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Outline:-

Why vector sensors

Vectors in RN versus complex C and quaternion H representations

Complex and quaternion valued processing of real valued problems

Circularity, properness, nonstationarity

Augmented statistics and widely linear models

Data fusion via vector spaces

Applications:-

– Body sensors and wearable technologies
– Radar and sonar
– Renewable energy applications
– Biomedical applications
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Vector sensors

Renewable Energy Body motion sensor Wearable techologies

2D and 3D anemometers 3D - position, gyroscope, speed Biomechanics

control of wind turbine gait, biometrics virtual reality
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Why Modelling in C?
2 Complex signals by design (communications, analytic signals, equivalent

baseband represenation to eliminate spectral redundancy)

2 By convenience of representation (radar, sonar, wind field)

2 Problem: Different algebra (no ordering - operator “≤” makes no
sense!), and the notion of pdf has to be induced

2 Problem: Special form of nonlinearity (the only continuously
differentiable function in C is a constant (Liouville theorem)

2 Solution: Special statistics – augmented complex statistics (started in
mathematics in 1992)

2 We can differentiate between several kinds of noises (doubly white
circular with various distributions nr ⊥ ni & σ2

nr
= σ2

ni
, doubly white

noncircular nr ⊥ ni & σ2
nr

> σ2
ni
, noncircular noise)
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Human Visual System – Importance of Phase
Information

Surrogate images. Top: Original images I1 and I2; Bottom: Images Î1 and Î2 generated

by exchanging the amplitude and phase spectra of the original images.
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Noncircularity of Distributions - Wind Modelling
(v(k) = |v(k)|eȷΦ(k))

(e) Gill Inst.
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Isomorphism Between C and R2

z → za ↔
[

z
z∗

]
=

[
1 ȷ
1 −ȷ

] [
x
y

]
whereas in the case of complex–valued signals, we have

z → za ↔
[

z
z∗

]
=

[
I ȷ I
I −ȷ I

] [
x
y

]
For convenience, the “augmented” complex vector v ∈ C2N×1 can be
introduced as

v = [z1, z
∗
1, . . . , zN , z∗N ]

T

v = Aw, w = [x1, y1, . . . , xN,yN ]T

where matrix A = diag(J, . . . ,J) ∈ C2N×2N is block diagonal and
transforms the composite real vector w into the augmented complex
vector v.
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The Multivariate Complex Normal Distribution

Recall, the relationships like “<” or “≥” make no sense in C.

V = cov(v) = E[vvH] = AWAH

Using the result by Vanden Bos 1995

w = A−1v =
1

2
AHv

det(W) =

(
1

2

)2N

det(V)

wTW−1w = vHV−1v

The multivariate generalised complex normal distribution (GCND) can now
be expressed as

f(v) =
1

πN
√

det(V)
e−

1
2v

HV−1v

and has been derived without any restriction. (Van Den Bos, 1995)
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Circular Complex Random Variables

Circularity = Rotation invariant distribution p(ρ, θ) = p(ρ, θ − ϕ)

1. Take a real–valued random variable ρ with a pdf p(ρ);

2. Take another real–valued random variable θ, which must be uniformly distributed on

[0, 2π] and independent of ρ;

3. Construct Z = X + jY as X = ρ cos(θ), Y = ρ sin(θ)
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Other Definitions of Circularity

Via Probability dens. func., Characteristic Function, Cumulants (Amblard at al., 1996)

2 Probability density function. A complex random variable Z is circular if its pdf is a

function of only the product zz∗, that is1

pZ,Z∗(z, z
∗
) = pZϕ,Z

∗
ϕ
(zϕ, z

∗
ϕ)

and for for Gaussian CCRVs we have
pZ,Z∗(z, z

∗
) =

1

πσ2
e
−zz∗/σ2
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1The pdf of a circular complex random variable is function of only the modulus of Z, and not of z∗.

c⃝ D. P. Mandic ICSPS Dalian, July 2010 11



What are we Doing Wrong - Widely Linear Model

Consider the MSE estimator of a signal y in terms of another observation x

ŷ = E[y|x]
For zero mean, jointly normal y and x, the solution is

ŷ = hTx

In standard MSE in the complex domain ŷ = hHx, however

ŷr = E[yr|xr, xi] & ŷi = E[yi|xr, xi]

thus ŷ = E[yr|xr, xi] + ȷE[yi|xr, xi]

