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Abstract-An original experimental design is combined with 
a novel signal processing approach so as to provide cognitive 
clues in the study of auditory scene analysis and in the design 
of auditory brain computer interfaces. Volunteers attended a 
single auditory stimulus in a perceptually complex auditory 
environment of speech and music, wherein the experiment 
aim was to estimate the attended stimulus from recorded 
electroencephalogram (EEG). Unlike previous studies, the com­
plex nature of the auditory environment does not allow for 
straightforward analysis that exploits convenient properties of 
the stimuli. To provide insight, synchronised neuronal activity 
was analysed within a novel signal processing framework 
that models energy and phase dynamics independently using 
empirical mode decomposition. By design, the proposed ap­
proach caters for higher order information and is suitable for 
nonstationary data, both critical properties in the analysis of 
cognitive activity. The proposed methodology achieved a median 
classification accuracy of 71 % in a series of selective attention 
experiments with several volunteers. 

I. INTRODUCTION 

We consider the following question. If a subject is pre­
sented with two sound sources, can electroencephalogram 
(EEG) communicate the attended source? The study of neural 
mechanisms that convey information about selective attention 
to auditory stimuli has been the focus of research since 
the 60's and 70's [1] and has applications in areas such 
as brain computer interface (BCI). Recent work has shown 
that accurate binary classification can be achieved when the 
auditory stimuli are perceptually simple tones. This allows 
for a clear 'watermark' to be inserted into the stimuli, making 
it straightforward to identify related phenomena in the EEG. 
For example, one such study [2] determined the attended 
stimulus by constructing simple stimuli with a unique rhythm 
and searching for related structure in the EEG. Another [3], 
compared modulations present in the EEG with the AM (am­
plitude modulated) and FM (frequency modulated) content of 
each tone. We propose an experiment in which the stimuli are 
'perceptually complex', music and speech, so as to provide 
insight into the cognitive mechanisms that govern selective 
attention in a real-world auditory environment. 

The complex nature of the chosen experiment design 
presents a challenge as it is no longer straightforward to 
incorporate prior knowledge of the stimuli. Instead it is 
proposed to identify more general features that are likely 
to be relevant for a wide range of cognitive applications 
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including BCI. To this end, the degree of neuronal syn­
chronisation within different cortical regions of the brain is 
modelled, which studies show reflects cognitive processing 
and conveys selective attention [4]. Specifically, the degree 
of synchronisation within the gamma band, 30-80Hz, is 
examined [5]. 

However standard measures of synchronisation, such as 
coherence or crosscorrelation, are not appropriate in practice 
as they combine phase and amplitude information and are 
limited to the analysis of second order signal properties 
only. Growing evidence suggests that such signal dynamics 
should be processed independently [6]. It is thus proposed, 
in addition to standard spectral features, to combine the 
following features: asymmetry - the lateralization of spectral 
power between different brain regions; and phase synchrony 
- the temporal locking of phases. Individual studies of both 
asymmetry [7] and phase synchrony [6] demonstrate how the 
processes reflect cognitive activity. It is natural that a joint 
study will provide a comprehensive synchronisation measure 
and an insight into the cognitive mechanisms that govern 
selective attention. 

An additional challenge is that EEG data are often non­
linear and nonstationary [8], making standard measures of 
asymmetry and phase synchrony unsuitable. For example in 
previous studies [9], [10], asymmetry was calculated with 
algorithms based on Fourier theory, such as the periodogram, 
which project the data on linear basis functions and are 
therefore not appropriate for processing nonlinear data. In 
the case of phase synchrony, previous studies have used the 
wavelet transform [11] and the Hilbert transform [12]. Like 
Fourier based algorithms, the wavelet transform is limited 
by its fixed-basis operation which affects its time-frequency 
resolution and estimation of instantaneous phase. In the 
case of the Hilbert transform, it is only suitable for phase 
estimation if the data is first bandpass filtered so that it 
satisfies narrowband criteria. Thus, the approach relies on the 
a priori selection of bandpass filter cutoffs. Such constraints 
make the analysis sensitive to slight changes in experimental 
conditions, meaning that some synchrony events are likely 
to be missed [13]. 

The empirical mode decomposition (EMD) [14] is a fully 
adaptive algorithm which determines the oscillations inherent 
to the data without any prior assumptions. By design, the 
AMIFM decomposition components, called intrinsic mode 
functions (lMFs), are narrowband and thus the Hilbert trans­
form can be applied directly to obtain highly localised phase 
and amplitude information. The data-driven and localised 
nature of the algorithm make it suitable for performing 



spectrum analysis [14] and phase synchrony estimation [13] 
on nonlinear and non stationary data [15]. 

