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On Approximate Diagonalization of Correlation Matrices
in Widely Linear Signal Processing

C. Cheong Took, S. C. Douglas, and D. P. Mandic

Abstract—The so called “augmented” statistics of complex random vari-
ables has established that both the covariance and pseudocovariance are
necessary to fully describe second order properties of noncircular complex
signals. To jointly decorrelate the covariance and pseudocovariance matrix,
the recently proposed strong uncorrelating transform (SUT) requires two
singular value decompositions (SVDs). In this correspondence, we further
illuminate the structure of these matrices and demonstrate that for uni-
variate noncircular data it is sufficient to diagonalize the pseudocovariance
matrix—this ensures that the covariance matrix is also approximately di-
agonal. The proposed approach is shown to result in lower computational
complexity and enhanced numerical stability, and to enable elegant new
formulations of performance bounds in widely linear signal processing. The
analysis is supported by illustrative case studies and simulation examples.

Index Terms—Approximate uncorrelating transform, improperness,
noncircular complex signals, strong uncorrelating transform, widely linear
modeling.

1. INTRODUCTION

Diagonalization of covariance matrices underpins several key areas
in statistical signal processing, including blind source separation (BSS)
and principal component analysis (PCA). In their most frequently used
(and most general) form, diagonalization procedures are applied to co-
variance matrices of multivariate data (represented by a data matrix),
in order to e.g. decorrelate the data channels in BSS type of applica-
tions. Diagonalization of correlation matrices that arise from single
data channels (data vectors) is usually considered as a special case
within this general framework and is used, for instance, in the anal-
ysis of convergence of adaptive filters.

The recently introduced augmented complex statistics have played
a pivotal role in the treatment of second order noncircular (improper)
processes in statistical signal processing [1], [2], allowing us to utilise
both the covariance Cx and the pseudocovariance P, matrices, given
by

E{x(t)x(t)} E{x(t)x(t+ L)}

Ry =

E{a(t+L)x(t)} E{a(t+ L)x(t+ L)}

where Cx = Rx when x = 2" and Px = Rx when x = x, and L
is the length of the data segment considered (e.g. filter length). An im-
portant contribution to augmented statistics is the strong uncorrelating
transform (SUT) [3], which allows for the covariance and pseudoco-
variance matrices to be diagonalized simultaneously [4]. It employs
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two singular value decompositions (SVDs) and imposes strict require-
ments on the structure of diagonalized covariance and pseudocovari-
ance matrices—unit data channel powers for the covariance matrix and
ordered circularity coefficients for the pseudocovariance matrix—and
has been used in a variety of applications [3], [5].

The SUT method was designed specifically for multivariate random
vectors described by the data matrix! X = [x1,...,xx]"; however,
correlation matrices of univariate data (be they proper or improper)
have simpler structures than those of multivariate data and are of par-
ticular interest in many applications, including single channel noise re-
duction [6], beamforming [7], and communications [8]. Our aim is,
therefore, to exploit their univariate natures in order to introduce a
new approximate method for a joint diagonalization of the covariance
and pseudocovariance matrix, which does not alter the fundamental
properties of the original correlation matrices. The proposed method
makes use of the eigenstructures of the quadratic forms of correlation
matrices, and requires only one SVD, thus offering reduced compu-
tational complexity as compared with SUT. It is also shown that the
new factorization allows us to express several performance bounds in
widely linear signal processing in a simpler and more intuitive form.
The analysis is supported by simulations over a range of synthetic and
real-world signals with varying degrees of circularity.

II. FACTORIZATION OF COMPLEX COVARIANCE MATRICES

The SUT was introduced in [3] to decorrelate? multivariate complex-
valued data, by simultaneously diagonalizing the covariance, Cx, and
pseudocovariance, P, matrices as

Ci=®C,®d" =1 PI=0P, 3 =A, (1)
where the symbols C< and P2 denote the decorrelated (and, hence, di-
agonalized) covariance and pseudocovariance matrices, and I, A, and
P are, respectively, the identity matrix, a real-valued positive diagonal

matrix, and the strong uncorrelating transform. The SUT can be com-
puted as

e=ulc;? @)

