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Abstract— A class of nonlinear quaternion-valued adaptive
filtering algorithms is proposed based on locally analytic non-
linear activation functions. To circumvent the stringent standard
analyticity conditions which are prohibitive to the development of
nonlinear adaptive quaternion-valued estimation models, we use
the fact that stochastic gradient learning algorithms require only
local analyticity at the operating point in the estimation space.
It is shown that the quaternion-valued exponential function is
locally analytic, and, since local analyticity extends to polynomi-
als, products, and ratios, we show that a class of transcendental
nonlinear functions can serve as activation functions in nonlinear
and neural adaptive models. This provides a unifying framework
for the derivation of gradient-based learning algorithms in the
quaternion domain, and the derived algorithms are shown to
have the same generic form as their real- and complex-valued
counterparts. To make such models second-order optimal for the
generality of quaternion signals (both circular and noncircular),
we use recent developments in augmented quaternion statistics
to introduce widely linear versions of the proposed nonlinear
adaptive quaternion valued filters. This allows full exploitation
of second-order information in the data, contained both in
the covariance and pseudocovariances to cater rigorously for
second-order noncircularity (improperness), and the correspond-
ing power mismatch in the signal components. Simulations
over a range of circular and noncircular synthetic processes
and a real world 3-D noncircular wind signal support the
approach.

Index Terms— Augmented quaternion statistics, H-circularity,
nonlinear adaptive filtering, quaternion least mean square, widely
linear modeling, widely linear quaternion least mean square,
wind prediction.

I. INTRODUCTION

THE recent resurgence of quaternion-valued signal
processing is due to their great potential in the modeling

of 3- and 4-D data. Owing to their convenience over real-
valued vectorial models, they have found application across the
areas of engineering, computer graphics [1], and robotics [2].
In the statistical signal processing field, quaternions have been
employed in adaptive filtering, including Kalman filtering [3]
and stochastic gradient algorithms, such as the quaternion
least mean square (QLMS) [4]. However, they are still rel-
atively underexplored in nonlinear filtering, neural networks,
and blind source separation communities, mainly because of
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problems arising due to the lack of analytic nonlinear functions
in the quaternion domain H. Although quaternion nonlinear
functions have been implemented, for example, the quaternion
independent component analysis (ICA) algorithm [5], [6], the
analyticity of such function has not been rigorously examined.
The very stringent Cauchy–Riemann–Fueter (CRF) condi-
tions [7] ensure that the only globally analytic quaternion-
valued functions are linear functions and constants. This is a
serious obstacle as the CRF conditions prevent us from choos-
ing the standard nonlinear activation functions (tanh, logistic)
as the nonlinearities in nonlinear quaternion-valued adaptive
estimation. To partially overcome this issue, a suboptimal
solution in the form of a “split” nonlinear quaternion function
that treats each channel separately (as a real channel) passed
through a real smooth nonlinearity was employed in [8].

Early nonlinear learning algorithms that used the “split”
nonlinear quaternion activation function include the quaternion
multilayer perceptron (QMLP) [8], which, owing to the power
of quaternion algebra, exhibited enhanced performance over
vector-based algorithms [9], [10]. However, the training of
QMLP neglects the non-commutativity aspect of the quater-
nion algebra and thus does not exploit the full potential of the
processing in the quaternion domain; this issue was addressed
with the split quaternion nonlinear adaptive filtering algorithm
(SQAFA) [11]. The nonlinearities used in SQAFA were still
standard real activation functions applied componentwise,
thus prohibiting a rigorous treatment of the cross-information
across the data channels.

It is important to note that most practical learning algorithms
are gradient-based [8]–[11], where the operating point moves
at every sample interval, to build nonlinear adaptive models
and we only require local analyticity at a point. In analogy
to the complex domain, where the so-called fully complex
nonlinearities (elementary transcendental functions) provide
means for generic extensions of real neural networks [12],
[13], our aim is to show that the class of elementary transcen-
dental functions, such as tanh, are locally analytic in H and
thus permit generalization of neural networks to the quaternion
domain. This is not possible to achieve using the standard CRF
conditions [7], which are too restrictive. To this end, we exploit
some recent results on local analyticity [14], and, through a
cumbersome derivation, we show analytically the possibility
of building generic quaternion-valued nonlinear adaptive filters
for the most commonly used activation functions, such as
tanh. The derivation involves proving local analyticity of
exponential functions and their ratios, thus enabling the local
analyticity for transcendental nonlinear activation functions in
H. This set of results allows us to establish the nonlinear
adaptive filtering and neural network paradigm in H, in the
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same way they are established in R and C [13], [15]–[20], as
a natural generalization.

In this paper, we introduce a class of fully quaternion
locally analytic nonlinear functions suitable for quaternion-
valued nonlinear adaptive filtering. We also show that full
second-order statistical information in the quaternion domain
can be exploited by combining the proposed nonlinear models
with the so-called augmented quaternion statistics and the
widely linear model [21], [22]. For simplicity, the analysis
and derivations are provided for a single nonlinear perceptron
and its widely linear counterpart. Extension to large-scale
architectures is readily achieved in the same way as the
corresponding extensions in R and C, and are out of the scope
of this paper.

The rest of this paper is organized as follows. Section II
introduces basic operations of quaternion algebra. Section III
reviews the basic concept behind augmented quaternion statis-
tics. This is followed by a review of the quaternion analyticity
conditions along with the analysis of the quaternion expo-
nential function and quaternion tanh function in Section IV.
Section V derives the proposed learning algorithms and their
widely linear counterparts, followed by their convergence ana-
lyzes. Section VI compares the performances of the proposed
algorithms against the existing algorithms of the kind. The
results are discussed in Section VII, and this paper concludes
in Section VIII.

II. QUATERNION ALGEBRA

Quaternions are an associative algebra defined over the field
of real numbers R with a quaternion variable q given by

q = [qa, q̄] = qa +qbı +qcj+qdκ, {qa, qb, qc, qd ∈ R} (1)

where q̄ is the vector part and ı , j , κ are both orthogonal unit
vectors and imaginary units. These orthogonal unit vectors are
related by

ıj = κ jκ = ı κı = j

ıjκ = ı2 = j2 = κ2 = −1. (2)

The addition and subtraction operations in quaternion algebra
are defined similar to complex algebra (componentwise) and
are given by

w + x = [wa + xa, w̄ + x̄]
= (wa + xa) + (wb + xb)ı + (wc + xc)j

+(wd + xd)κ. (3)

The multiplication operates quite differently the multiplication
of quaternions is given by

wx = [wa, w̄][xa, x̄] = [waxa−w̄·x̄, wa x̄+xaw̄+w̄×x̄] (4)

where the symbols “·” and “×” denote, respectively, the
dot product and cross product. The presence of the cross
product makes the quaternion multiplication noncommutative,
i.e., wx �= xw. The conjugate of a quaternion q is

q∗ = [qa, q̄]∗ = [qa,−q̄] = qa − qbı − qcj − qdκ (5)

and the norm square is

‖ q ‖2
2 = qq∗ = q∗q = q2

a + q2
b + q2

c + q2
d . (6)

Operators of equivalence important to this paper are the three
quaternion involutions (self-inverse mappings)

qı = −ıqı = qa + qbı − qcj − qdκ

qj = −jqj = qa − qbı + qcj − qdκ

qκ = −κqκ = qa − qbı − qcj + qdκ. (7)

In the sequel, all the constants and variables are assumed
quaternion-valued, unless stated otherwise.