More recently, it has been illustrated how bivariate ex­
tensions of EMD [16] can improve the performance of 
the algorithm in applications which require multi component 
analysis [17], [18]. The extension facilitates improved com­
ponent estimation [18] which can enhance the accuracy of the 
marginal spectrum for each source, critical to the calculation 
of asymmetry. Furthermore it allows for a scale by scale 
comparison between pairs of sources and a more localised 
estimate of phase synchrony [18]. 

It is proposed to estimate selective attention features by 
modelling the degree of gamma band synchronisation both 
in energy (asymmetry) and phase (phase synchrony), within a 
unified bivariate EMD framework. By design, the approach is 
highly localised in both time and frequency and is sensitive 
to higher order synchronisation properties. The robustness 
of the nonlinear synchronisation estimation paradigm is 
illustrated in a selective attention experiment in which the 
subject alternates their attention between perceptually com­
plex auditory stimuli. Its performance is compared to that of 
standard synchronisation measures!. 

II. METHODS 

A. Subjects, Stimuli, Protocol and Recordings 

Eight volunteers with healthy hearing participated in the 
experiment (mean age 30 years, median age 25 years, five 
males, three females). The auditory stimuli consisted of a 
segment of speech and a segment of music, each lasting 
30 seconds. The speech consisted of a male reading from 
a passage of text and the music segment was taken from a 
baroque orchestral piece. Each of the stimuli were continuous 
and contained no significant pauses. 

l?e subject was seated between two speakers in a quiet 
envIronment. For each experimental trial, the speech and 
music stimuli were played simultaneously, with speech being 
played from the right speaker (relative to the subject) and 

�usic from the left. Before each trial, the subject was 
Instructed to attend one of the stimuli only. Furthermore, the 
subject was asked a question specific to the attended stimulus 
so as to help ensure concentration. The attended stimulus was 
alternated between trials. After each trial, the subject was 
interviewed to determine the quality of the concentration. 
If the subject failed to concentrate adequately, the trial was 
re?eated. A total of 10 trials were performed for each subject, 
WIth the music and speech stimulus being identical for each 
trial. So as to reduce the effects of visual stimuli and ocular 
artifacts on the recordings, the subjects were instructed to 
close his/her eyes for the duration of the experiment. 

EEG was recorded at positions FC3 FC4 FC5 FC6 C3 
C4, T7 and T8 and sampled at 256Hz. Recordings �er; 
made with reference to the right ear lobe, and amplified and 
bandpass filtered at 0.5-100Hz using a gMOBIlab+ portable 
biosignal acquisition system. 

. I There exist some synchronisation dynamics that can be estimated using 
linear methods (correlation) but not with asymmetry or phase synchrony. 
However, this shortcoming will be the focus of future work. 

B. The EMD Algorithm 

Empirical mode decomposition (EMD) [14] is a data 
driven time-frequency technique which adaptively decom­
poses a signal, by means of a process called the sifting al­
gorithm, into a finite set of AMlFM modulated components. 
These components, called "intrinsic mode functions" (IMFs), 
represent the oscillation modes embedded in the data. By 
definition, an IMF is a function for which the number of 
extrema and the number of zero crossings differ by at most 
one, and the mean of the two envelopes associated with the 
local maxima and local minima is approximately zero. The 
EMD algorithm decomposes the signal x(t) as 

M 
x(t) = L Ci(t) + r(t) (1) 

i=l 

where Ci(t), i = 1, ... , M, are the IMFs and r(t) is the 
residual. The first IMF is obtained as follows [14]. 

1) Let x(t) = x(t); 
2) Identify all local maxima and minima of x(t); 
3) Find an "envelope," em in (t) (resp. emax (t)) that inter­

polates all local minima (resp. maxima); 
4) Extract the "detail," d(t) = x(t) - (1/2)(emin(t) + 

emax(t) ); 
5) Let x(t) = d(t) and go to step 2); repeat until d(t) 

becomes an IMF. 