1 -1
where Cx 2 = U,A. 2U%  and the unitary matrices U, and U, and
the diagonal matrix A. are obtained from the following singular value
decompositions:

Cx =UA U/
1 _1T T
Cx’PxCx”> =TU,A,U; A3)

In doing so, SUT modifies the structure of the original correlation ma-
1

trices: via Cx 2, it first decorrelates the data channels from one another,
it then decorrelates the real and imaginary parts of the individual data
channels, and finally it rotates the distributions in order to align them
along the real and imaginary axes (via Ug). This way, the entries in
the diagonalized correlation matrices are ordered from most to least
improper and the powers in the data channels are scaled to unity.
Notice that SUT, being SVD based, is not unique and that, for all its
usefulness in blind signal processing, it may not be the most intuitive

Wectors x;,¢ = 1,..., IV are column vectors comprising the data channels,
X = [2:(D)- e ai(t 4 T, i = 1,..., N.

20bserve that zero correlation between the real and imaginary parts of a com-
plex variable implies their orthogonality and any decorrelating technique thus
affects the phase information of the complex variable.

1053-587X/$26.00 © 2011 IEEE
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diagonalization tool for adaptive signal processing for the following
reasons.

1) Singular values of the “diagonalized” covariance matrix C2 in
(1) are restricted to unity, and, hence, do not contain information
about the powers in the actual data channels.

2) Singular values of the “dlagonalllzed” pseudocovariance P2 in (1)

pertain to those of Cyx > P, Cx
3).

3) From (3), SUT requires two SVDs for Cx and Px.

For univariate complex processes, we propose to address these issues
by exploiting the eigenstructure of their correlation matrices, in order to
introduce a new diagonalization procedure that i) requires only a single
SVD on the pseudocovariance matrix; ii) preserves the original eigen-
values of E{xx"} and E{xx"}, which is beneficial when working
on real world problems; and iii) helps to simplify, and to make more
intuitive, various statistical analyses and performance bounds in widely
linear signal processing.

It should be mentioned that an efficient technique to compute the
SUT was proposed in [9] and is referred to as the generalized uncor-
relating transform (GUT). The method finds directly the subspace of
the matrix pseudoproduct of the covariance and pseudocovariance ma-
trices and achieves computational complexity reduction equivalent to
the computation of one SVD, thus satisfying the issue 3) above. Notice
that GUT keeps the same eigenstructure as SUT and does not address
the issues 1) and 2) above, crucial in the statistical analysis of adaptive
filtering algorithms.

and not to those of P (see also

A. The Approximate Uncorrelating Transform

Recall that for single channel data (univariate), the covariance and
pseudocovariance matrices have the form Cx = E{xx"} and P, =
E{xx"}. To show that the diagonalization of both the sample covari-
ance and pseudocovariance matrices3 (of size L X L) requires only
one SVD, consider the diagonalized pseudocovariance matrix pPd =
Uf f’xU;, where U, can be obtained from the Takagi factorization
P, = U,A, U] . The quadratic form P,‘:f’iH
agonal, and can be estimated from the data as

is guaranteed to be di-

pipd” =

HI'—‘

.
Zx z‘—l—k)x (t+ k)
k=1

T
T
1 "
FZZX (t+ k)
=1 j=1

x (xl (t+ k)x" (f-l—l))

1 LI ™
zFZZx(f—l—k)
=1 j=1

X (XH(t + k)x(t + l)) <T(t+1)

—

X <" (t4+D)x" (t+1)

=

(t+1)

Repl

T
~ [% S x(t + k)x" (1 4+ k)

k=1

TZ x(t +D)x

szch. (4)

At +1)

3An implicit assumption is second order stationarity over T samples.
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Therefore, the diagonalization of the pseudocovariance matrix at the
same time implies an approximately diagonalized covariance matrix,
requiring only one SVD for their joint diagonalization. This is possible#
because for k = [ the scalar €, in (4) is real valued, allowing us to
substitute ex; = x7 (+ + k)x*(t + 1) = x7 (¢ + k)x(¢t + 1), whereas
fork # landVk < [, ey = X' (t 4 k)x*(t +1) = 0, since Pdis
diagonal.