III. AUGMENTED QUATERNION STATISTICS

The concept of augmented statistics in division algebra
was first introduced to define the notion of second-order
noncircularity, or improperness, for complex random normal
vectors [23], and was subsequently extended to non-normal
vectors [24]. In the complex domain C, the second-order
properness of a complex random vector can be fully character-
ized by its covariance Czz and pseudocovariance Pzz, defined
as [23]

Czz = E(zzH ) Pzz = E(zzT ) (8)

where (·)H and (·)T denote, respectively, the Hermitian and
transpose vector operator, and z = x + yı where x and y
are real-valued. A complex random vector is termed “circu-
lar” if its probability distribution is rotation-invariant. In the
second-order sense, this implies that the real and imaginary
components have equal variance and are not correlated: that
is, the pseudocovariance Pzz vanishes [13], [20].

A. C
η-Circular Quaternion Random Variables

The concept of augmented statistics was subsequently
extended to the quaternion domain in [25], albeit with the
restriction of a single rotation axis of ı, j , or κ . A quaternion
random variable q that obeys this condition is said to be C

η-
circular, and is defined as

q � qeηθ ∀θ (9)

for one and only one pure imaginary unit η, where η ∈
{ı, j, κ}. The symbol � denotes equality in terms of the
probability distribution function (pdf) and the symbol θ rep-
resents the angle of rotation.

B. H-Circular Quaternion Random Variables

The restriction of a single rotation axis for C
η-circular ran-

dom variable has proven to be too rigid in practical scenarios
and a generalization, allowing for a pdf along any two arbitrary
axis of rotation to be circular, was introduced in [26]. A
quaternion random variable q that satisfies this condition is
said to be H-circular, or Q-proper, and is defined as

q � qeηθ ∀θ (10)

for all the pure imaginary units η ∈ {ı, j, κ}. An H-circular
quaternion random variable is circular in all its dimensions,
meaning that the scatterplot of any two components of
{1, ı, j, κ} is circular. We can now define a Q-proper
(second-order circular) random variable q as the one that has
equal powers in all the components, qa , qb, qc, and qd .
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C. Augmented Second-Order Statistics of Quaternion Random
Vectors

Similar to the complex case, in general the covariance alone
is not sufficient to fully describe the complete second-order
information within the quaternion random vector. To provide
a generic framework for second-order statistical modeling
of quaternion vectors, i.e., to deal with Q-improper signals,
we also need to employ complementary covariance matrices
(pseudocovariances). These complementary covariance matri-
ces are termed the ı -covariance Cqı , j -covariance Cqj , and
κ-covariance Cqκ , and are given by [21] and [22]

Cqı = E
{

qqı H
}

Cqj = E
{

qqj H
}

Cqκ = E
{

qqκ H
}

.

(11)
Thus, the complete second-order characteristics of the

quaternion random vector are described by the augmented
covariance matrix Ca

q of an augmented vector qa =
[qT qıT qjT qκT ]T , given by1

Ca
q = E{qaqaH} =

⎡
⎢⎢⎢⎣

Cqq Cqı Cqj Cqκ

CH
qı Cqıqı Cqıqj Cqıqκ

CH
qj Cqjqı Cqjqj Cqjqκ

CH
qκ Cqκqı Cqκqj Cqκqκ

⎤
⎥⎥⎥⎦ (12)

where the submatrices in (12) are calculated according to2

Cδ = E
{
qδH } Cαβ = E

{
αβH

}

δ ∈ {qı , qj , qκ } α,β ∈ {
q, qı , qj , qκ

}
. (13)

A quaternion random vector q is said to be C
ı -circular when

the j -covariance Cqj and κ-covariance Cqκ vanish [22]. Similar
definitions hold for C

j -circular and C
κ -circular quaternion

random vectors. The semi-widely linear model, based on
the statistics of C

η circularity, is described in [22]. On the
other hand, an H-circular quaternion random vector q has the
property that it is not correlated with its quaternion involutions
qı , qj , and qκ

E
{

qqı H
}

= 0 E
{

qqjH
}

= 0 E
{

qqκH
}

= 0 (14)

yielding the augmented covariance matrix Ca
q in (12) of a H-

circular random vector in the form3

Ca
q = E{qaqaH} =

⎡
⎢⎢⎢⎣

Cqq 0 0 0
0 Cı

qq 0 0
0 0 Cj

qq 0
0 0 0 Cκ

qq

⎤
⎥⎥⎥⎦ . (15)

1As long as the covariance matrix Cqq is nonsingular, then it follows
immediately that the other covariance matrices Cqıqı ,Cqjqj ,Cqκqκ have
inverses. Therefore, the augmented Ca

q is full rank and nonsingular.
2The matrices Cqηqη are an involution of Cqq over η and therefore can be

simplified to Cη
qq where η ∈ {ı, j, κ} [22].

3Any other basis comprising four combinations out of {q, qı , qj , qκ }, and
their conjugates is equally valid. The basis proposed in [21] and used here,
qa = [qT qıT qjT qκT ]T, provides most convenient representation, as shown
in the augmented covariance structure for H-circular signals in (12) and (15).

To exploit the complete second-order statistics of
quaternion-valued signals, a filtering model similar to
the widely linear model in C needs to be considered [13],
[27]. The quaternion widely linear model is based on the
augmented basis that builds the matrix Ca

q (12), and can be
described by [21], [28] and [22]

y = waTxa = gT x + hT xı + uT xj + vT xκ (16)

where g, h, u, and v are the weight vectors, x is the input
signal, xı , xj , and xκ are, respectively, its ı , j , and κ
involutions, wa = [gT hT uT vT ]T is the augmented weight
vector, and xa = [xT xıT xjT xκT ]T is the augmented
random input vector. Another benefit of the quaternion widely
linear model is the possibility to determine the degree of
properness of quaternion random vectors [29].

IV. NONLINEAR FUNCTIONS IN H

In C, the analyticity of a complex function f (z) = u(x, y)+
v(x, y)ı is governed by the Cauchy–Riemann (CR) equations,
given by

∂u

∂x
= ∂v

∂y

∂v

∂x
= −∂u

∂y
. (17)

That is, for a complex function f (z) to be analytic in C, the
derivatives along the real and imaginary axes have to be equal

∂ f

∂x
+ ∂ f

∂y
ı = 0 ⇔ ∂ f

∂z∗ = 0 (18)

where z = x + yı . By continuity, the analyticity in the
quaternion domain can be defined by the generalized Cauchy–
Riemann (GCR) conditions, given by [30]

∂ f

∂qa
= − ∂ f

∂qb
ı

∂ f

∂qa
= − ∂ f

∂qc
j

∂ f

∂qa
= − ∂ f

∂qd
κ (19)

where q = qa + qbı + qcj + qdκ . Only a special form of
quaternion linear functions and constants satisfy the GCR
conditions, they are therefore too prohibitive for any practi-
cal application such as in neural networks, where typically
nonlinear neuron models are involved. The GCR conditions
were initially proposed for a 4-D domain, with Clifford algebra
as their basis, making them unsuitable for applications in
H [31]. To circumvent this issue, Fueter further relaxed these
conditions by redefining them based on a quaternion basis,
resulting in the CRF conditions given by [7]

