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ABSTRACT

A novel approach which extends blind source separation (BSS)
of one or group of sources to the case of post-nonlinear mix-
tures is proposed. This is achieved by an adaptive algorithm
in which the cost function jointly estimates the kurtosis and
a measure of nonlinearity. Next, Kalman filtering is applied
to blindly extract the signal of interest. The analysis of the
proposed approach is conducted for the case of smooth post-
nonlinear mixing and simulations are provided to illustrate
both the quantitative and qualitative performance of the pro-
posed algorithm.

1. INTRODUCTION

We have recently witnessed a large research body dedicated to
sequential state estimation. This approach is normally based
on some sort of a state space model, and the subsequent appli-
cation of Kalman filtering [9]. This type of estimation is op-
timal within the framework of second order statistics (SOS)
and its applications are manifold. Extensions of the basic se-
quential state estimation problem include Extended Kalman
Filter [4, 8], Unscented Kalman filter [15] and particle filter-
ing [13, 5]. This has also been recognised in the recent special
issue of the Proceedings of the IEEE on Nonlinear State Esti-
mation [6]. Little is known, however, whether the concept of
nonlinear state estimation can be successfully applied within
blind source separation (BSS) [12, 2]. More specifically blind
source extraction (BSE) [11], where we desire to extract only
one or a few signals from their mixtures, is nothing else but
a variant of nonlinear sequential estimation, whereby the se-
quential nature of the problem is represented by the so-called
”deflation” [11]. This is normally achieved within the frame-
work of SOS [10].

Our aim in this paper is to investigate whether the BSE as
a sequential estimation problem can be extended to the cases
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of nonlinear mixing, and whether we can make use the asso-
ciated non-Gaussian nature of such mixtures. To that case, we
propose a combination of post-nonlinear BSS followed by a
deflation procedure, based on Kalman filter. The actual defla-
tion is performed by an adjacent linear estimator, and we con-
sider both standard Least Mean Square (LMS) based adaptive
filters [7], and Kalman filter [9] in this context.

2. POST-NONLINEAR MIXTURES

Considern unknown sourcess(k) = [s1(k), . . . , sn(k)]T with
zero mean. Sources are observed through a nonlinear vec-
tor mappingM (·) and an ill-conditioned mixing matrixA,
to give measurementsx(k). This nonlinear mixing problem
(from the unknown sourcess(k) to the observationx(k)) can
be modelled as a post-nonlinear system. We therefore assume
the signalsx(k) are nonlinear memoryless mixtures ofn un-
known statistically independent sourcess(k), and the obser-
vation process can be expressed as

x(k) = M(As(k)) (1)

whereA ∈ Rm×n is an unknown ill-conditioned mixing ma-
trix which is assumed to be non-singular.

Our goal is to separate the sources of interest without any
prior knowledge of their distributions and the nonlinear mix-
ing mechanism. To that cause, we need to derive a separation
structure which involves learning rule for the estimation of the
unmixing (linear) matrixW, and a way to estimate the non-
linearity within. This unmixing operation can be expressed
as

ỹ(k) = W(M−1(x(k))) (2)

whereỹ(k) denotes the separated output signals.
In order to extractm ≤ n sources, the observations (1)

will be processed by an (m×n) separating matrixW, satisfy-
ing WWT = I , which yields the output vector (or estimated
sources)̃y(k). The matrixg = tanh(WA ) denotes anm × n
global demixing matrix from the sources to the outputs.



3. THE PROPOSED SEPARATION ALGORITHM

3.1. Nonlinear Separation Algorithm

For the separation of post-nonlinear mixtures, we propose the
following ”mixed norm” criterion:

J(ỹ(k)) =
n∑

i=1

|cum[ỹ4
i (k)]| − E{log

n∑

i=1

[fi(ỹi)(k)|} (3)

wherefi(·) is the nonlinearity. The left hand side part of (3)
is responsible for standard BSS, whereas the right hand part
of (3) estimates the nonlinearity within the mixing process. It
is important to note that (3) holds only if the functionsfi(·)
are invertible, a restriction that must be taken into account in
the development of learning algorithms.