To validate this approximation recall that for # = =, 4 jz;, the ‘co-
variance’ term zz* = 2 4 =7 is independent of the i 1mproperness of
the signal, the ‘pseudocovariance’ term’ is zz! = z2 — 2% + 2 x;,
and the correlation coefficient between the real and imaginary part is
given by p = % where 0, and o,.; denote the respective stan-
dard deviations. Consider now the following two special cases for im-
proper signals:

1) For p = 1, that is, a perfect correlation between the real «, and

imaginary x; parts of x (a strongly improper signal), the term
e =X (FH )X (t+1) = 0, we(t+ k)ap(t41) in (4) is
areal scalar and the approximation in (4) holds, because

E {a(k)a” (D} = E o, (e, (D} + E {e:i ()i (D)}
+(E {a, (Dai(k)} = E {a, (WD)
~ B {a, (W), (D} + E {ai(k)ai(1))
+ (B {ai(Dai(k)} = E {ai(k)ai(1)})
~ B {2, ()2, (D} + E{a(H)n (D} €R. (5)

2) For p = 0, that is, for a doubly white signal, from (5) we have
E{x.(Da;(k)} = E{x.(k)x;(1)} = 0 and the approximation in
(4) holds, and similarly for either z; = 0 or x, = 0, where €;; is
real.
Without loss in generality, the approximation error in a general case can
be expressed as £ = x4/ 1 — p? (see the Appendix for more details).
Observe that £x; can be assumed to be negligible when compared with
the diagonal elements of the correlation matrices; the approximation in
(4) thus holds, which is confirmed in Section IV. Notice that forp = 1,
the approximation becomes exact.

Remark 1: We have shown that both the pseudocovariance, P«
and covariance, Cx, matrices can be diagonalized by the same uni-
tary matrix Q, obtained from the singular value decomposition® of
P, = QAPQT. Thus, the proposed approximate uncorrelating trans-
form (AUT) has the form

Cx # QA.Q"
Px=QA,Q". (©)

Remark 2: The proposed diagonalization procedure applies to cor-
relation matrices of univariate processes and not to those of multivariate
data. To show this, consider a p-variate signal represented by the p x T’
matrix X = [X1,...,Xp|, whose p X p pseudocovariance matrix is
Px = E{XX"}. Diagonalizing such a matrix implies that the off-di-
agonal terms Px,, = L 3, wi(t)ai(t) = 0 Vk # I, however, this
does not mean that all the individual products @ (t + @) (t + j) = 0.
These constitute the off-diagonal elements of the L x L matrix X X,
and, hence, the condition X”X* = XX does not hold for multi-
variate data, and we require SUT for such diagonalizations.

4These conditions also apply for negative indices, as the autocorrelation func-
tion is symmetric.

SFor improper (second-order noncircular) signals, either their real and imag-
inary parts are correlated, or they are uncorrelated but have different powers.

6The SVD of a symmetric matrix, such as P, is known as the Takagi/Au-
tonne factorization [10], and it ensures that the singular values have been sorted
in a descending order.
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III. SOME APPLICATIONS OF AUT DIAGONALIZATION

We next briefly illustrate the usefulness of the proposed diagonal-
ization procedure in some standard optimization problems in statis-
tical signal processing of noncircular complex random variables, that
is, those with rotation dependent distributions.

A. Convergence of Widely Linear Adaptive Filters

Consider the augmented complex least mean square (ACLMS) al-
gorithm, whose output is governed by the widely linear model y(t) =
x"(t)h(t) + x" (t)g(t), and its update is given by [1], [5]

Wa(t+ 1) = wa(t) + x4 (t)ewi(t) @)
where the filter coefficient vector w, (t) = [hT (t)gT(f,)]T, the aug-
mented input x,(¢) = [x" (f)x”(f)]T, output error ey (t) = d(t) —
xH (t)w, (1), and the desired signal d(t) = xX (t)wS(t) + ¢(t), with
¢(t) being doubly white Gaussian noise uncorrelated with x(¢), and
w, (t) the optimum adaptive coefficient vector that minimizes the cost
function .J(t) = |eZ,(t)|. The evolution of the weight error vector
v(t) = wq(t) — wi(t) is given by