∂ f

∂qa
+ ∂ f

∂qb
ı + ∂ f

∂qc
j + ∂ f

∂qd
κ = 0 ⇔ ∂ f

∂q∗ = 0. (20)

Unlike the GCR conditions, the CRF conditions are defined
by a single quaternion partial differentiation which leads to
a close analogue of Cauchy’s theorem, Cauchy’s integral
formula, and the Laurent expansion [32]. It can be shown
that only linear quaternion functions and constants satisfy the
CRF conditions [7], limiting the scope for nonlinear adaptive
filtering in H which requires differentiable nonlinear functions.
To further relax the quaternion differentiation condition, a
“local” analyticity condition was proposed in [14], by using a
complex representation of a quaternion to give

∂ f

∂qa
= − ∂ f

∂α
ζ̂ (21)
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where ζ̂ and α are given by

ζ̂ = qbı + qcj + qdκ

α
α =

√
q2

b + q2
c + q2

d . (22)

The term “local” here refers to the fact that this representation
uses “imaginary” unit ζ̂ which depends on the values of qb, qc,
and qd [14]. The local analyticity condition only guarantees
the first-order differentiability of the single variable quaternion
functions at the current operating point. This is perfectly ade-
quate for quaternion-valued gradient descent adaptive filtering
algorithms, as they only require the information about the
gradient value at a point.

A. Fully Quaternion Functions

For quaternion-valued nonlinear quaternion functions to
be suitable for adaptive filtering applications [33], they
should share some properties of fully complex nonlinearities,
given by:

1) f (z) = u(x, y) + v(x, y)ı is nonlinear in x and y;
2) f (z) has no singularities and is always bounded for all

values of z;
3) the partial derivatives ∂u/∂x , ∂v/∂y, ∂v/∂x and ∂u/∂y

are continuous and bounded;
4) (∂u/∂x)(∂v/∂y) �= (∂v/∂x)(∂u/∂y) to ensure continu-

ous learning.

The so-called fully complex activation functions exhibit
locally all the above characteristics [12]. Note that fulfilling
the third and fourth characteristic is equivalent to fulfilling the
CR conditions in (18).

To provide a rigorous basis for nonlinear quaternion-valued
adaptive filtering, we need to identify fully quaternion non-
linearities in H. We shall call the function that satisfies
the local analyticity condition in (21) a “fully quaternion
nonlinearity,” in the sense of local analyticity. We can now
evaluate the analyticity of a function at a given point by
analyzing the local derivative within the ζ̂ -plane (with ζ̂ fixed)
to obtain the relationship [14]

∂ f

∂α
= ∂qb

∂α

∂ f

∂qb
+ ∂qc

∂α

∂ f

∂qc
+ ∂qd

∂α

∂ f

∂qd

α
∂ f

∂α
= qb

∂ f

∂qb
+ qc

∂ f

∂qc
+ qd

∂ f

∂qd
. (23)

Based on this relationship, along with ζ̂ and α in (22), the
right-hand side of the analyticity condition in (21) is expanded
along the orthogonal-axis vectors ı , j , and κ as

−
(

∂ f

∂α

)(
ζ̂

)

= −
(

qb

α

∂ f

∂qb
+ qc

α

∂ f

∂qc
+ qd

α

∂ f

∂qd

)(
qbı + qcj + qdκ

α

)
.

(24)

By analogy with C, this yields the characteristics of a fully
quaternion locally analytic nonlinearity suitable for gradient-
based learning, given by:

1) f (q) = u(qa, α) + v(qa, α)ζ̂ is nonlinear in qa and α;
2) f (q) has no singularities and is always bounded for all

values of q;

3) the partial derivatives ∂u/∂qa , ∂v/∂α, ∂v/∂qa , and
∂u/∂α are continuous and bounded;

4) (∂u/∂qa)(∂v/∂α) �= (∂v/∂qa)(∂u/∂α) to ensure con-
tinuous learning.

We next focus on the analyticity of the quaternion exponential
function eq , as it serves as a building block to construct
transcendental nonlinear quaternion functions, typically used
as nonlinear activation functions.

B. Quaternion Exponential Function

The notion of exponential function in H is not straight-
forward. Due to the non-commutativity of the quaternion
product, there exist several definitions of the quaternion
exponential [34], for convenience, we consider the following
exponential function [35, p. 9]

eq = eqa+qbı+qcj+qdκ = eqa eqbı+qcj+qdκ . (25)

Expanding the term eq using the Euler formula leads to

eq = eqa

(
cos(α) + sin(α)ζ̂

)

= eqa

(
cos(α) + qb sin(α)ı

α
+ qc sin(α)j

α
+ qd sin(α)κ

α

)

(26)

where α and ζ̂ are defined in (22). This quaternion exponential
function satisfies the analyticity condition in (21), giving the
local derivative of the exponential function as

∂eq

∂q
= ∂eq

∂qa
= eq . (27)

Observe that, as desired, this result represents a generic
extension of the real and complex derivatives of an expo-
nential. In addition, as gradient-based learning algorithms
are local, this result provides a basis for introducing other
nonlinearities, such as the elementary transcendental functions,
as a vehicle for a class of fully quaternion nonlinear adaptive
filters.

C. Local Analyticity of the Quaternion tanh Function

Similar to the complex domain, tanh(q) in H can be defined
as

tanh(q) = e2q − 1

e2q + 1
. (28)

Proceeding in a similar manner as when addressing the ana-
lyticity of eq , we first expand tanh(q) using the Euler formula
in (26), leading to (full derivation is given in Appendix A)

tanh(q) = e4qa − 1 + 2e2qa sin(2α)ζ̂

e4qa + 1 + 2e2qa cos(2α)
. (29)

To prove the local analyticity, the left-hand side of (21) is
obtained by differentiating (29) with respect to qa , and the
right-hand side of (21) is obtained by differentiating (29) with
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respect to α, resulting in (a detailed derivation is given in
Appendix B)

∂ tanh(q)

∂qa
= 4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)(

e4qa + 2e2qa cos(2α) + 1
)2

+
(
4e2qa sin(2α) − 4e6qa sin(2α)

)
(
e4qa + 2e2qa cos(2α) + 1

)2 ζ̂ (30)

= −∂ tanh(q)

∂α
ζ̂ (31)

thus illustrating that tanh(q) is a locally analytic quaternion
function. The expression for a local derivative of tanh(q) is
obtained analogously to the complex case, to this end, we shall
first define sech(q) as

sech(q) = 2

eq + e−q
. (32)

By expanding (32) into its Euler form and then squaring (full
derivation can be found in Appendix C), we have

sech2(q) = 4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)(
e4qa + 2eyy2qa cos(2α) + 1

)2

+−4e6qa sin(2α) + 4e2qa sin(2α)(
e4qa + 2e2qa cos(2α) + 1

)2 ζ̂ . (33)

A comparison of the definition for sech2(q) in (33) with
(∂ tanh(q)/∂qa) = −(∂ tanh(q)/∂α)ζ̂ in (31) shows that they
are equivalent; therefore, we have introduced a generic exten-
sion of the real and complex tanh function to the quaternion
domain, whose derivative is

∂ tanh(q)

∂q
= sech2(q). (34)

V. NONLINEAR ADAPTIVE FILTERING IN H

The cost function in quaternion-valued adaptive filtering is
usually given by a real function of quaternion variables

E(n) = e2
a(n) + e2

b(n) + e2
c (n) + e2

d(n) = e(n)e∗(n) (35)

where the error e(n) = d(n) − y(n) with d(n) and y(n)
denoting, respectively, the desired signal and output signal.
The terms ea(n), eb(n), ec(n), and ed (n) denote, respectively,
the error component in the real part, ı part, j part, and κ part.

