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Blind Second-Order Source Extraction of
Instantaneous Noisy Mixtures

Wei Liu, Danilo P. Mandic, and Andrzej Cichocki

Abstract—The problem of blind source extraction (BSE) for
noisy measurements is addressed in the domain of second-order
statistics using the linear predictor method. By extending the
results from the noise-free case, two methods for the noisy case
are proposed, whereby, for rigor, the effect of noise is removed
from the cost function. The so introduced algorithms are based,
respectively, on the minimization of the normalized mean square
prediction error (MSPE), and the minimization of MPSE. The
analysis of the derived BSE algorithms is supported by simulations.

Index Terms—Additive noise, blind source extraction (BSE) , on-
line learning, second-order statistics.

I. INTRODUCTION

BLIND source extraction (BSE) is a special class of blind
source separation (BSS) methods, [1]–[3], which, instead

of recovering all the source signals simultaneously, extracts only
one or a subset of the sources at a time. As pointed out in [3],
BSE has an obvious advantage of saving computation when
we are not interested in all of the source signals. By BSE, we
can also extract the sources in a prescribed order according to
their statistical and other properties and choose different algo-
rithms at different stages. Algorithms specifically designed for
BSE can be roughly divided into two categories: those based
on higher order statistics (HOS) [4]–[7] and those based on
second-order statistics (SOS) [8]–[12], which assume that the
sources are not correlated with each other and every source has a
different temporal structure. The SOS approach is mainly based
on a linear predictor and an adaptive algorithm was proposed in
[8], whereas a batch algorithm was derived for a one-step pre-
dictor in [9]. In [12], a critical study of this approach showed
analytically the role of prewhitening in this structure and based
on the analysis, a new efficient algorithm was derived by mini-
mizing the normalized mean square prediction error (MSPE).

Fig. 1 shows this structure, where the extracted signal
and the instantaneous output error of the linear predictor
with a length are given by

(1)
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Fig. 1. BSE structure.

where is the demixing vector, is the vector of the ob-
served mixtures at time instant , and

(2)

In general, is given by

(3)

where is the mixing matrix, and is the
source signal vector given by

(4)

whereas is the additive noise vector.
In the previously proposed linear predictor methods, the noise

term was not taken into account in the derivation of the algo-
rithms, however, noise is present in real world measurements.
It has been proven that by minimizing the normalized MSPE

[12], the sources can be ex-
tracted successfully. An alternative method is to minimize the
MSPE directly, but this requires prepro-
cessing in the form of prewhitening and a normalization of the
demixing vector during the adaptive process [3]. In this brief,
we consider the case with additive noise and propose a new cost
function, based upon which a novel class of BSE algorithms is
derived.

The brief is organized as follows. In Section II, based on an
analysis of the prediction error, we provide a new cost function
which accounts for the presence of noise, after which we derive
the proposed class of BSE algorithms. Simulation results are
given in Section III and conclusions drawn in Section IV.

II. BSE WITH A LINEAR PREDICTOR: PROPOSED ALGORITHMS

A. Proposed Cost Function

The BSE structure using a linear predictor is shown in Fig. 1.
For this approach to work, we need to impose some assumptions
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on the statistics of the source signals, such as uncorrelatedness
and different temporal structures, which are given by

(5)

with , where
denotes the statistical expectation operator and

(6)

with for some nonzero delay .
Moreover, we assume the noise is uncorrelated with the

source signals and has a correlation matrix given by

for
for

(7)

Normally, we further assume that , where is the
identity matrix and is the variance of the noise.

The linear predictor in the BSE structure can be either an fi-
nite-impulse response (FIR) or infinite-impulse response (IIR)
filter, adaptive or with fixed weights [3]. Without loss of gener-
ality, we shall assume a -tap FIR filter with coefficient vector

. The MSPE of the structure from Fig. 1 can be expressed as
[3]

(8)

where is the correlation ma-
trix of the observed mixtures. After accounting for the effect of
noise, which is uncorrelated with the source signals, from (3),
we have

(9)

Thus, the MSPE can be divided into two parts

(10)

The term is attributed to the source signals and given by

(11)

where is a diagonal matrix given by

(12)

The diagonal elements of the matrix are the MSPEs asso-
ciated with the corresponding source signals.