E{v(t+1)} =(I-Cx)E{v(t)} ®)
where the augmented covariance matrix
Cx P
Ca — X x
SER

comprises both the covariance matrix Cx and the pseudocovariance
matrix Py . When analyzing “convergence in the mean,” we need to di-
agonalize C% = UA“U*" in order to determine the stepsize range
as a function of eigenvalues of C%; however, doing this directly does
not allow us to examine how the individual parameters of the covari-
ance matrices Cx and Py affect the convergence. On the other hand,
the proposed diagonalization in (6) allows us to express C¥ in terms
of the eigenvalues of Cx and Py, that is

a_[Q O0][A: A Q7 o
=0 olln )% o] o

The middle term above can be diagonalized as [5]

Ac Ap] 1[I —I]TAc+Ap 0 I I
Ap Ac| 2|1 I 0 Ac—Ap | |-T I
giving a simple and intuitive demonstration that the convergence of

ACLMS is governed by the condition number of C%, with the mis-
match between covariance and pseudocovariance given by

_ max(Ac) + max(A,)
 min(A.) — min(A,)

k(Cxg

(10)

Remark 3: The proposed diagonalization procedure allows us to ex-
press the condition number in terms of the true eigenvalues of Cx and
P, instead of those of C% which are less straightforward to physically
interpret in terms of, e.g., the degree of circularity or signal power.

Remark 4: When using SUT for the same analysis, the imposed con-
straint max(A.) = min(A.) = 1 might not reflect the true dynamics
of ACLMS convergence [5]. This is because the SUT-based condition
number x(C3%) is not computed based on the eigenvalues of the co-
variance matrices of the “actual” data, but on the eigenvalues of the
covariance matrices of the “whitened” data.
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B. Performance Advantage of Widely Linear Models

The performance advantage of the widely linear model y = hx +
gfx™ over the strictly linear model y = h¥x when modeling im-
proper processes is given by [11, eq. (2.10)]

2 2 2 ¥ o y—1 "
be” = €] — €wl = [pyr - PxCx pyc:r]

x [Cx = PiCi'Pa] ' [Py, — PXCy'pyed] (1D
and evaluates the difference between the corresponding mean squared
errors of the strictly linear model (denoted by €} ) and the widely linear
model (denoted by €2,)).

Expression (11) is difficult to interpret, and at best, it can be simpli-
fied to wII™'w + €2, where I = C% — PLC3'Py is the Schur
complement of C%. Since II is a positive-definite matrix, this guaran-
tees that the widely linear model always performs no worse than the
strictly linear model. We can now apply the proposed diagonalization
in (6) to obtain

5 =w Q" [A. — A, AT'A,] T Q7w
=w [Ac — A ATTA ] W
—_—

2217
ﬂ :diag(ﬁl,. . '7/3L)3 rﬁi = |:)\u,i - )\pl:|

= 12

Ry (2
The result in (11) has now been simplified to (12), providing physical
meaning to the analysis. For instance, it is now clear that as the degree
of noncircularity increases (i.e., an increase in A, ;), J; increases as
well, indicating a larger performance advantage of the widely linear
over the strictly linear model.

C. Numerical Stability and Complexity Reduction

In the context of single-channel modelling, inversion of correlation
matrices is performed routinely, but can be very challenging due to a
possibly high condition number or rank deficiency. To provide insight
into the sensitivity of such inversions and to have control over numer-
ical stability, it would be advantageous to factorize such matrices into
their diagonal forms. We shall now illustrate the usefulness of the pro-
posed AUT relationships in (6) when performing an inverse of the aug-
mented covariance matrix.

The standard inverse of the augmented covariance is given by [7]

Cx Px]7' _[A D
P; C; T |D* A
where A = [Cyx — P, C7'P:]™" and D = AP, C% . To deal with
numerical instability, we can perform a further factorization (e.g., as in
square-root Kalman filters), as
=[5 @l o]
* 0 QJly gllo Q

where 3 is definedin (12)and vy = —BA AL ! Therefore, to guarantee
numerical stability of the inverse, we need to ensure all diagonal terms
of # and 7 are nonzero, leading to a full rank matrix. Since the subma-
trices 8 and + are not only diagonal but also real-valued, this condition
is met. The additional benefit of this result is its generic nature, as it can
be applied in many applications requiring an inverse of the correlation
matrices such as in Wiener filters or square root Kalman filters.