A. Split Quaternion Algorithms

All existing nonlinear quaternion-based adaptive filtering
algorithms employ a “split” quaternion nonlinear function, i.e.,
a real function such as tanh applied componentwise. In this
case, the output signal y(n) is defined as [8], [11]

y(n) = 	s(wT (n)x(n))

= 	a
(
wT (n)x(n)

) + 	b
(
wT (n)x(n)

)
ı

+	c
(
wT (n)x(n)

)
j + 	d

(
wT (n)x(n)

)
κ (36)

where 	s(·) denotes the “split” quaternion nonlinearity, w(n)
is the weight vector of the adaptive filter, and x(n) is
the filter input. The term wT (n)x(n) can be calculated as∑L

i=1 wi (n)x(n − i) and is expanded in Appendix D.

Function 	a is a real-valued nonlinear activation function
applied to the real part of wT (n)x(n), 	b to the ı part,
	c to the j part, and 	d to the κ part. Since this “split”
quaternion function is analytic only componentwise, we are
not fully exploiting the couplings between the {1,ı , j , κ} axes
(channels). Note that the odd-symmetry property still applies
to the split quaternion function, i.e., 	

′∗
s

(
wT (n)x(n)

) =
	

′
s

(
xH (n)w(n)

)
.

Existing nonlinear quaternion-based algorithms minimize
the cost function (35) through a gradient descent weight update
specified by

w(n + 1) = w(n) − μ∇w E(n) (37)

where the gradient ∇w E(n) is given by [32] and [36]

∇w E(n) = ∂ E(n)

∂w∗ = ∂ E

∂wa
+ ∂ E

∂wb
ı + ∂ E

∂wc
j + ∂ E

∂wd
κ. (38)

We shall next employ the proposed fully quaternion activation
functions to introduce structurally simpler yet more powerful
algorithms than the existing ones.

B. Derivation of Fully Quaternion Algorithms

To introduce the quaternion nonlinear gradient descent
(QNGD) algorithm that employs a fully quaternion nonlinear
activation function, consider the output y(n) given by

y(n) = 	
(
wT (n)x(n)

)
(39)

where 	(·) is the fully quaternion nonlinearity such as the
tanh(q) introduced in Section IV. In order to derive the
QNGD, we shall express the cost function (35) as

E(n) =
(

d(n) − y(n)

)(
d∗(n) − y∗(n)

)

= d(n)d∗(n) − d(n)y∗(n) − y(n)d∗(n)

+y(n)y∗(n). (40)

The error gradient ∇w E(n) of QNGD is then calculated as

∇w E(n) = −d(n)∇w y∗(n) − ∇w y(n)d∗(n)

+y(n)∇w y∗(n) + ∇w y(n)y∗(n) (41)

and the expressions for ∇w y(n) and ∇w y∗(n) are given by
(the full derivation is given in Appendix D)

∇w y(n) = −	
′(

wT (n)x(n)
)
2x∗(n)

∇w y∗(n) = 	
′∗(wT (n)x(n)

)
4x∗(n). (42)

Substitute the terms ∇w y∗(n) and ∇w y(n) into (41) to obtain
the QNGD weight update in the form

w(n + 1) = w(n) + μ

(
2e(n)	

′(
xH (n)w∗(n)

)
x∗(n)

−	
′(

wT (n)x(n)
)
x∗(n)e∗(n)

)
(43)

where 	
′
(·) is the local derivative of the fully quaternion

function.
We shall now extend the QNGD to fully capture the second-

order statistics of the signal by incorporating the quater-
nion widely linear model [21], [22], [28] into its deriva-
tion, resulting in the augmented quaternion nonlinear gradient
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descent (AQNGD) algorithm.4 The output y(n) of AQNGD is
defined as

y(n) = 	
(
net(n)

)
(44)

where net(n) = gT (n)x(n) + hT (n)xı (n) + uT (n)xj (n) +
vT (n)xκ(n) is calculated using the widely linear model in
Section III, to which the fully quaternion function 	(·) is
applied.

The weight updates of the AQNGD are made gradient-
adaptive according to

g(n + 1) = g(n) − μ∇g E(n) h(n + 1) = h(n) − μ∇h E(n)

u(n + 1) = u(n) − μ∇u E(n) v(n + 1) = v(n) − μ∇v E(n).

(45)

The error gradient ∇w E(n) in (41) is equivalent to ∇g E(n),
hence

g(n + 1) = g(n) + μ

(
2e(n)	

′∗(net(n)
)
x∗(n)

−	
′(

net(n)
)
x∗(n)e∗(n)

)
(46)

where 	
′(

net(n)
)

is a fully quaternion locally analytic deriv-
ative, while the error gradient ∇h E(n) is given by

∇h E(n) = −d(n)∇hy∗(n) − ∇h y(n)d∗(n)

+y(n)∇hy∗(n) + ∇h y(n)y∗(n). (47)

In the same manner, the terms ∇h y(n) and ∇h y∗(n) are
calculated as

∇h y(n) = −	
′(

net(n)
)
2xı∗(n)

∇h y∗(n) = 	
′∗(net(n)

)
4xı∗(n). (48)

Substituting ∇h y(n) and ∇h y∗(n) into the error gradient
∇h E(n) in (47) yields

h(n + 1) = h(n) + μ

(
2e(n)	

′∗(net(n)
)
xı∗(n)

−	
′(

net(n)
)
xı∗(n)e∗(n)

)
. (49)

Proceeding in a similar manner, the weight updates for u(n)
and v(n) are found to be

u(n + 1) = u(n) + μ

(
2e(n)	

′∗(net(n)
)
xj∗(n)

−	
′(

net(n)
)
xj∗(n)e∗(n)

)

v(n + 1) = v(n) + μ

(
2e(n)	

′∗(net(n)
)
xκ∗(n)

−	
′(

net(n)
)
xκ∗(n)e∗(n)

)
. (50)

4A comprehensive account of widely linear modeling in the complex domain
is given in [13].

For convenience, the final weight update of the AQNGD can
be written in an augmented form as5

wa(n + 1) = wa(n) + μ

(
2e(n)	

′∗(net(n)
)
xa∗(n)

−	
′(

net(n)
)
xa∗(n)e∗(n)

)
. (51)

C. Convergence Analysis of QNGD and AQNGD

To proceed with the analysis, we will make three widely
used general assumptions [37]:

1) the learning rate μ is sufficiently small;
2) at convergence, the a priori output error ẽ(n) is sta-

tistically independent of the input vector x(n), i.e.,
E{ẽ(n)x(n)} = 0;

3) both the a posteriori output error ē(n) and a priori
output error ẽ(n) are Gaussian.