The term from (10) is caused by the noise, with

(13)

where is defined as .
If there is no noise present, we can minmize the normal-

ized MSPE , or the MSPE
if we can constrain the output power of the

demixing vector to be unity. However, in the presence
of noise, we cannot simply follow the same route to minmize
or . We need to remove the effect of noise in the cost function
in such a way that the resulting cost function is the same as in
the noise-free case.

Note, in the presence of noise

(14)

We therefore construct a new cost function

(15)

Based on the above analysis, we next have

(16)

Let denote the global demixing vector. Then (16)
becomes

(17)

Without loss of generality, we shall assume , as the
differences in the diagonal elements of can always be
absorbed into the mixing matrix . This way, the diagonal el-
ements of become the normalized MSPEs and they are as-
sumed to be different from each other, otherwise the scheme will
not be able to extract all the sources successfully. This yields

(18)

Let us define a new vector , for which
. Then, the cost function (18) becomes

(19)
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Consider now the optimization problem formulated as

(20)

The solution to this problem is a vector with only one
nonzero element, and strictly equal to unity at the position cor-
responding to the smallest diagonal element of the matrix
[3]. As , the corresponding global demixing
vector will be the same as except that the nonzero ele-
ment in is an arbitrary constant . Since we are minimizing

with respect to , instead of , we need to prove that there
exists a which results in .

In fact, from , when is of full rank and the
number of mixtures is larger or equal to the number of
sources can be obtained using the pseudo-inverse of

, as

(21)

As the possible minimum value of is reached only when
, as long as there exists such a so that

, we can state that when we minimize with respect to
, the result will be a successful extraction of the source signal

with a minimum normalized MSPE.
The key to the success of this method is, we must have the

knowledge of the the correlation matrix , which, in general,
in real-world situations, is not realistic. However, as pointed out
earlier, in practice, it is reasonable to assume . In this
case, we have

(22)

When , that is, the number of mixtures is larger than
the number of sources, we can use a subspace method to esti-
mate , which in this case represents the smallest eigenvalue
of [13]. Alternatively, we can use an adaptive principal
component analysis method to estimate online [2]. In fact, if
we simply minmize subject to the constraint ,
the optimum value of will be .

B. Derived Algorithms

It has been proved that we can extract the sources success-
fully simply by minimizing the function . To simplify the
derivation of the adaptive algorithms, we will perform a normal-
ization of after each update, given by

(23)

which also helps avoid the critical case where the value of the
norm of becomes too small. Thus, we have

(24)

where is a constant. Now the cost function becomes

(25)

Applying the standard gradient descent method to

(26)

where

(27)

The MSPE and the power of the output of the
demixing vector can be estimated, respectively, by

(28)

where and are the corresponding forgetting factors with
.

Following standard stochastic approximation techniques
[13], (26) yields the following online update:

(29)

where is the learning rate.
The above algorithm is a direct method, as there is no prepro-

cessing involved. We next derive an associated algorithm based
on prewhitening of the mixtures.

Notice that the correlation matrix can be decomposed
into the following form:

(30)

where is an orthogonal matrix whose columns are the eigen-
vectors of , and is a diagonal matrix whose diag-
onal elements are the corresponding eigenvalues. Multiplying
the mixtures by the whitening matrix , we ob-
tain the prewhitened vector

(31)

Then the new correlation matrix is

(32)

with and .
By virtue of prewhitening, the MPSE and the output power

take the forms

(33)

(34)
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From (16), considering the multiplication of with the
mixing matrix , the cost function now becomes

(35)

Now, if we normalize the denominator at each
update of the adaptive algorithm by

(36)

then we have

(37)

This way, the cost function is simplified to

(38)

In this case, for a fixed linear predictor, applying the standard
gradient descent method to , we can derive the following
online update rule:

(39)

where is given by

(40)

This update equation is followed by the normalization operation
given by (36).