In order to derive a learning algorithm corresponding to
(3), let us consider separately the minimisation of either part
of cost function (3). LetJK correspond to the first term in (3)
(kurtosis) andJN to the second term (nonlinearity). Observe
that

JN (W(k), ỹ(k)) =
∂

∑n
i=1 logfi(ỹi(k))

∂W(k)

=
∂

∑n
i=1 logfi(ỹi(k))

∂ỹ(k)
∂ỹ(k)
∂W(k)

(4)

wheref(ỹ(k)) = [f1(ỹ1(k)), f2(ỹ2(k)), . . . , fn(ỹn(k))]T is the
column vector whoseith component is

fi(ỹi(k)) = −∂logqi(ỹi(k))
∂ỹi(k)

= −∂qi(ỹi(k))/∂ỹi(k)
qi(ỹi(k))

= −q′i(ỹi(k))
qi(ỹi(k))

(5)

whereqi(ỹi(k)), i = 1, . . . , n, are true probability density
functions of the source signals. In fact, minimising the above
cost function leads to the minimisation of the mutual infor-
mation [14].

On the basis of the standard gradient descent, we obtain
an approximate learning rule, given by

4W(k) = −η0(k)
∂JN

∂W(k)

= η0(k)[I + W(k)]f(ỹ(k))ỹT (k) (6)

which finally yields a sequential update in the form of

W(k + 1) = W(k) + η0(k)[I + W(k)]f(ỹ(k))ỹT (k) (7)

A classical measure of non-Gaussianity is the kurtosis,
which for zero-mean random variablẽy(k) is defined as [3].

Hence, we can represent the termcum[ỹ4(k)] from the left
hand side of (3) as

cum[ỹ4(k)] = kurt(ỹ(k))
= E{ỹ4(k)} − 3(E{ỹ2(k)})2. (8)

it has the same value for all the output signalsỹ(k). The nor-
malised kurtosis,Knorm [10] is obtained when the kurtosis
kurt(ỹ(k)) is divided by the square of the varianceE{ỹ2(k)}

Knorm =
E{|ỹ|4(k)}
E2{|ỹ|2(k)} − 3 (9)

As a cost function for kurtosis based BSS, we may employ

JK(W(k)) = −1
4
|(E{ỹ2(k)})2|

= −β

4
|(E{ỹ2(k)})2| (10)

and the paramterβ determines the sign of the kurtosis of the
signal, where

β =
{ −1, for source signal with negative kurtosis,

+1, for source signal with positive kurtosis.
(11)

Applying standard gradient descent to minimise the cost
function, we have

4W(k) = −η0(k)
∂JK(W(k))

∂W(k)

= η0(k)β
m4(ỹ(k))
m3

2(ỹ(k))

×
[
m2(ỹ(k))
m4(ỹ(k))

E{ỹ3(k)x(k)} − E{ỹ(k)x(k)}
]

(12)

whereη0(k) > 0. It should be noted that the term

E{|ỹ(k)|4}/E3{|ỹ(k)|2} = m4(ỹ(k))/m3
2(ỹ(k)) (13)

is always positive, and can be absorbed by the learning rate
η̃0(k) = m4(ỹ(k))

m3
2(ỹ(k))

η0(k) > 0.

As a special case, applying a simple Euler approximation
to the update (12), yields the discrete-time learning rule

W(k + 1) = W(k) + η0(k)f(ỹ(k))x(k) (14)

wherex(k) is a vector of sensor signals andf(·) the nonlin-
earity.

Our proposed algorithm for BSS of ill-conditioned post-
nonlinear mixtures can be derived as

W(k +1) = W(k)+ η0(k)f(ỹ(k))[x(k)− (I + W(k))ỹT (k)]
(15)

where the separated outputs,ỹ(k) = W(M−1(k)x(k)). We pro-
pose to subsequently apply a sequential deflation procedure
based on Kalman filter in order to refine these estimates.



4. DEFLATION METHOD

After the separation by means of cost function (3), we per-
form source extraction, via a post-processing stage in order to
remove any remaining effects of post-nonlinear mixing. This
is achieved by a combination of a Kalman filter and the so-
called BSE based on linear predictor [10].