Applying these assumptions, the final condition for the
convergence of QNGD becomes (the full derivation can be
found in Appendix E)

0 < μ <
1

10E{xT (n)x∗(n)‖	′(wT (n)x(n)
)‖2

2}
(52)

whereas the condition for AQNGD is

0 < μ <
1

10E{xaT (n)xa∗(n)‖	′(net(n)
)‖2

2}
. (53)

Both the upper bounds of (52) and (53) are governed by the
expected value of the random input vector and the gradient of
the fully quaternion nonlinearity. Note that the upper bound
of μ for the AQNGD in (53) is smaller than that of QNGD
in (52), due to the larger size of the augmented input vector
xa(n).

VI. SIMULATIONS

A comprehensive comparison of the performances is pro-
vided between the training algorithm for the feedforward
QMLP [8], [38] and the nonlinear finite impulse response
filters trained with the QMLP learning algorithm (QMLP-
FIR) [11], adaptive amplitude split quaternion adaptive filter-
ing algorithm (AASQAFA) [11], real-valued nonlinear gradi-
ent descent (NGD) [37], and the proposed algorithms based on
fully quaternion nonlinear functions, i.e., QNGD and AQNGD.
The quaternion multilayer perceptron-finite impulse response
(QMLP-FIR), AASQAFA, NGD, QNGD, and AQNGD were
implemented with a filter length L, whereas the QMLP had
one hidden layer comprising of L input neurons, three hidden
neurons, and one output neuron. The tanh(q) nonlinear activa-
tion function was used for all the algorithms. The performance
was measured using the prediction gain Rp defined as [37]

Rp = 10 log10
σ 2

x

σ 2
e

(54)

where σ 2
x and σ 2

e denote, respectively, the estimated variance
of the input and error. The three quaternion-valued processes

5The QNGD could also be readily extended to incorporate the semi-widely
linear model [22], however this is beyond the scope of this paper.
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TABLE I

CLASSES OF QUATERNION WHITE GAUSSIAN NOISE

WGN H-Circular C
ı -Circular Noncircular

εa N (0, 1) N (0, 1) N (0, 1)

εb N (0, 1) N (0, 1) −0.6εa + N (0, 1)

εc N (0, 1) 0.4εa + 0.8εb +
N (0, 1)

0.8εb + N (0, 1)

εd N (0, 1) 0.8εa − 0.4εb +
N (0, 1)

0.8εa −0.4εb+N (0, 1)
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Fig. 1. Learning curves for QMLP-FIR [11], AASQAFA [11], QNGD, and
AQNGD on the prediction of linear AR (4) signal (56) driven by H-circular
white Gaussian noise.

considered were the synthetic linear autoregressive (AR) (4)
process [13] with a varying degree of circularity, the noncir-
cular chaotic 4-D Saito signal [39], and the real-world 3-D
wind field.

A. Linear AR (4)

For this experiment, the input tap length was chosen to be
L = 3, prediction horizon M = 1, and the learning rate μ =
5 × 10−3.

In the first set of simulations, the performances of AQNGD,
QNGD, AASQAFA, and QMLP-FIR were analyzed for a
linear AR (4) process with varying degrees of circularity of the
driving quaternion quadruply white Gaussian noise (QWGN)
ε(n). The QWGN is described by

ε(n) = εa(n) + εb(n)ı + εc(n)j + εd(n)κ (55)

where εa , εb, εc, and εd are realizations of real-valued white
Gaussian noises (WGN). The properties of noises used to
generate different classes of QWGN are shown in Table I.
Note that the properties for C

j -circular and C
κ -circular noises

are similar to those of the C
ı -circular input noise, and their

descriptions are omitted because of space limitation.
A total of 100 independent simulation trials were conducted

and averaged for the linear AR (4) process given by

r(n) = 1.79r(n − 1) − 1.85r(n − 2)

+1.27r(n − 3) − 0.41r(n − 4) + ε(n). (56)
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Fig. 2. Learning curves for QMLP-FIR [11], AASQAFA [11], QNGD, and
AQNGD on the prediction of linear AR (4) signal (56) driven by C

i -circular
white Gaussian noise.
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Fig. 3. Learning curves for QMLP-FIR [11], AASQAFA [11], QNGD, and
AQNGD on the prediction of linear AR (4) signal (56) driven by noncircular
white Gaussian noise.

Fig. 1 shows the learning curves for an H-circular quater-
nion white Gaussian noise as the driving noise of the linear AR
(4) process. Observe that the proposed AQNGD and QNGD
had the fastest convergence, followed by the AASQAFA and
QMLP-FIR. It can be seen that the steady-state performances
for AQNGD, QNGD, and AASQAFA were similar owing to
the matched power of the components of the H-circular linear
AR (4) signal. Fig. 2 depicts the learning curves for the input
C

ı -circular white Gaussian noise6 for all of the algorithms
considered. Similar to the previous case, the AQNGD and
QNGD had the fastest convergence, and, as desired, the steady-
state results for AQNGD and QNGD were equivalent. In
the case of C

j and C
κ WGN, similar performances were

obtained and are omitted here for conciseness. Fig. 3 shows
learning curves for all the algorithms considered using a
noncircular white Gaussian noise as the input, the AQNGD
and QNGD had superior performances over the AASQAFA
and QMLP-FIR. It can also be seen that the steady-state
performance of AQNGD was superior to that of QNGD, as

6The notion of C
η circularity refers to only having a pair of axes exhibiting

complex circularity.
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TABLE II

PREDICTION GAIN Rp FOR A LINEAR AR (4) PROCESS WITH VARYING DEGREES OF NONCIRCULARITY

Algorithms H-Circular C
ı -Circular C

j -Circular C
κ -Circular Noncircular

AQNGD (dB) 20.22 20.93 20.91 20.88 21.58

QNGD (dB) 19.46 20.04 19.99 20.01 20.45

AASQAFA (dB) 18.09 15.75 15.35 15.66 17.01

QMLP-FIR (dB) 16.58 18.11 18.11 18.05 18.04
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Fig. 4. Noncircular signals used in simulations. (a) 4-D Saito signal. (b) 3-D
wind signal.

it was designed to cater for any noncircular AR type of
processes.

Table II compares prediction gains Rp of the AQNGD,
QNGD, AASQAFA, and QMLP-FIR for the prediction of
linear AR (4) process with varying classes of input circularity,
with μ = 10−2. The prediction gain was obtained from
an average of 100 Monte Carlo trials. In all the cases, the
proposed algorithms, i.e., AQNGD and QNGD, had superior
performance over the AASQAFA and QMLP-FIR, illustrating
the power of the fully quaternion function over the “split”
quaternion function. Also from Table II, the use of the
quaternion widely linear model for noncircular data is fully
justified, as indicated by a higher prediction gain of AQNGD
over the QNGD for noncircular sources.