Upon employing the identities xr = (x+ x∗)/2 and xi = (x− x∗)/2ȷ

ŷ = E[yr|x, x∗] + ȷE[yi|x, x∗]

and thus arrive at the widely linear estimator for general complex signals

y = hTx+ gTx∗

We can now process general (noncircular) complex signals!
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Dealing with Complex Statistics

◦ In general, the covariance matrix

C = cov(z) = E
[
zzH

]
does not
completely describe the second order statistics of z, and another quantity

P = pcov(z) = E
[
zzT

]
called the pseudocovariance or complementary covariance, needs to
be taken into account;

◦ The probability density function of Gaussian complex random variables
has a form similar to that for real Gaussian variables only for proper, or
second order circular, random processes z for which the pseudocovariance

P = E
[
zzT

]
= 0

vanishes (hint: E[z × zT ] = E[x2]− Ey2] = σ2
x − σ2

y );

◦ However, general complex random processes are improper.
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Practical Example

Complex AR(4) process (circular) Complex Ikeda map (noncircular)
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The Role of Noise – Double Whiteness

PDFs: DW circular noise DW noncircular noise noncircular noise
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Covariances: DW circular noise DW noncircular noise noncircular noise

◦ Doubly white circular noise (proper) ⇒ nr ⊥ ni & σ2
nr

= σ2
ni

◦ Doubly white noncircular noise (improper) ⇒ nr ⊥ ni & σ2
nr

> σ2
ni
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Measuring (Non)-Circularity

Obviously, since σ2
x ≥ σ2

y, any ratio of the powers of the real and imaginary
part of a general complex signal is a candidate for a measure of the degree
of circularity. Remember: |SP(ω)|2 ≤ SC(ω)SC(−ω)

An unbounded measure

ξ =
√

σ2
x/σ

2
y ξ = 1 → proper, ξ > 1 → improper

Another measure

κ = 1− det(Ca)det−2Czz 0 ≤ κ ≤ 1, κ = 0 → proper signal

Or, circularity coefficient

r =
|E{z2}|
E{|z|2}

, 0 < r < 1, r = 0 → proper signal

r – square of the eccentricity ϵ of an ellipse centred in C; For ϵ = 0 the
shape is a circle ↔ proper (2nd order circular) signal with r = 0.

Comparison of degrees of noncircularity κ for the various classes of signals
Circular AR(4) Noncircular ARMA Ikeda map Wind (low) Wind (medium) Wind (high)

κ 0.0016 0.9429 0.1229 0.2703 0.4305 0.8117
r 0.0093 0.9198 0.3549 0.5199 0.6484 0.8398
ξ 1.05 4.8901 1.4173 1.1908 1.2876 1.3736
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Solution: Widely Linear Stochastic Modelling

Widely linear model Widely linear normal equations

y(k) = h(k)x(k) + g(k)x∗(k) + n(k)

[
h∗

g∗

]
=

[
C P
P∗ C∗

]−1 [
c
p∗

]
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Can we Quantify the Benefits of WL Modelling?

ẑl = aTz(k) → ε2l = E[|z(k)|2]− E[|ẑl(k)|2]
ẑwl = hTz(k) + gTz∗(k) → ε2wl = E[|z(k)|2]− E[|ẑwl(k)|2]

Let us examine (Picinbono, Chevalier)

δε2 = ε2wl − ε2l = cTa C∗
a
−1c∗a − cTC∗−1c∗

This expression is a bit awkward, as the pseudocovariance information is
embedded into the augmented covariance matrix Ca.
After some tedious matrix manipulation, we arrive at

δε2 =
[
p−P∗C∗−1c∗

]H[
C∗ −P∗C−1P

]−1[
p∗ − P∗C−1c

]
where c and p are respectively the first column of C and P.

Observe that for proper signals P = 0 implies δε2 = 0, that is, both the
standard and widely linear model perform in the same way.

For improper signals, P is nonzero and δε2 > 0, the WL model is superior.
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Learning: Cauchy–Riemann Equations and Drawbacks

∂u(x, y)

∂x
=

∂v(x, y)

∂y
,

∂v(x, y)

∂x
= −∂u(x, y)

∂y
The Jacobian matrix of a complex function f(z) = u+ ȷv, is given by

J =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
⇔

[
“1′′ “1′′

“− 1′′ “1′′

]

Thus, f(z) = z∗ is not analytic as its Jacobian J =

[
1 0
0 −1

]
.