?nce
. 

the first IMF is obtained, the procedure is applied 
IteratIvely to the residual r(t) = x(t) - d(t) to obtain 
all the IMFs. The extracted components satisfy so called 
monocomponent criteria and the Hilbert transform can be 
applied to each IMF separately. This way, it is possible to 
generate analytic signals, having an IMF as the real part and 
its Hilbert transform as the imaginary part, that is x+ j1i(x) 
where 1i(.) is the Hilbert transform operator. Equation (1) 
can therefore be augmented to its analytic form given by 

M 
X(t) = Lai(t). ej(J;(t) (2) 

i=l 

where the trend r(t) is purposely omitted due to its over­
whelming power and lack of oscillatory behavior. Observe 
from (2), that now the time dependent amplitude ai (t) 
and �hase function Bi(t) can be extracted. By plotting the 
amphtude ai(t) versus time t and instantaneous frequency 
!i(t) = d!: [19], a Time-Frequency-Amplitude representa­
tIon of the entire signal is obtained, the so called Hilbert­
Huang spectrum (HHS). This information can be represented 
by H(f, t) which denotes the spectrum amplitude at time t 
and frequency f. The Marginal Hilbert Spectrum (MHS), 
h(f), can be also defined by marginalizing the amplitude of 
the HHS over time as 

h(f) = faT H(f, t)dt (3) 

where T is the total data length. 



C. Complex Extensions of EMD 

In order to obtain a set of M complexlbivariate IMFs, 
li(t), i = 1, ... , M, from a complex signal z(t) using 
bivariate EMD, the following procedure is adopted [16]: 

1) Let z(t) = z(t); 
2) To obtain K signal projections, given by {POk (t)}f=l ' 

project the complex signal z(t), by using a unit com­
plex number e-JOk, in the direction of (h, as 

POk (t) = �{e-JOk z(t)}, k = 1, ... ,K (4) 

where � {.} denotes the real part of a complex number, 
and Ok = 2k7rjK; 

3) Find the locations {tj}f=l corresponding to the max­
ima of {pok (t)}f=l ; 

4) Interpolate (using spline interpolation) between the 
maxima points [tj, z(tj)], to obtain the envelope 
curves {eok(t)}f=l ; 

5) Obtain the mean of all the envelope curves, m(t), and 
subtract from the input signal, that is, d(t) = z(t) -
m(t). Let z(t) = d(t) and go to step 2); repeat until 
d(t) becomes an IMF. 

Similarly to real-valued EMD, once the first IMF is obtained, 
11 (t), the procedure is applied iteratively to the residual 
r(t) = z(t) - d(t) to obtain all the IMFs 

In our previous work [17], [18], we illustrated that in 
applications involving a pair of real valued sources, Xl and 
X2, it is advantageous to apply BEMD to the complex signal 
z = Xl + jX2. The real and imaginary components of the 
decomposition can then be viewed as two separate sets of 
IMFs, corresponding respectively to the real and imaginary 
components of the input. The advantage of applying this 
bivariate approach, compared to two individual real valued 
EMD operations, is that it improves the stability and locality 
of each set of IMFs. Firstly, this facilitates a more localised 
phase comparison between the IMFs, thus enhancing the 
performance of phase synchrony analysis. Secondly, it allows 
for a more accurate estimate of the marginal spectrum for 
each source which is critical for a robust calculation of 
asymmetry. 

D. Phase Synchrony using BEMD 

To measure phase synchrony between Xl and X2, bivariate 
EMD is firstly applied to the complex signal z = Xl + jX2. 
The instantaneous amplitudes for the real and imaginary 
components of the decomposition, the i = 1, ... , M IMFs at 
each time instant t = 1, ... ,T, are denoted by �{ai(t)} and 
:s{ ai (t)} respectively. The instantaneous phase difference 
between each IMF component is given by '¢i ( t). The degree 
of synchrony is denoted by [18] 

¢i(t) = Hmax - H (5) 
Hmax 

where H = - E:=l Pn ln pn, the Shannon entropy of the 
distribution of '¢i (t - 'f : t + 'f) defined by a window of 
length W, N is the number of bins and Pn is the probability 

of '¢i (t - 'f : t + 'f) within the nth bin [12]. The maximum 
entropy H max is given by 

Hmax = 0.626 + O.4ln(W - 1) (6) 

The value of ¢ is between 0 and 1, 1 indicating perfect 
synchrony and 0 a non-synchronous state. An additional step 
can be incorporated to model simultaneously for component 
relevance. 

