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Letters

Analysis and Online Realization of the CCA Approach
for Blind Source Separation

Wei Liu, Danilo P. Mandic, and Andrzej Cichocki

Abstract—A critical analysis of the canonical correlation analysis (CCA)
approach in blind source separation (BSS) is provided. It is proved that by
maximizing the autocorrelation functions of the recovered signals we can
separate the source signals successfully. It is further shown that the CCA
approach represents the same class of generalized eigenvalue decomposi-
tion (GEVD) problems as the matrix pencil method. Finally, online real-
izations of the CCA approach are discussed with a linear-predictor-based
algorithm studied as an example.

Index Terms—Blind source separation (BSS), canonical correlation anal-
ysis (CCA), linear predictor, matrix pencil, second-order statistics (SOS).

I. INTRODUCTION

Blind source separation (BSS) has been studied extensively and
has become one of the most important and established research topics
in the signal processing area [1]. There are mainly two classes of
solutions to the BSS problem: those based on higher order statistics
(HOS) and those based on second-order statistics (SOS). Within the
SOS-based methods, for stationary sources, we usually assume the
following: 1) sources are not correlated with one other and 2) every
source has a different temporal structure or normalized spectrum.
To recover such sources, the basic idea is to find a matrix which
diagonalizes the covariance matrices of the mixed signals at different
time lags. This diagonalization is normally realized in two steps. The
first step is the prewhitening of the data, by which the general mixing
matrix is reduced to an orthogonal matrix; in the second step, we find
the inverse of this orthogonal matrix by diagonalizing an appropriately
chosen covariance matrix at a nonzero time lag [2], or by jointly
diagonalizing a number of covariance [3] or partial autocorrelation
matrices [4].

Instead of the classical two-step solution to the SOS approach, we
can also solve the BSS problem in one single step by the canonical cor-
relation analysis (CCA) approach [5]–[7]. With CCA, the objective is
to find a transformation matrix which is applied to the mixtures and
maximizes the autocorrelation of each of the recovered signals (the
outputs of the transformation matrix). In theory, by maximizing this
autocorrelation, the original uncorrelated source signals will be recov-
ered. This approach rests on the idea that the sum of any uncorrelated
signals has an autocorrelation whose value is less or equal to the max-
imum value of individual signals, as proved in [8]. Although some ex-
amples have been given to show the validity of this CCA approach [8],
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there is no rigorous proof showing that by maximizing the autocor-
relation function, we can indeed recover the source signals success-
fully. We hereby address this issue and provide a critical analysis of
this approach. Our analysis shows that not only there is a close rela-
tionship between the CCA approach and the linear predictor approach
[9]–[11], but also that the maximization of the autocorrelation value
is equivalent to finding the generalized eigenvectors within the matrix
pencil approach [12]–[14]. Finally, online realizations of the approach
are discussed and a blind source extraction (BSE) algorithm [15] based
on the linear predictor structure with fixed coefficients is studied as an
example [11].

II. OVERVIEW AND ANALYSIS OF THE CCA APPROACH

A. Overview of the CCA Approach

In CCA [16], two sets of variables with a joint distribution are con-
sidered. The correlation between a linear combination of the variables
of the first set and a linear combination of the variables of the second set
is first analyzed. The two linear combinations are found by maximizing
this correlation. Then, a second linear combination in each set is found
such that the second set of linear combinations is uncorrelated with the
first set of linear combinations and the correlation between the second
set of linear combinations is also maximized. This procedure continues
until there is no more such linear combinations left.

Suppose z is a zero-mean random vector with q components. We
partition z into two subvectors z1 (with q1 components) and z2 (with
q2 components), given by

z =
z1

z2
: (1)

For convenience, we assume q1 � q2. The covariance matrix � =
zz

T , which is assumed to be positive definite, is partitioned accord-
ingly into four blocks as

� =
�11 �12

�21 �22

(2)

where �11 = z1z
T
1 ; �12 = z1z

T
2 ;�21 = z2z

T
1 , and �22 = z2z

T
2 .