The proposed approximate diagonalization also reduces the compu-
tational complexity of the inversion of C%. The usual tradeoff between

13)

(14)
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Fig. 1. Performance of the approximate diagonalization in (6) in terms of the percentage error €2. Left: for synthetic data as a function of the filter length L and

o

the circularity coefficient 7. Right: for the “low”,

reducing the computational complexity of an algorithm and the accu-
racy of the algorithm applies, i.e. a decrease in the computational com-
plexity would lead to a less accurate Wiener solution, yet a reasonable
approximation due to the negligible error (see Section IV). Also, no-
tice from (17) that when we have perfect correlation (p = 1) between
the real and imaginary part of a complex number, the approximation
of widely linear Wiener solution by the proposed AUT technique be-
comes exact.

D. Extension to Widely Linear Modeling in the Quaternion Domain

Augmented quaternion statistics employ the covariance matrix Cx

and complementary covariance matrices’ C, = E{xx'"'}, C, =
E{xx},and C% = F{xx"#1 [12]. Using (4), it can be shown that

e =xTx = (xx)" = (xx)? = (xx)" which either vanishes or
is real-valued. Following on the proposed result for complex data, one
SVD is adequate to diagonalize all the quaternion-valued correlation
matrices,8 which helps in the analysis of quaternion-valued adaptive

filters [13].

IV. SIMULATIONS

The performance index used was a ratio of the powers of the off-

diagonal, ¢;;, versus diagonal, ¢;;, elements of the correlation matrix,
E{le;:|? . .
% x 100 V ¢ # j and the performance was

assessed against: i) size of the correlation matrices L and ii) degree of
circularity

defined as €% =

n=|E{z"}|/E{|="} (15)
where = 1 corresponds to a highly second-order noncircular (im-
proper) signal, whereas i = 0 corresponds to a circular, proper, signal.

In the first set of simulations, 100 independent trials were averaged
for an MA synthetic signal with a varying degree of noncircularity. It
was generated by filtering a complex doubly white circular or noncir-
cular Gaussian signal with a moving average filter whose coefficients
were taken from a uniform distribution within [—0.5,0.5]. The left-hand

7Quaternion involution operation (-)” ¥ € {1, 3, £} corresponds to keeping
the real and the n-imaginary part intact and conjugating the two other imaginary
parts, see [12] for more detail.

8Notice that real and complex numbers are special instances of quaternions,
and as such this generic quaternion result decomposes into the complex solution,
provided the same two imaginary parts of the quaternion variables vanish.

medium”, and “high” dynamics of a real world 2D wind signal.

plot in Fig. 1 illustrates an excellent performance of the proposed ap-
proximation; the diagonalization error had a very small value of 1.2%
even for a large filter length of L = 100 and only a moderately non-
circular signal. The diagonalization error ¢ stems from the imaginary
part of the approximation of the term ez; in (4), i.e., %{Zz‘zl xo(t +
k)ay(t + 1)}, which explains the behavior in Fig. 1 for large L. The
Appendix shows that ¢ is a decreasing function of the circularity coef-
ficient 1, that is, £ ~ /1 — n2.

The right-hand plot in Fig. 1 illustrates the performance of the pro-
posed diagonalization method for a two-dimensional wind signal w,
where the speed v and direction § were measured at 50 Hz using a
2D ultrasonic anemometer, and the signal was made complex valued
as w = ve’?. The degree of noncircularity of the “high” wind regime
was the highest (n = 0.95), followed by the “medium” (n = 0.67)
and “low” ( = 0.54) regimes. Observe a near perfect approximate di-
agonalization for small sizes of correlation matrices (L < 20) and an
excellent approximation for large sizes of correlation matrices (L —
100). The approximation was better for signals with higher degree of
noncircularity, conforming with the analysis.