{ 0 if �{ai(t)}2 < � 
.t- ' 2 f r ¢�( ) -

0 ·f �{ai(t)}2 D . 
, 1  2 

< fr� 
(7) 

where Pr is the power of the original real component 
(similarly for Pi) and f is an appropriate threshold. The phase 
synchrony information can be represented by <I> ( t, f), which 
denotes the phase synchrony at time t and frequency f. Thus 
the degree of phase synchrony within the frequency range It 
to 12 is given by the scalar 

12 Q(h,h) = L L <I>(t, f) 
t f=h 

E. Asymmetry Ratio using BEMD 

(8) 

The asymmetry ratio for a pair of sources, Xl and X2, is 
estimated as follows. Firstly the set of complex IMFs for 
z = Xl + jX2 is obtained using bivariate EMD. The real 
and imaginary components of the decomposition are then 
separated giving two sets of IMFs and the MHS is calculated 
for each, h1(J) and h2(J) for Xl and X2 respectively. The 
asymmetry ratio, within the frequency range It to 12, is given 
by the scalar 

IEj�h h1(J)2 -Ej�h h2(J)2 1 f3(/1,h) = 
,,12 h (f)2 + ,,12 h (f)2 
L..f=h 1 L..f=h 2 

F. Normalised Power Spectrum 

(9) 

The normalised power spectrum, p(J), which charac­
terises the spectrum shape of a source Xl within the fre­
quency range It to 12 is given by the vector 

where 

log(FrER(J)) - ikp P(h , h,n) (J) = --;===================== 
E;�h (iOg(A.ER(f))-l'p)2 

n 

(10) 

(11) 

where FrER (J) denotes spectrum power obtained using a 
periodogram with a Bartlett window, and n is the number 
of bins between It and h. 

Standard Fourier analysis was used to obtain the nor­
malised spectrum because the MHS was found to be too 
sparse for short data lengths and high frequencies, making 
it unsuitable for obtaining a continuous spectrum shape at 
discrete frequency intervals within the frequency range 60-
80Hz. 



G. Correlation 

The correlation between two signals, Xl and X2 , within 
the frequency range It to 12 is given by 

T(!1,!2) = 
T 

(12) 

L (hb{Xl(t)} - hb{Xl})(hb{X2 (t)} - hb{X2 }) 
t=l 

T T 
L(hb{Xl(t)} - hb{Xl})2 L(hb{X2 (t)} - hb{X2 })2 
t=l t=l 

where hb{-} denotes a bandpass Butterworth filter operation 
that admits frequencies between It and 12 and hb{ xt} 
denotes the sample average of hb{xt} (similarly for hb{X2 } 
and hb{ X2 }). 

H Support Vector Machine 

Feature classification was achieved using a Gaussian ker­
nel support vector machine (SVM), the code of which was 
obtained from [20]. 

1. Statistical Analysis 

For a given subject, trial and EEG electrode, each 30s data 
segment was divided into a set of 6 subsegments each of 
length 4s2• Thus, for each subject and electrode, there were 
a total of 60 (6 x 10) sub segments available for analysis. 

Analysis was performed individually for each subject and 
each electrode pair. The analysis for subject 'A', for the 
electrode pair FC51FC6 was performed as follows. For each 
corresponding electrode sub segment pair, that is sub segments 
from FC5 and FC6 recorded during the same time interval, 
a 1 x 4 feature vector, reflecting the degree of higher order 
synchronisation, was calculated as 

� = [G(30,45), .8(30,45), G(60,80), .8(60,80)]T (13) 

where (.) T denotes the matrix transpose. Note that the feature 
� denotes synchronisation in the gamma band only, excluding 
the frequency band dominated by the electronic interference 
(45-60Hz). For comparison, a 1 x 2 feature vector containing 
second order synchronisation information only (correlation) 
was calculated as 

( = [T(30,45), T(60,80)]T (14) 
An additional feature, p', relating to the normalised 

gamma band spectrum of one of the electrodes in the 
electrode pair (FC5) was also included in analysis. p' 
was obtained by applying principal component analysis 
to reduce the dimensionality of the 1 x 37 vector p = 
[P(30,45,16)( 30, ... ,4 5 ),P(60,80,2 1)(60, ... ,80)]T to a 1 x 3 
feature vector. 

Thus for a given electrode sub segment pair, the complete 
1 x 7 feature vector containing normalised spectrum power3 

2The initial 5s and final 5s of each recording were discarded so that any 
EEG response caused by the sudden introduction/cessation of the stimulus 
was discarded 

3The normalised spectrum power was calculated for the first electrode in 
the electrode pair. 

and nonlinear synchronisation is given by Fnonlin = [�, p/]T 
and the 1 x 5 feature vector containing linear second order in­
formation only (normalised spectrum power and correlation) 
is given by Fiin = [(, p' jT . 

Features for 20 of the 30 attended music subsegments and 
20 of the 30 attended speech subsegments were used to train 
the SVM and classification was performed on the remaining 
subsegments. The selection of the subsegments used for 
training was performed in a random fashion. In this way, 
the SVM was retrained and used to perform classification a 
total of 50 times. The classification performance was taken 
to be the average of these 50 outcomes. 