B. 4-D Saito’s Chaotic Circuit

The four state variables and five parameters that govern the
noncircular Saito’s chaotic process are given by [39]

[ ∂x1
∂τ
∂y1
∂τ

]
=

[ −1 1
−α1 −α1β1

] [
x1 − ηρ1h(z)
y1 − η ρ1

β1
h(z)

]

[ ∂x2
∂τ
∂y2
∂τ

]
=

[ −1 1
−α2 −α2β2

] [
x2 − ηρ2h(z)
y2 − η ρ2

β2
h(z)

]
(57)

where τ is the time constant of the chaotic circuit and h(z) is
the normalized hysteresis value given by [39]

h(z) =
{

1, z ≥ −1
−1, z ≤ 1.

(58)
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Fig. 6. Performance of AQNGD, QNGD, AASQAFA, and QMLP-FIR on
the prediction of the noncircular 4-D Saito signal over a range of filter lengths.

The parameters z, ρ1, and ρ2 are given as z = x1 + x2,
ρ1 = (β1/1 − β1), and ρ2 = (β2/1 − β2). The Saito chaotic
signal was initialized with the following parameters: η = 1.3,
α1 = 7.5, α2 = 15, β1 = 0.16, and β2 = 0.097, and
is noncircular, as shown dimensionwise in Fig. 4(a). Fig. 5
depicts the performances of the algorithms considered in terms
of prediction horizon M (with fixed step size μ = 10−2) and
step size μ (with fixed prediction horizon M = 1). Observe
that the AQNGD outperformed all the other algorithms by a
margin greater than 2 dB. For all the cases, increasing the step
size led to a higher prediction gain provided that the upper
bounds of QNGD in (52) and AQNGD in (53) were satisfied.

Fig. 6 illustrates the dependence of the prediction gain on
filter length L for all algorithms with a fixed prediction horizon
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M = 1 and step size μ = 10−2. Observe that the prediction
gain for the AQNGD was the largest, followed closely by the
QNGD. However, increasing the filter length above L = 80
taps would lead to a significant performance degradation of
the AQNGD, whereas the performance of the QNGD remains
almost constant for higher filter length L. This is because
increasing the filter length would proportionally increase the
value of the term xaT (n)xa∗(n), which controls the maximum
allowable μ, thus violating the upper bound of μ for AQNGD,
specified in (53). However, this value is still within the upper
bound of μ for QNGD given in (52).

C. Wind Forecasting

In this set of simulations, a single realization of 3-D wind
field was used as the input.7 Fig. 4(b) shows the wind field
signal dimensionwise, and Fig. 7 illustrates the performances
of AQNGD, QNGD, AASQAFA, and QMLP-FIR as a func-
tion of prediction horizon M and step size μ. The performance
of AQNGD was better than that of QNGD, this was closely
followed by AASQAFA, whereas the performance of the
QMLP-FIR was the poorest.

Fig. 8 shows a comparison of the proposed QNGD with
the existing QMLP and three real-valued NGD as a function
of prediction horizon M with a fixed step size μ = 10−2.
From Fig. 8, observe that the QNGD outperformed the other
algorithms considered. Also, observe that QMLP prediction
gain was almost constant with the increase of the prediction
horizon due to the structural richness of the feedforward
multilayer neural network, which conforms to our earlier
studies in [11].

VII. DISCUSSION

The performances of the filters that use the proposed locally
analytic fully quaternion activation functions were generally
better than those of the existing AASQAFA and QMLP-FIR.
The widely linear version outperformed the QNGD as a result
of the implementation of the quaternion widely linear model

7The wind data were sampled at 32 Hz and recorded by the 3-D WindMaster
anemometer provided by Gill Instruments.
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that fully captures the second-order statistics of quaternion
signals. In order to create a class of fully quaternion function
that is suitable for quaternion-valued adaptive filtering, it is
essential to examine the possibility of employing other fully
complex transcendental functions [12] as locally analytic fully
quaternion functions. In Section IV, we have established that
the exponential function eq is locally analytic and, given that
summations and products of analytic functions are analytic as
well as quotients (provided the denominator does not vanish),
the tanh(q) function is also locally analytic because it can be
expressed in terms of eq as

tanh(q) = sinh(q)

cosh(q)
= eq − e−q

eq + e−q
= e2q − 1

e2q + 1
. (59)

This was verified by a rigorous derivation given in Appen-
dix B. By continuity, the other quaternion transcendental
functions are also locally analytic. In the complex domain,
it has been shown in [40] that these performances based on a
set of fully analytic transcendental functions were similar. In
the same spirit, Fig. 9 confirms by simulations that the other
elementary transcendental functions give similar performance
to that of the locally analytic function tanh(q). We have there-
fore shown that the fully complex transcendental activation
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TABLE III

COMPUTATIONAL COMPLEXITIES OF THE ALGORITHMS CONSIDERED

Algorithms Multiplications Additions

1× QMLP-FIR 36L+20 28L+15

1× AASQAFA 68L+36 54L+19

1× QMLP 108L+216 96L+168

3× NGD 9L+3 6L+3

1× QNGD 68L+36 54L+24

1× AQNGD 272L+144 208L+38

functions from C can be extended to fully quaternion functions
in H, this is consistent with the observations in [40].

For convenience, the class of locally analytic fully quater-
nion functions and their derivatives are given below

tanh(q) : ∂ tanh(q)

∂q
= sech2(q) (60)

tan(q) : ∂ tan(q)

∂q
= sec2(q) (61)

sin(q) : ∂ sin(q)

∂q
= cos(q) (62)

arctan(q) : ∂ arctan(q)

∂q
= (1 + q2)−1 (63)

arcsin(q) : ∂ arcsin(q)

∂q
= (1 − q2)−

1
2 (64)

sinh(q) : ∂ sinh(q)

∂q
= cosh(q) (65)

arctanh(q) : ∂arctanh(q)

∂q
= (1 − q2)−1 (66)

arcsinh(q) : ∂arcsinh(q)

∂q
= (1 + q2)−1. (67)

Another factor to consider is the computational complexity
of the algorithms, which is summarized in Table III. The
computational complexity of the AASQAFA and QNGD is
O(68L), the NGD has the lowest computational complexity
of O(9L) and the AQNGD has the highest computational
complexity of O(272L). Computational complexities of the
QMLP-FIR is O(36L) and for the QMLP it is O(108L).
The QNGD algorithm thus represents an improvement from
our previous proposed algorithm AASQAFA [11] in terms of
performance and simplicity, while maintaining similar compu-
tational complexity.

In summary, the advantages of proposed class of QNGD and
AQNGD algorithms based on fully quaternion locally analytic
nonlinearities are as follows.

1) The performances of algorithms based on fully quater-
nion locally analytic functions, QNGD and AQNGD,
were superior to those based on the split quater-
nion functions AASQAFA and QMLP-FIR, as the
fully quaternion nonlinearities (60)–(67) operate directly
in the quaternion domain instead of the channelwise
processing in R.

2) The widely linear model (16) enables the AQNGD
to fully capture the quaternion second-order statistics
suitable for noncircular signals (improper), and hence
offers a further performance enhancement over the

standard linear model employed in QNGD, AASQAFA,
and QMLP-FIR.