Functions which depend on both z = x+ ȷy and z∗ = x− ȷy are not
analytic

J(z, z∗) = zz∗ = x2+y2 ⇒ J =

[
2x 2y
0 0

]
⇔ ∂u

∂x
̸= ∂v

∂y

∂v

∂x
̸= −∂u

∂y

One typical example is the cost function J = 1
2e(k)e

∗(k) = 1
2|e(k)|

2.
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The CR calculus

Based on our earlier examples of nonanalytic functions f(z) = z∗ and
f(z) = |z|2 = zz∗, observe that:-

◦ A function f(z) can be non–holomorphic in the complex variable
z = x+ ȷy, but still be analytic in real variables x and y, as for
instance, f(z) = z∗ and f(z) = zz∗ = x2 + y2;

◦ Both f(z) = z∗ and f(z) = zz∗ are holomorphic in z for z∗ = const,
and are also holomorphic in z∗ when z = const.

The main idea behind both Wirtinger calculus and Brandwood’s result, is
to introduce so called conjugate coordinates

f(z) = f(z, z∗) = g(x, y) = ℜ{f}+ ȷℑ{f} = u(x, y) + ȷv(x, y)

For an excellent overview see the web material by Kenneth Kreutz-Delgado
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The Derivative of a Cost Function 1
2e(k)e

∗(k) and CLMS

As C-derivatives are not defined for real functions of complex variable

R− der:
∂

∂z
=

1

2

[
∂

∂x
− ȷ

∂

∂y

]
R∗ − der:

∂

∂z∗
=

1

2

[
∂

∂x
+ ȷ

∂

∂y

]
and the gradient

∇wJ =
∂J(e, e∗)

∂w
=

[
∂J(e, e∗)

∂w1
, . . . ,

∂J(e, e∗)

∂wN

]T
= 2

∂J

∂w∗ =
∂J

∂wr
+ ȷ

∂J

∂wi︸ ︷︷ ︸
pseudogradient

The standard Complex Least Mean Square (CLMS) (Widrow et al. 1975)

y(k) = xT (k)w(k)

e(k) = d(k)− y(k) e∗(k) = d∗(k)− x∗(k)w∗(k)

and ∇wJ = ∇w∗J

w(k + 1) = w(k)− µ
∂1
2e(k)e

∗(k)

∂w∗(k)
= w(k) + µe(k)x∗(k)

Thus, no need for tedious computations – The CLMS is derived in one line.
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The Augmented (widely linear) CLMS (ACLMS)

Widely linear model y(k) = hT(k)z(k) + gT(k)z∗(k)

h(k + 1) = h(k)− µ∇h∗J ⇒ ∇h∗J = −e(k)x∗(k)

g(k + 1) = g(k)− µ∇g∗J ⇒ ∇g∗J = −e(k)x(k)

Therefore, the ACLMS update

h(k+ 1) = h(k) + µe(k)x∗(k)

g(k+ 1) = g(k) + µe(k)x(k)

or in a more compact form (using augmented input and weight vectors)

wa(k+ 1) = wa(k) + ηea(k)xa∗(k)

where η = µh = µg, w
a(k) = [hT(k), gT(k)]T, xa(k) = [xT(k), xH(k)]T,

ea(k) = d(k)− xaT(k)wa(k) (Mandic et al. 2008).
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Performance of ACLMS

Evaluated for both second order circular (proper) and improper signals.
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The ACLMS outperforms CLMS for second order noncircular signals.
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Wind Modelling - Dynamics vs Circularity

Data recorded in an urban environment over one day
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v(k) = |v(k)|eȷΦ(k), |v| - speed, Φ - direction
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The CRTRL vs ACRTRL

◦ Complex Real Time Recurrent Learning (CRTRL)

π
⋆
n(k) = Φ

′∗(
net(k)

)(
u
∗
n(k) +

N∑
l=1

w
∗
l+M+1(k)π

⋆
n(k − l)

)

◦ Augmented Complex Real Time Recurrent Learning (ACRTRL)

π
◦
wq

(k) = Φ
′(
net(k)

)( N∑
l=1

al(k)π
◦
wq

(k − l) +

N∑
l=1

αl(k)π
⋆
wq

(k − l)

)

π
⋆
wq

(k) = Φ
′∗(

net(k)
)(

u
∗
(k − q) +

N∑
l=1

a
∗
l (k)π

⋆
wq

(k − l) +

N∑
l=1

α
∗
l (k)π

◦
wq

(k − l)