This same analysis was repeated, including a full retraining 
of the SVM, for other electrode pairs and subjects. 

III. RESULTS 

Classification performances for correctly estimating the 
attended stimulus (speech or music) for the eight subjects, 
for linear and nonlinear synchronisation features, are given 
for various electrode pairs in Table I. 

The highest classification performance was obtained by 
analysing the degree of nonlinear synchronisation between 
the electrode pair FC5IFC4, which gave a median clas­
sification performance of 71 %. The median classification 
performance using linear synchronisation was 64.5% for 
the same electrode pair. On average for all electrode pairs, 
the median performance of the nonlinear synchronisation 
features was 4.3% higher than the linear synchronisation 
features. It is additionally worth noting that although the 
average performance obtained with T7/T8 was the lowest 
of all considered electrode pairs (67% using nonlinear syn­
chronisation features), it facilitated a significant peformance 
increase (compared to FC5IFC4) for the subject 'H' (88%). 
This suggests that the cortical locations of neuronal synchro­
nisation related to selective attention can be unique to the 
subject. 

IV. DISCUSSIONS AND FUTURE WORK 

The sources of uncertainty in this study include the 
poor resolution recording facilities (only 256Hz sampling 
frequency), limited number of trials per recording session 
(only 10 per subject), and limited number of subjects (eight 
in total). This only gave 60 segments of 4s in duration, as an 
input to the classifier; due to the small size of the statistics 
the classifier was trained by randomly choosing 70% of the 
segments for training and 30% for testing (a rather high 
ratio). The observed differences in attention to speech and 
music were derived based on the gamma band, which has a 
low SNR. 

Future work will consider synchronisation among multi­
ple electrodes using recent multidimensional extensions of 
EMD [21], together with higher precision recording. This 
will help generate sufficient statistics for other classification 
paradigms, investigating both inter-trial and inter-subject 
variability (e.g. trial-wise rather than segment-wise). Future 
work will also consider synchronisation dynamics which 
cannot be estimated using asymmetry and phase synchrony. 



V. CONCLUSION 

A novel framework for estimating synchronised neuronal 
activity has been presented. This has been achieved us­
ing bivariate extensions of empirical mode decomposition, 
facilitating highly adaptive and localised multi component 
analysis to calculate phase synchrony and asymmetry. The 
approach has been shown to be suitable for higher order 
synchronisation in EEG, and has been applied to a novel 
selective attention auditory experiment. We have achieved a 
4.3 % increase in the classification performance compared to 
standard synchronisation measures. Future work is necessary 
to fully establish the full statistical significance of experiment 
findings regarding selective attention, however, the proposed 
framework has showed clear potential in the design of 
advanced BCI. 

TABLE I 

THE CLASSIFICATION RATES FOR 8 SUBJECTS USING LINEAR (FLIN) AND 
NONLINEAR SYNCHRONISATION FEATURES (FNONLIN). 

Subject �e 
Electrode pair Ain Fnonlin 

FC5IFC6 81.3 77.4 
FC51FC4 80.9 77.1 

A FC51C4 78.8 79.1 
FC51T8 77.7 79.1 
T7/T8 64.4 68.1 

FC51FC6 55.9 64.7 
FC51FC4 54.1 60.9 

B FC51C4 57.4 70.9 
FC51T8 55.8 64.8 
T7/T8 55.5 57.2 

FC51FC6 67.3 66.1 
FC5IFC4 68.2 68.8 

C FC51C4 68.3 67.1 
FC51T8 70.1 66.3 
T7/T8 52.4 54.2 

FC51FC6 61.9 70.6 
FC51FC4 60.4 69.3 

D FC51C4 61.9 68.8 
FC51T8 63.1 73.1 
T7/T8 65.8 68.2 

FC51FC6 58.1 61.7 
FC51FC4 59.6 82.1 

E FC51C4 60.2 66.1 
FC51T8 60.2 64.5 
T7/T8 65.8 66.7 

FC51FC6 81.4 76.7 
FC51FC4 78.8 72.9 

F FC51C4 82.8 72.4 
FC51T8 79.1 71.3 
T7/T8 58.5 53.9 

FC51FC6 70.3 82.0 
FC51FC4 64.8 76.1 

G FC51C4 71.3 76.8 
FC51T8 66.0 74.6 
T7/T8 73.0 77.4 

FC51FC6 58.5 67.2 
FC51FC4 64.2 54.1 

H FC51C4 58.1 58.9 
FC51T8 59.2 59.7 
T7/T8 64.1 88.3 
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