4.1. The Use of Kalman Filter

To cope with signals that are both nonlinear and nonstation-
ary, where the dynamical range of the signal is not known
beforehand, we propose to use Kalman filter. In deriving
the equations for the Kalman filter, we begin with finding an
equation that computes a deflated outputy(k+1) as a combi-
nation of ana priori estimatẽy(k) and a weighted difference
between an actual measurementds(k) and a measurement
predictionHỹ(k), whereH is an identity matrix, as shown
below.

y(k + 1) = y(k)−G(ds(k)− Hỹ(k)) (16)

The difference(ds(k) − Hỹ(k)) in (16) is called the mea-
surement innovation, or the residual. The residual reflects the
discrepancy between the predicted measurementHỹ(k) and
the actual measurementds(k). A residual of zero means that
the two are in complete agreement.

Then×m matrixG in (16) is the gain or blending factor
that minimizes thea posteriorierror covariance, given by

P(k) = E[e(k)e(k)T ] (17)

where the estimation error

e(k) ≡ ds(k)− ỹ(k) (18)

This minimization can be accomplished by first substituting
(16) into the above definition fore(k), substituting that into
(17), performing the indicated expectations, taking the deriva-
tive of the trace of the result with respect toG, and setting that
result equal to zero. This way, resultingG that minimizes (17)
is given by

G(k + 1) = P(k)HT (HP(k)HT + R)−1 (19)

=
P(k)HT

HP(k)HT + R
(20)

From (19) we see that as the measurement error covari-
anceR approaches zero, the gainG weighs the residual more
heavily. More specifically,

lim
R(k)→0

G(k) = H−1 (21)

On the other hand, as the a priori estimate error covariance
P(k) approaches zero, the gainG weights the residual less
heavily. Specifically,

lim
R(k)→0

G(k) = 0 (22)

Another way of approaching the weighting byG is that as
the measurement error covarianceR approaches zero, the ac-
tual measurementds(k) is ”trusted” more and more, while the
predicated measurementHỹ(k) is trusted less and less. On
the other hand, as the a priori estimate error covarianceP(k)
approaches zero the actual measurementds(k) is trusted less
and less, while the predicted measurementHỹ(k) is trusted
more and more.

5. EXPERIMENTS

In the experiments, the simulations were based on three source
signals:s1 with binary distribution,s2 with sine waveform,
ands3 with Gaussian distribution. The input for all signals
was scaled to range [0, 2], with positive kurtosis (β = 1),
learning ratesη0(k). Monte Carlo simulations with 5000 iter-
ations of independent trials were performed. The initial val-
ues of the predictor weights and the demixing matrix vector
W(k) were randomly generated for each run. The simulations
were conducted without prewhitening. In theory, by minimi-
sation of the normalised kurtosis of the extracted signal, we
will recover the first source, since it has the smallest kurtosis
value (binary signal).

A 3 × 3 mixing matrix was randomly generated, and is
given by

-0.8623 -0.5502 -0.0542
A = 0.1812 0.3532 -0.2561

-0.5511 -0.4358 0.9759
(23)

Hence, post-nonlinear mixtures can be modelled as

x(k) = tanh(As(k)) (24)

To measure the quantitative performance of the proposed
algorithm, we employ the performance index (PI) defined by
[1]

PI = 10log10

(
1

L− 1

(
L−1∑

l=0

g2
l

max{g2
0 , g2

1 , . . . , g2
L−1}

− 1

))

(25)
hence, the smaller the value of PI, the better the quality of
extraction.

Initial simulation results presented in Fig.1 show that the
proposed method has the potential to separate the post-nonlinear
mixtures for which the output scatter plots are closely matched
with the original sources (Fig.1). The proposed adaptive method
is also likely to exhibit faster convergence and better perfor-
mance index than the normalised method [10] as shown in
Fig.2.

6. CONCLUSIONS

We have proposed an approach for post-nonlinear blind source
extraction whereby Kalman filter is used on the deflation stage.



Fig. 1. Scatter plot comparing the independence of the output
signals; Column 1: signal 1 vs signal 2; Column 2: signal 2
vs signal 3; Column 3: signal 1 vs signal 3.

The proposed adaptive algorithm which does not require any
prepocessing (prewhitening), it is particularly suitable for blind
source extraction with post-nonlinear mixing matrices. Sim-
ulation results have confirmed the validity of the theoretical
results and demonstrated the performance of the algorithm.
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