We can now construct linear combinations of the variables in each
of the subvectors

a0 = ���
T
0 z1

b0 = ���
T
0
z2 (3)

where ���0 and ���
0

are vectors containing the combination coefficients.
The problem of finding the two vectors ���0 and ���

0
that maximize the

correlation between a0 and b0 can be formulated as

max
��� ;���

J0(���0; ���0) (4)

with

J0(���0; ���0) =
���T0�12���0

(���T
0
�11���0)(���

T
0
�22���0)

: (5)

After finding the first pair of optimal vectors ���0 and ���
0
, we can

proceed to find the second pair ���1 and ���
1

which maximizes the corre-
lation and at the same time ensures that the new pair of combinations
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fa1; b1g is uncorrelated with the first set fa0; b0g. This process is re-
peated until we find all the min(q1; q2) = q1 pairs of optimal vectors
���i and ���i; i = 0; 1; . . . ; q1 � 1. It has been shown that the vectors
���i can be obtained by solving the following generalized eigenvalue
problem

�12�
�1
22 �21���i = �2i�11���i: (6)

The vectors ���i can be found in the same way by exchanging the sub-
scripts of the matrices in (6).

We now apply the CCA approach to blind separation of the instan-
taneous mixed signals x[n], which are modeled as weighted sums of
individual sources s[n], given by

x[n] = As[n] (7)

with

s[n] = [s0[n]s1[n] � � � sL�1[n]]
T

x[n] = [x0[n]x1[n] � � � xM�1[n]]
T

[A]m;l = am;l; m = 0; . . . ;M � 1; l = 0; . . . ; L� 1 (8)

where n is the time index, L is the number of sources, M is the number
of mixtures, and A is the mixing matrix. We assume the sources are
spatially uncorrelated with the correlation matrix expressed as

Rss[0] = Efs[n]sT [n]g

= diagf�0[0]; �1[0]; . . . ; �L�1[0]g (9)

with �m[0] = Efsm[n]�sm[n]g; m = 0; 1; . . . ; L�1, whereEf�g de-
notes the statistical expectation operator. For nonzero correlation lags,
we have

Rss[�n] = Efs[n]sT [n ��n]g

= diagf�0[�n]; �1[�n]; . . . ; �L�1[�n]g (10)

with �l[�n] 6= 0 for some nonzero delays �n.
First, we choose the vector x[n] as z1 in CCA and x[n��n] as z2.

Then, the eigenvalue problem in (6) becomes

Rxx[�n]R�1xx [0]Rxx[��n]���i = �2iRxx[0]���i (11)

where Rxx[�n] and Rxx[0] are the correlation matrices of the mixed
signals.

From (7), we have

Rxx[�n] = ARss[�n]AT : (12)

As Rss[�n] is diagonal, we have

Rxx[�n] = R
T
xx[��n] = R

T
xx[�n]: (13)

Then, (11) becomes

Rxx[�n]R�1xx [0]Rxx[�n]���i = �2iRxx[0]���i: (14)

In the context of BSS, the two vectors ���i and ���i are the same, and we
denote them by

wi = ���i = ���i (15)

which is the ith demixing vector applied to the mixed signals. The cor-
responding output, that is the extracted ith signal, becomes

yi[n] = w
T
i x[n]: (16)

B. Analysis of the CCA Approach for BSS

Equation (14) can be rewritten as

R
�1
xx [0]Rxx[�n]R�1xx [0]Rxx[�n]���i = �2i���i (17)

which can be further simplified into

R
�1
xx [0]Rxx[�n]���i = �i���i: (18)

Multiplying both sides with Rxx[0] and replacing ���i by wi, we have

Rxx[�n]wi = �iRxx[0]wi (19)

which represents the generalized eigenvalue decomposition (GEVD)
problem introduced also by the matrix pencil method [12]–[14]. From
this point of view, the CCA approach can be justified indirectly by the
validity of the matrix pencil approach. However, to provide further in-
sight into the CCA approach, a direct proof is necessary.