)

The weight update becomes

wa(k + 1) = wa(k) + µ
(
e∗(k)π◦(k) + e(k)π⋆(k)

)
The extension to full RNNs if straightforward
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Simulation Results

Prediction gains Rp = 10logσ2
x/σ

2
e for circular and noncircular signals

Signal Nonlinear AR4 (noncirc) AR4 (circ) Wind Radar
ACRTRL 3.91 4.10 3.6 9.80 9.45
CRTRL 3.76 3.54 3.6 6.32 7.22

One step ahead prediction of a complex radar signal [ICEX - S. Haykin website]
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Real World Example: BSE for EEG data

IEEE Transactions on CAS I, 2010 (Javidi, Cichocki, Mandic)

+
Predictor

Widely Linear −

+
e(k)

y(k)
w

z−1

x(k)

yWL(k)

Cz

O1

C5

O2

C6

Fp2Fp1

The Blind Source Extraction (BSE) scheme EEG electrode placement

J1(w, h, g) =
E{|e(k)|2}
E{|y(k)|2}

wopt = arg max
||w||2=1

J1(w, h, g)

Sources extracted based on the degree of WL predictability, and
then removed from the mixtures.
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Separation of EOG Artifacts from EEG
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◦ Excellent matching of the power spectra of the original and extracted
signal (for visualisation - scaled to match the original)
◦ The algorithm operates in real time
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The Existing Algorithms

What is currently out there?

• Augmented Statitics and Widely Linear Modelling: Neeser and Massey,
Picinbono and Bondon, Amblard et al.

• Statistics being further developed by Scharf and Schreier, Picinbono
and Chevalier, Walden

• Algorithms for communications by Schoeber et al., Koivunen, Erikkson,
Olila

• Algorithms for Blind Source Separation: Douglas, Eriksson et al., Novey
and Adali

• Algorithms for Beamforming: Delmas, Chevalier,

• Performance bounds: Delmas, Picinbono, Schreier

• Much work is needed to provide rigorous performance bounds and
practical tests in various applications
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In Our Team We Have Developed

• Augmented LMS [Proc CIP 2008, Renewable Energy 2009]

• Augmented Kalman filter [Neural Computation 2007]

• Recursive algorithms for widely linear IIR filters [IEEE TSP 2009]

• Augmented Complex CRTRL for RNNs [Neural Networks 2007]

• Augmented affine projection algorithm [SP 2009]

• Augmented Echo State Networks [2008, 2010]

• Quaternion least mean square (QLMS), quaternion IIR filters,
quaternion NNs [2009-]

• Widely linear quaternion model, QLMS, WL-QLMS, Augmented
Q–Statistics [2008 - 2010]
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Conclusions - Gains to be achieved

◦ Signal processing for vector sensors benefits from casting the problem
into the complex (and quaternion) domain, and their division algebras;

◦ The mean square error of widely linear estimators is reduced for
noncircular signals, whereas for circular signals the performance will be
the same as that for standard models;

◦ Signal processing algorithms benefit from exploiting special matrix
structures arising in augmented complex statistics, such as symmetries,
diagonality, and subspace structure;

◦ Catering for complex noncircularity provides an additional degree of
freedom, aiding the detection and separation algorithms;

◦ The uncertainty in estimation problems is reduced, as e.g. circular and
noncircular noises can be separated, and the number of signals that we
may resolve is incresed.
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A Comprehensive Account of Widely Linear Modeling

◦ Unified approach to the design of

complex valued adaptive filters and

neural networks

◦ Augmented learning algorithms based

on widely linear models

◦ Suitable for processing both

second order circular (proper)

and noncircular (improper) complex

signals

◦ ACLMS, augmented Kalman filters,

augmented CRTRL, linear and

nonlinar IIR filters

◦ Adaptive stepsizes, dynamical range

reduction, collaborative adaptive

filters, statitical tests for the validity

of complex representations
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Thank you

十分感谢！
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Conclusions

It is fitting to end this talk with the quote from Richard Penrose’s The
Road to Reality: A Complete Guide to the Laws of the Universe.

“We shall find that complex numbers, as much as reals, and perhaps
even more, find a unity with nature that is truly remarkable. It is as
though Nature herself is as impressed by the scope and consistency
of the complex–number system as we are ourselves, and has
entrusted to these numbers the precise operations of her world at its
minutest scales.”
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Some of Our Related Work
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