3) The fully quaternion-based QNGD is a reasonable
choice as it allows for a tradeoff between performance
and computational complexity.

VIII. CONCLUSION

A class of quaternion-valued nonlinear functions suitable for
stochastic gradient-based training of quaternion-valued nonlin-
ear adaptive filters has been proposed. The existing learning
algorithms either completely neglect the non-commutativity
aspect of quaternion, thus proving inadequate for the modeling
of 3- and 4-D processes, or are unable to provide an accurate
estimate due to the use of the suboptimal split-quaternion
function that applies real nonlinearities componentwise. A
class of fully quaternion activation functions has been derived
according to the local analyticity condition, which enables
the extension of fully complex nonlinear activation functions
to the quaternion domain. The proposed fully quaternion
algorithms (QNGD and AQNGD) have been shown to exhibit
excellent performance on the prediction of 4-D synthetic and
3-D real-world vector signals. The widely linear AQNGD
has been shown to achieve enhanced performance due to the
utilization of the quaternion widely linear model and the asso-
ciated augmented quaternion statistics, which fully captures
the second-order information within quaternion-valued signals
and enables the processing of both second-order circular
(proper) and noncircular (improper) processes. Simulations
over a range of noncircular synthetic signals and real-world
3-D wind recordings illustrate the benefits of the proposed
approach.

APPENDIX A
EULER FORM OF tanh(q)

The function tanh(q) in terms of the Euler formula is given by

tanh(q) = e2qa cos(2α) − 1 + e2qa sin(2α)ζ̂

e2qa cos(2α) + 1 + e2qa sin(2α)ζ̂

= e4qa
(

cos2(2α) + sin2(2α)
) − 1 + 2e2qa cos(2α)ζ̂

e4qa
(

cos2(2α) + sin2(2α)
) + 1 + 2e2qa cos(2α)

= e4qa − 1 + 2e2qa sin(2α)ζ̂

e4qa + 1 + 2e2qa cos(2α)
. (68)

APPENDIX B
LOCAL ANALYTICITY OF tanh(q)

To examine the local analyticity of tanh(q), we first apply
the quaternion local analyticity condition in (21)–(68) to show
that

∂ tanh(q)

∂qa
= −

(
qb

α

∂ tanh(q)

∂qb
+ qc

α

∂ tanh(q)

∂qc

+qd

α

∂ tanh(q)

∂qd

)(
qbı + qcj + qdκ

α

)
. (69)

Similar to the case of quaternion exponential functions, we
obtain the term (∂ tanh(q)/∂qa) by differentiating (68) with
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respect to qa , to give

∂ tanh(q)

∂qa
= ∂

∂qa

(
e4qa − 1

e4qa + 2e2qa cos(2α) + 1

+ 2e2qa sin(2α)ζ̂

e4qa + 2e2qa cos(2α) + 1

)

= 4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)(
e4qa + 2e2qa cos(2α) + 1

)2

+
(
4e2qa sin(2α) − 4e6qa sin(2α)

)
(
e4qa + 2e2qa cos(2α) + 1

)2 ζ̂ . (70)

In order to determine the remaining terms in (69), define

u = 2e2qa sin(2α) v = e4qa + 2e2qa cos(2α) + 1. (71)

We can then substitute u and v into (68) and expand ζ̂
according to (22) to yield

tanh(q) = e4qa − 1 + uζ̂

v

= e4qa − 1

v
+ uqbı

vα
+ uqcj

vα
+ uqdκ

vα
. (72)

Proceeding in a manner similar to when determining the
analyticity of eq , the term (∂ tanh(q)/∂qb) is obtained by
differentiating (69) with respect to qb, resulting in

∂ tanh(q)

∂qb

= ∂

∂qb

(
e4qa − 1

v
+ uqbı

vα
+ uqcj

vα
+ uqdκ

vα

)

=
(
e4qa − 1

)(
4e2qa qb sin(2α)

)

v2

+
(

vαu + v4e2qa q2
b cos(2α) − uvq2

b
α + uq2

b 4e2qa sin(2α)
(
vα

)2

)
ı

+
(

v4e2qa qbqc cos(2α) − uvqbqc
α + uqbqc4e2qa sin(2α)

(
vα

)2

)
j

+
(

v4e2qa qbqd cos(2α) − uvqbqd
α + uqbqd4e2qa sin(2α)

(
vα

)2

)
κ.

(73)

Noticing that u, v, and α are functions of the variables qb,
qc, and qd , the terms (∂ tanh(q)/∂qc) and (∂ tanh(q)/∂qd)
become
∂ tanh(q)

∂qc

=
(
e4qa − 1

)(
4e2qa qc sin(2α)

)

v2

+
(

v4e2qa qbqc cos(2α) − uvqbqc
α + uqbqc4e2qa sin(2α)

(
vα

)2

)
ı

+
(

vαu + v4e2qa q2
c cos(2α) − uvq2

c
α + uq2

c 4e2qa sin(2α)
(
vα

)2

)
j

+
(

v4e2qa qcqd cos(2α) − uvqcqd
α + uqcqd4e2qa sin(2α)

(
vα

)2

)
κ

(74)

∂ tanh(q)

∂qd
=

(
e4qa − 1

)(
4e2qa qd sin(2α)

)

v2

+
(

v4e2qa qbqd cos(2α) − uvqbqd
α + uqbqd4e2qa sin(2α)

(
vα

)2

)
ı

+
(

v4e2qa qcqd cos(2α) − uvqcqd
α + uqcqd4e2qa sin(2α)

(
vα

)2

)
j

+
(

vαu + v4e2qa q2
d cos(2α) − uvq2

d
α + uq2

d 4e2qa sin(2α)
(
vα

)2

)
κ.

(75)

Replacing (73)–(75) to the right-hand of side of (69), expand-
ing the terms u and v (71), and simplifying it further by
employing sin2(α) + cos2(α) = 1 along with substituting ζ̂
and α in (22) give

−∂ tanh(q)

∂α
ζ̂

=
((

4e6qa sin(2α) − 4e2qa sin(2α)
)

(
e4qa + 2e2qa cos(2α) + 1

)2

+4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)(
e4qa + 2e2qa cos(2α) + 1

)2 ζ̂

)(
− ζ̂

)

= 4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)(
e4qa + 2e2qa cos(2α) + 1

)2

+4e2qa sin(2α) − 4e6qa sin(2α)(
e4qa + 2e2qa cos(2α) + 1

)2 ζ̂ . (76)

APPENDIX C

LOCAL DERIVATIVE OF tanh(q)

We shall first expand (32) into its Euler formula to give

sech(q)

= 2

eqa
(

cos(α) + sin(α)ζ̂
) + e−qa

(
cos(α) − sin(α)ζ̂

)

= 2e3qa
(

cos(α) − sin(α)ζ̂
) + 2eqa

(
cos(α) + sin(α)ζ̂

)

e4qa + 2e2qa
(

cos2(α) − sin2(α)
) + 1

(77)

and apply the identity cos2(α) − sin2(α) = cos(2α) to give

sech(q)

= 2e3qa
(

cos(α) − sin(α)ζ̂
) + 2eqa

(
cos(α) + sin(α)ζ̂

)

e4qa + 2e2qa cos(2α) + 1
.