1) Proof of the CCA Approach: Existence of the Solution: Note that
in the context of BSS, the maximization problem in (4) becomes

max
w

J0(w0) (20)

with

J0(w0) =
wT

0Rxx[�n]w0

wT
0Rxx[0]w0

=
wT

0ARss[�n]ATw0

wT
0ARss[0]ATw0

: (21)

We need to prove that maximization of J0(w0) with respect tow0 will
lead to a successful extraction of one of the source signals.

To achieve this, let g0 = ATw0 denote the first global mixing
vector. Then, J0(w0) in (21) changes into

J0(w0) =
gT0Rss[�n]g0
gT0Rss[0]g0

: (22)

Without the loss of generality, we will assume Rss[0] = I, as the
differences in the diagonal elements ofRss[0] can always be absorbed
into the mixing matrixA. This way, the diagonal elements ofRss[�n]
become the normalized autocorrelation values of each source signal
and they are assumed to be different from each other. Now, we have

J0(w0) = ĝ
T
0Rss[�n]ĝ0 (23)

where ĝ0 = (g0)=( gT0 g0), which has a property ĝT0 ĝ0 = 1.
Next, consider the optimization problem formulated as

max
ĝ

ĝ
T
0Rss[�n]ĝ0 subject to ĝ

T
0 ĝ0 = 1: (24)

The solution to this problem is a vector ĝ0;opt with only one nonzero
element, which is strictly equal to unity at the position corresponding
to the largest diagonal element of the matrix Rss[�n] [1]. The corre-
sponding global mixing vector g0;opt will be the same as ĝ0;opt except
that the nonzero element in g0;opt is an arbitrary constant c. In this
case, the corresponding output y0[n] will be a scaled version of one of
the source signals.
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Fig. 1. Linear predictor structure for BSE.

However, since we are maximizing J(w0) with respect to w0, in-
stead of ĝ0, we need to prove that there exists a w0;opt which results
in ĝ0;opt.

From g0 = ATw0, when A is of full rank and the number of mix-
tures M is larger or equal to the number of sources L;w0;opt can be
obtained using the pseudoinverse of AT as

w0;opt = A(AT
A)
�1
g0;opt: (25)

For the caseM < L, in general, we cannot find aw0;opt which satisfies
the equation g0 = ATw0, except for some special forms of A.

Since the possible maximum value of J0(w0) is reached only when
g0 = g0;opt, as long as there exists such a w0 = w0;opt so that
g0 = g0;opt, we can state that when we maximize J0(w0)with respect
tow0, this will result in a successful extraction of the source signal with
the maximum normalized autocorrelation value.

After extracting the first source signal, we may use a deflation ap-
proach to remove it from the mixtures, and then, subsequently perform
the next extraction [1]. This procedure is repeated until the last source
signal is recovered.

III. ADAPTIVE REALIZATION OF THE CCA APPROACH

The correlation Rss[�n] considered in the cost function J0(w0)
is for a fixed single distance �n and an obvious disadvantage with
this choice is that, when the correlation functions of the source signals
for that given distance are the same, this method will fail to extract
the desired sources [8]. To improve the robustness of this method, we
can make a slight modification to J0(w0). Instead of maximizing the
correlation between yi[n] and yi[n��n], we maximize the correlation
between yi[n] and a weighted sum of yi[n�p]; p = 1; 2; . . . ; P to give
the new cost function [8]

Ĵ0(w0) =
Efy0[n]ŷ0[n]g

E fy20 [n]g
(26)

where

ŷ0[n] = b
T
y0[n] (27)

with

b = [b1 b2 � � � bP ]
T

y0[n] = [y[n � 1] y[n � 2] � � � y[n � P ]]T: (28)

Applying the standard gradient-descent method to the cost function
Ĵ0(w0), we can easily derive the corresponding adaptive algorithm.