For both of the algorithms given in (29) and (39), the optimal
choice of stepsizes and bounds on them are difficult problems,
and further research is needed in this direction. Here we will
choose them empirically in our simulations.

III. SIMULATIONS

Fig. 2 shows three source signals, denoted by , used
in simulations. These can be found in the ICALAB toolbox [3].
The coefficients of the linear predictor were randomly generated
with a length of , and given by

(41)

This way, the normalized prediction errors of the three signals,
were, respectively, . The 4 3 mixing
matrix was randomly generated and given by

(42)

Fig. 2. Tree source signals used in the simulations.

Fig. 3. Learning curve using the algorithm (29) with � = 0:01.

As we have one more mixture than the number of sources, this
additional degree of freedom was used to estimate the variance
of the additive white Gaussian noise. To illustrate the proposed
approach, we used two different noise levels. For the first set
of simulations, the variance of noise was . Each
of source signals was normalized to a power of unity and the
signal-to-noise ratio (SNR) in this sense was 20 dB. By mini-
mizing the normalized MSPE, the signal with the smallest nor-
malized prediction error will be extracted, which is the third
signal .

We first tested the direct algorithm given in (29). The forget-
ting factors were and the stepsize .
A learning curve for this case is shown in Fig. 3, with the per-
formance index defined as [3]

(43)

with . The resultant signal-to-
interference-plus-noise ratio (SINR) was about 16.7 dB for the
steady state and a learning curve of the resultant SINR for each
iteration is shown by the solid line of Fig. 4.

As the performance index reached the level between dB
and dB, we can say the signal had been extracted suc-
cessfully. The associated prediction error during the adaptation
represents a filtered version of the extracted source signal for
the steady state.

To further illustrate the performance of the proposed algo-
rithm, we next increased the variance of the noise to
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Fig. 4. Resultant SINR learning curves using algorithm (29).

Fig. 5. Learning curve using the algorithm (29) with � = 0:04.

Fig. 6. Learning curve using the algorithm (39) with � = 0:01.

Fig. 7. Learning curve using the algorithm (39) with � = 0:04.

and the resulting SNR was about 14 dB. The associated perfor-
mance index learning curve is shown in Fig. 5 and the SINR
learning curve in Fig. 4 by the dotted line. The resultant SINR
value was approximately 10.7 dB. The value of the performance
index at the steady state (below 30 dB) indicates a successful
extraction.

Finally, we conducted the same experiments for the algorithm
given in (39). The stepsize was chosen to be . It may
seem surprising to have such a large stepsize, but this is a di-
rect consequence of a very small instantaneous gradient value

, which is in the order of during
the adaptation. Moreover, we see the stepsize here is much larger
(about 1000 times) than that in the direct approach for the first
set of simulations. This is consistent with the observation for
the noise-free BSE algorithms proposed in [12], where the step-
size with prewhitening is about times the one with the nor-
malized MPSE as the cost function. Thus, there is an close re-
lationship between the role of prewhitening and the value of the

Fig. 8. Resultant SINR learning curves using the algorithm (39).

stepsize, which is the subject of further research. The perfor-
mance index learning curves for the two different noise levels
are shown, respectively, in Figs. 6 and 7. The corresponding
SINR curves are shown in Fig. 8 with steady-state SINR values
of about 16.6 and 10.7 dB. We can see in both cases the algo-
rithm has extracted the source successfully.

IV. CONCLUSION

To extract the sources from their noisy measurements using
a BSE architecture with a linear predictor, we have proposed a
new cost function which accounts for the effect of noise, based
on which two novel adaptive BSE algorithms have been de-
rived. The first one is a direct algorithm and it works without
prewhitening, but requires an estimation of some additional pa-
rameters during the adaptation. The second proposed algorithm
requires a prewhitening operation, resulting in a simpler update.
The proposed algorithms have been shown to operate effectively
in noisy environments, as illustrated by simulations.
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