

[11] T. Gautama, D. P. Mandic, and M. M. Van Hulle, “The delay vector
variance method for detecting determinism and nonlinearity in time
series,” Physica D, vol. 190, no. 3-4, pp. 167–176, 2004.

[12] T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D, vol.
142, pp. 346–382, 2000.

[13] T. Gautama, M. M. Van Hulle, and D. P. Mandic, “On the charac-
terisation of the deterministic/stochastic and linear/nonlinear nature of
time series,” Technical Report, 2004.

[14] T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Indications of
nonlinear structures in brain electrical activity,” Phys. Rev. E, vol. 67,
pp. 046204–1–046204–5, 2003.

[15] M. C. Casdagli and A. S. Weigend, “Exploring the continuum between
deterministic and stochastic modeling,” in Time Series Prediction:
Forecasting the Future and Understanding the Past, A. S. Weigend
and N. A. Gershenfeld, Eds., pp. 347–367. Reading, MA: Addison-
Wesley, 1994.

[16] D. Kaplan, “Exceptional events as evidence for determinism,” Physica
D, vol. 73, no. 1, pp. 38–48, 1994.

[17] K.S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Trans. Neural
Networks, vol. 1, no. 1, pp. 4–27, 1990.

[18] J. Kohlmorgen, K. R. Muller, J. Rittweger, and K. Pawelzik, “Identi-
fication of nonstationary dynamics in physiological recordings,” Biol.
Cybern., vol. 83, pp. 73–84, 2000.

[19] P. Van Hese, W. Philips, J. De Koninck, R. Van de Walle, and
I. Lemahieu, “Automatic detection of sleep stages using the eeg,”
Engineering in Medicine and Biology Society, 2001. Proceedings of
the 23rd Annual International Conference of the IEEE, vol. 2, pp.
1944 – 1947, 2001.

[20] K. Pauwels, T. Gautama, D. Mandic, and M. M. Van Hulle, “Towards
mode detection,” Proceedings of the 4th International Conference on
Recent Advances in Soft Computing, RASC2002, Nottingham, U.K.,
pp. 77–78, 2002.

[21] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice
Hall, 1994.

[22] L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theoy of Pattern
Recognition, Springer, New York, 1996.

478


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