Now, if we consider b as the coefficients of a linear predictor, shown
in Fig. 1, and ŷ0[n] as the prediction of y0[n] based on the previous in-
puts y0[n] = [y[n�1] y[n�2] � � � y[n�P ]]T, a further modification

to this new cost function can be made by considering the linear predic-
tion error

e0[n] = y0[n] � ŷ0[n] = y0[n] � b
T
y0[n] (29)

and the subsequent minimization of the normalized mean-square pre-
diction error (MSPE) [11]

�J0(w0) = E
e20[n]g

Efy20 [n]
: (30)

Note that

Efe20[n]g=Efy20 [n]g�2Efy0[n]b
T
y0[n]g+EfbTy0[n]y

T
0 [n]bg

=

P

p=0

b
2
pE y

2
0 [n � p] � 2

P

p=1

bpEfy0[n]y0[n � p]g

+

P

p;q=1;p6=q

bpbqEfy0[n� p]y0[n � q]g (31)

with b0 = 1. As the source signals are stationary, we have

Efy20 [n� p]g = E y
2
0 [n]

Efy0[n � p]y0[n � q]g = Efy0[n]y0[n + p� q]g: (32)

Then, (31) becomes

E e
2
0[n] =

P

p=0

b
2
pE y

2
0 [n] �2

P

p=1

bpEfy0[n]y0[n � p]g

+

P

p;q=1;p6=q

bpbqEfy0[n]y0[n + p� q]g (33)

and we have

�J0(w0) =
Efe20[n]g

Efy20 [n]g

=

P

p=0

b
2
p �

1

E fy20 [n]g

� 2

P

p=1

bpEfy0[n]y0[n � p]g

�

P

p;q=1;p6=q

bpbqEfy0[n]y0[n + p� q]g : (34)

Obviously, minimizing �J0(w0) is equivalent to maximizing the term
within the parentheses of (34), which represents the correlation be-
tween y0[n] and a weighted sum of y0[n�p]; p = 1; 2; . . . ; P . There-
fore, �J0(w0) is of the same nature as Ĵ0(w0). From (12) and (16),
Efe20[n]g can be rewritten as [11]

E e
2
0[n] = w

T
0Rxx[0]w0 � 2

P

p=1

bpw
T
0Rxx[p]w0

+

P

p;q=1

bpbqw
T
0Rxx[q � p]w0

= g
T
0 R̂ssg0 (35)
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Fig. 2. Four source signals used in simulations.

Fig. 3. Learning curve for the performance index using the adaptive extraction method.

with

R̂ss = Rss[0]� 2

P

p=1

bpRss[p] +

P

p;q=1

bpbqRss[q � p] (36)

where R̂ss is a diagonal matrix and its diagonal elements represent the
MSPEs introduced by the corresponding source signals. Then, the cost
function �J0(w0) becomes

�J0(w0) =
gT0 R̂ssg0

gT
0
Rss[0]g0

: (37)

Similar to (23), we have

�J0(w0) = ĝ
T
0 R̂ssĝ0: (38)

Now, the diagonal elements of R̂ss represent the MSPEs of the sources
with unit power, i.e., their normalized MSPEs. They are assumed to be
different from one another. Using the proof provided in Section II-B,
we can state that by minimizing the normalized MSPE (30), the
source signal with the smallest normalized MSPE will be extracted
successfully.

Applying the standard gradient-descent method to �J0(w0), we have

rw �J0=
2

Efy2
0
[n]g

Efe0[n]x̂[n]g�
E e20[n]

E fy2
0
[n]g

Efy0[n]x[n]g

(39)
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Fig. 4. Learning curve for a varying SIR.