V. CONCLUSION

‘We have demonstrated that a single singular value decomposition of
the pseudocovariance matrix is sufficient to simultaneously diagonalize
both the covariance and pseudocovariance matrices of single channel
noncircular complex data. This has been achieved by examining the
structure of the quadratic form of the sample pseudocorrelation ma-
trix. The proposed approximate diagonalization has been shown to pre-
serve the original eigenvalues of the covariance and pseudocovariance
matrix, and to make several standard analyses of performance bounds
in widely linear modelling simpler and more intuitive. Case studies in
the context of widely linear adaptive filtering, together with illustrative
simulations, support the approach.

APPENDIX

Without loss in generality assume that the real and imaginary part
of a complex random variable » = x, 4 jz; are generated from zero
mean, unit variance, uncorrelated variables x, and x2 as

we(t) =ai(t)  xi(t) = pri(t) + 22(t) V1 - p?
where the correlation coefficient p = 5,“71;”2}
o Ty

correlation between x, and x; between uncorrelated (p = 0) to fully

(16)

allows us to control the
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correlated (p = 1). From (5), the diagonalization error arises from the
imaginary part of e, thatis, « = S{eg } = 2, (D2 (k) — 20 (k)2 (1).
We can now write

a=x1(l) (pml(k) + /1 - pzmg(k))
— a1 (k) (pr1 () + VI = (D)
=v1-=p2(zi(Dx2(k) — z2(Dx1 (k) =& /1 — p2.

amn

For the case E{22} = E{z?} = 1, the circularity coefficient =
p, and the diagonalization error increases with a decrease in 7. It is
possible to show that the same diagonalization principle also applies to
the correlation matrices in augmented quaternion statistics [12].
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Global Stabilization of the Least Mean Fourth Algorithm

Eweda Eweda

Abstract—The least mean fourth algorithm has several stability prob-
lems. Its stability depends on the variance and distribution type of the
adaptive filter input, the noise variance, and the initialization of the filter
weights. The present correspondence provides a global solution to all
these stability problems. This is achieved by normalizing the weight vector
update term by a term that is fourth order in the regressor and second
order in the estimation error. The former property stabilizes the algorithm
against the variance and distribution type of the filter input, while the
latter stabilizes the algorithm against the noise variance and the weight
initialization. The obtained algorithm is stable for all values of the step-size
between 0 and 2. The stability of the algorithm is supported by simulations.

Index Terms—Adaptive filtering, least mean fourth algorithm, normal-
ized least mean fourth algorithm.

I. INTRODUCTION

The least mean fourth (LMF) algorithm [1]-[20] outperforms the
well-known least mean square (LMS) algorithm [1], [2] in achieving a
better tradeoff between the transient and steady-state performances of
the adaptive filter. However, the LMF algorithm has several stability
problems that may put a limitation to its use in applications. In [3], it
is shown that the stability of the algorithm around the Wiener solution
depends on both the input power of the adaptive filter and the noise
power. In [7], [10], and [12], it is shown that the stability of the algo-
rithm depends also on the initial setting of the adaptive filter weights.
More recently, itis shown in [13], [15], and [16] that the LMF algorithm
with unbounded regressors is not mean square stable whatever small is
the algorithm step size. The above arguments show that the stabiliza-
tion of the LMF algorithm is more complicated than that of the LMS
algorithm, whose stability, for a given step-size, depends solely on the
input power of the adaptive filter.

To improve the stability of the LMF algorithm, normalized versions
of the algorithm have been introduced in the literature [11], [14],
[17]-[19]. In spite of the improved performance, none of the available
normalized LMF (NLMF) algorithms provides a global remedy to the
above mentioned stability problems. This is explained as follows. In
[11] and [17], the weight vector update term of the LMF algorithm
is normalized by the squared norm of the regressor. The stability of
this algorithm is shown to be dependent on the input signal power
[19], [20]. In [14] and [18], the weight vector update term of the LMF
algorithm is normalized by a weighted sum of the squared norm of
the regressor and the squared norm of the error vector. It is shown
that this algorithm diverges when the input power exceeds a threshold
value that depends on the algorithm step-size [19]. This problem
takes place in the above NLMF algorithms because the numerator of
the weight vector update term is fourth order in the regressor, while
the denominator is second order in the regressor. To overcome this
problem, an NLMF algorithm in which the weight vector update term
is normalized by the fourth power of the norm of the regressor is
proposed in [19]. This normalization results in an improvement of the
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