(78)

Squaring (78) and substituting 2 sin(α) cos(α) = sin(2α) yield

sech2(q) = 4e6qa cos(2α) + 8e4qa + 4e2qa cos(2α)(
e4qa + 2e2qa cos(2α) + 1

)2

+−4e6qa sin(2α) + 4e2qa sin(2α)(
e4qa + 2e2qa cos(2α) + 1

)2 ζ̂ . (79)
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APPENDIX D
DERIVATION OF ∇w y∗(n) AND ∇w y(n)

The term wT (n)x(n) can be expanded as (due to space
limitation, the time index “n” has been dropped)

wT (n)x(n) =

⎡
⎢⎢⎣

wT
a xa − wT

b xb − wT
c xc − wT

d xd

wT
a xb + wT

b xa + wT
c xd − wT

d xc

wT
a xc + wT

c xa + wT
d xb − wT

b xd

wT
a xd + wT

d xa + wT
b xc − wT

c xb

⎤
⎥⎥⎦ . (80)

The gradient ∇w y(n) is defined as [36]

∇w y(n) = ∂y(n)

∂w∗
= ∇wa y(n) + ∇wb y(n)ı + ∇wc y(n)j + ∇wd y(n)κ.

(81)

The odd-symmetry property also applies to the fully
quaternion function and is given by 	

′∗(wT (n)x(n)
) =

	
′(

xH (n)w(n)
)
. The derivatives in (81) can be calculated from

the expansions (80) while using the odd-symmetry property,
resulting in

∇wa y(n) = 	
′(

wT (n)x(n)
)
(xa + xbı + xcj + xdκ)

∇wb y(n)ı = 	
′(

wT (n)x(n)
)
(−xa − xbı + xcj + xdκ)

∇wc y(n)j = 	
′(

wT (n)x(n)
)
(−xa + xbı − xcj + xdκ)

∇wd y(n)κ = 	
′(

wT (n)x(n)
)
(−xa + xbı + xcj − xdκ) (82)

where the symbol 	
′
(·) denotes the derivative of the fully

quaternion function. Finally, substituting (82) into (81) yields

∇w y(n) = −	
′(

wT (n)x(n)
)
2x∗(n). (83)

Similarly, for ∇w y∗(n) we obtain

∇w y∗(n) = 	
′∗(wT (n)x(n)

)
4x∗(n) (84)

which is used in the derivation of QNGD and AQNGD. Similar
gradient derivations hold for the weight vectors h, u, and v.

APPENDIX E
CONVERGENCE OF QNGD AND AQNGD

The convergence criterion employed in this paper is
given by

E{‖ē(n)‖2
2} ≤ E{‖ẽ(n)‖2

2} (85)

where ē and ẽ are, respectively, the a posteriori and the a
priori output error, given by

ē(n) = d(n) − 	
(
wT (n + 1)x(n)

) + ε̄(n)

ẽ(n) = d(n) − 	
(
wT (n)x(n)

) + ε̃(n) (86)

where symbols ε̄ and ε̃ denote quaternion QWGN is defined
as

ε(n) = εa(n) + εb(n)ı + εc(n)j + εd(n)κ (87)

where εa , εb, εc, and εd are realisations of real-valued WGN,
independent and identically distributed. The terms ē and ẽ in
(86) can be related by the first-order Taylor series expansion
as [41]

‖ē(n)‖2
2 = ‖ẽ(n)‖2

2 + �wH (n)
∂‖ẽ(n)‖2

2

∂w∗(n)
(88)

where (∂‖ẽ(n)‖2
2)/(∂w∗(n)) is effectively the error gradient of

the cost function. We shall first evaluate the term ‖ẽ(n)‖2
2 as

‖ẽ(n)‖2
2

=
(

d(n) − y(n) + ε̃(n)

)(
d∗(n) − y∗(n) + ε̃∗(n)

)

= d(n)d∗(n) − d(n)y∗(n) + d(n)ε̃∗(n) − y(n)d∗(n)

+y(n)y∗(n) − y(n)ε̃∗(n) + ε̃(n)d∗(n) − ε̃(n)y∗(n)

+ε̃(n)ε̃∗(n). (89)

Then, the error gradient (∂‖ẽ(n)‖2
2)/(∂w∗(n)) can be calcu-

lated as

∂‖ẽ(n)‖2
2

∂w∗(n)
= − d(n)∇w y∗(n) − ∇w y(n)d∗(n) + y(n)∇w y∗(n)

+∇w y(n)y∗(n) − ∇w y(n)ε̃∗(n) − ε̃(n)∇w y∗(n)

=
(

−d(n) + y(n) − ε̃(n)

)
∇w y∗(n)

+∇w y(n)

(
− d∗(n) + y∗(n) − ε̃∗(n)

)

= −ẽ(n)∇w y∗(n) − ∇w y(n)ẽ∗(n)

= −[
4ẽ(n)	′(xH (n)w∗(n)

)
x∗(n)

−2	′(wT (n)x(n)
)
x∗(n)ẽ∗(n)

]
. (90)

The term �wH (n) = −μ
(
∂‖ẽ(n)‖2

2/∂w∗(n)
)H , where

(∂‖ẽ(n)‖2
2/∂w∗(n)) is given in (90), and can be calculated as

�wH = μ
[
2xT (n)	

′∗(xH (n)w∗(n)
)
ẽ∗(n)

−ẽ(n)xT (n)	′∗(wT (n)x(n)
)]

. (91)

Substitute (90)–(91) into the Taylor series expansion (88) and
apply the expectation operators on both sides to yield

E

{
‖ē(n)‖2

2

}

= E

{
|ẽ(n)‖2

2 − μ

([
2xT(n)	′∗(xH(n)w∗(n)

)
ẽ∗(n)

−ẽ(n)xT(n)	′∗(wT(n)x(n)
)][

4ẽ(n)	′(xH(n)w∗(n)
)
x∗(n)

−2	′(wT(n)x(n)
)
x∗(n)ẽ∗(n)

])}
. (92)

Applying the assumptions of small μ and statistical indepen-
dence between the ẽ(n) and x(n), followed by the factorization
of the term ‖ẽ(n)‖2

2, gives

E{‖ē(n)‖2
2}

= E

{
‖ẽ(n)‖2

2

[
1 − 10μxT (n)x∗(n)‖	′(wT (n)x(n)

)‖2
2

]}

= E{‖ẽ(n)‖2
2}

E

{[
1 − 10μxT(n)x∗(n)‖	′(wT (n)x(n)

)‖2
2

]}
. (93)

The two terms can be separated since they are independent
of each other corresponding to the statistical independence
between the ẽ(n) and x(n). Therefore, the condition for
convergence in (85) is satisfied for

0 < 10μE{xT (n)x∗(n)‖	′(wT (n
)
x(n))‖2

2} < 1. (94)
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Solving for μ, we obtain the range of the step size for QNGD
to converge as

0 < μ <
1

10E{xT (n)x∗(n)‖	′(wT (n)x(n)
)‖2

2}
. (95)

Similarly, the bounds on μ so that the AQNGD converges are
given by

0 < μ <
1

10E{xaT (n)xa∗(n)‖	′(net(n)
)‖2

2}
. (96)
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