Fig. 5. Four extracted source signals.

where

x̂[n] = x[n] �

P

p=1

bpx[n � p]: (40)

The MSPE Efe20[n]g and the power of the extracted signal Efy20 [n]g
can be estimated recursively by

�
2

e [n] = �e �
2

e [n� 1] + (1� �e )e20[n];

�
2

y [n] = �y �
2

y [n� 1] + (1� �y )y20 [n] (41)

where �e and �y are the corresponding forgetting factors.
Following some standard stochastic approximation techniques [17],

we obtain the following online update for w0[n]:

w0[n+1] = w0[n]�
�

�2y [n]
e0[n]x̂[n] �

�2e [n]

�2y [n]
y0[n]x[n] (42)

where � is the learning rate. The total number of additions for each
update is M(P + 3)+ P + 1 and for the multiplications it is M(P +
3)+P+10. To avoid the critical case where the norm ofw0[n] becomes
too small, after each update, we can normalize it to unit length.

After obtaining the first extracted signal y0[n], we can remove it from
the mixtures x[n] and apply the same algorithm to extract the second
signal y1[n], and so on, until we have extracted all of the signals.

IV. SIMULATIONS

To illustrate the validity of this approach, we performed experiments
on four benchmark signals s0; . . . ; s3 taken from the file ABio7.mat
provided by the ICALAB toolbox [1], as shown in Fig. 2. The coeffi-
cients of a randomly generated linear predictor with a length ofP = 10
are given by

b = [0:8032 � 0:3060 � 0:7430 � 0:7584 � 0:8896

1:1447 � 0:9456 0:5927 0:1641 1:6832]: (43)

The normalized prediction errors of the four signals from Fig. 2 were,
respectively, f8:9657;7:5055;7:0566;0:1612g. The mixing matrixA
was randomly generated and given by

A =

0:6360 0:9210 �0:3073 0:3117

�2:3134 1:7274 2:3179 1:0916

�0:6808 �1:0141 0:4437 1:2855

�1:9456 �1:0939 �0:3019 0:4671

: (44)
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Fig. 6. Performance index learning curve for extracting the signal s .

From the analysis in Sections II and III, by minimizing the normalized
MSPE, the signal with the smallest normalized MSPE will be extracted,
which in this case is the fourth signal s3.

To verify this, we conducted an experiment for which the learning
curve with �e = �y = 0:975 and � = 0:00012 is shown in Fig. 3,
whereby the performance index was defined as [1]

PI = 10 log
10

1

M � 1

M�1

m=0

g2m

max g2
0
; g2

1
; . . . ; g2M�1

� 1

(45)
with g = ATw0 = [g0 g1 � � � gM�1]. To further illustrate the per-
formance of the proposed approach, the learning curve for the varying
signal-to-interference ratio (SIR) within the extracted output is shown
in Fig. 4.

As the performance index reaches a level around�40 dB and the SIR
around 40 dB, we can say the signal s3 has been extracted successfully,
as shown by ŝ3 in Fig. 5. The monotonic trend in Figs. 3 and 4 indicates
the successful online training. To extract the second signal, we first
removed s3 from the original mixtures using a simple adaptive deflation
algorithm [1], and then, applied the same algorithm to the new mixtures
to extract the second one, and in this case, it was s2, denoted by ŝ2 in
Fig. 5. The performance index learning curve is given by Fig. 6. Note
in the second extraction, we still have four mixtures, i.e., M = 4, but
the number of sources has been reduced to L = 3. We repeated this
process until all of the source signals had been extracted, as shown by
the remaining diagrams in Fig. 5.

V. CONCLUSION

We have revisited the CCA approach in the context of BSS. Although
the validity of this approach can be justified indirectly by the matrix
pencil method, to give further insight, we have provided a detailed di-
rect proof for the existence of the solution. Two online realizations of
this approach have been proposed, and, as an example, a BSE algorithm
based on a linear predictor with fixed coefficients has been thoroughly
analyzed.
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