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ABSTRACT of nonlinear mixing, and whether we can make use the asso-

A novel approach which extends blind source separation (BS&fitéd non-Gaussian natufre of suchlmixtures. Tfo :Ihat case, we
of one or group of sources to the case of post-nonlinear mix2f0P0Se & combination of post-nonlinear BSS followed by a
tures is proposed. This is achieved by an adaptive algorithrqeﬂat'on procedure, based on Kalman filter. The actual defla-

in which the cost function jointly estimates the kurtosis andion IS performed by an adjacent linear estimator, and we con-
a measure of nonlinearity. Next, Kalman filtering is appliedS'der Poth standard Least Mean Square (LMS) based adaptive

to blindly extract the signal of interest. The analysis of thefllters [7], and Kalman filter [9] in this context.

proposed approach is conducted for the case of smooth post-
nonlinear mixing and simulations are provided to illustrate
both the quantitative and qualitative performance of the pro- 2. POST-NONLINEAR MIXTURES

posed algorithm.
Considem unknown sources(k) = [sy(k), ..., s,(k)]T with

zero mean. Sources are observed through a nonlinear vec-
tor mappingM(:) and an ill-conditioned mixing matriy,

We have recently witnessed a large research body dedicatedfb9've measurementg(k). This nonlinear mixing problem
sequential state estimation. This approach is normally basddf©m the unknown sourcesk) to the observation(K)) can

on some sort of a state space model, and the subsequent ap ﬁ_mpdelled asa post—npnlmear system. We. therefore assume
cation of Kalman filtering [9]. This type of estimation is op- "€ Signalsx(k) are nonlinear memoryless mixturesofin-

timal within the framework of second order statistics (SOS)KNOWn statistically independent sourcgk), and the obser-
and its applications are manifold. Extensions of the basic se/ation process can be expressed as

quential state estimation problem include Extended Kalman

Filter [4, 8], Unscented Kalman filter [15] and particle filter- X(k) = M(As(k)) (2)

ing [13, 5]. This has also been recognised in the recent special

issue of the Proceedings of the IEEE on Nonlinear State EstwhereA € R™*™ is an unknown ill-conditioned mixing ma-
mation [6]. Little is known, however, whether the concept oftrix which is assumed to be non-singular.

nonlinear state estimation can be successfully applied within  Our goal is to separate the sources of interest without any
blind source separation (BSS) [12, 2]. More specifically blindprior knowledge of their distributions and the nonlinear mix-
source extraction (BSE) [11], where we desire to extract onlyng mechanism. To that cause, we need to derive a separation
one or a few signals from their mixtures, is nothing else bustructure which involves learning rule for the estimation of the
a variant of nonlinear sequential estimation, whereby the sainmixing (linear) matriXW, and a way to estimate the non-
guential nature of the problem is represented by the so-calldthearity within. This unmixing operation can be expressed
"deflation” [11]. This is normally achieved within the frame- as

work of SOS [10]. V(k) = WM L(x(k 2
Our aim in this paper is to investigate whether the BSE as yk) ( (D) @

a sequential estimation problem can be extended to the casfRerey (k) denotes the separated output signals.
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1. INTRODUCTION




3. THE PROPOSED SEPARATION ALGORITHM Hence, we can represent the teemm/[y* (k)] from the left
hand side of (3) as

cum[§* (k)] = kurt(y(k))
For the separation of post-nonlinear mixtures, we propose the _ E{V‘*(k)} _ 3(E{y2(k)})2. @)
following "mixed norm” criterion:

3.1. Nonlinear Separation Algorithm

it has the same value for all the output signglls). The nor-
malised kurtosisK .- [10] is obtained when the kurtosis

Z lcuml[§i} (k)]| — E{log Z Fi@)E)}G) urg(k) is divided by the square of the variangdy? (k)}
viE.
wheref;(-) is the nonlinearity. The left hand side part of (3) Korm = M -3 9)
is responsible for standard BSS, whereas the right hand part E2{|91?(k)}
of (3) estimates the nonlinearity within the mixing process. ItAs a cost function for kurtosis based BSS, we may employ
is important to note that (3) holds only if the functiofig-) 1
are invertible, a restriction that must be taken into account in Jr(W(k)) = —ZI(E{)72(/€)})2|
the development of learning algorithms. 3
In order to derive a learning algorithm corresponding to = —Z|(E{y2(k)})2| (10)

(3), let us consider separately the minimisation of either part . . _
of cost function (3). Let/x correspond to the first term in (3) and the paramtes determines the sign of the kurtosis of the
(kurtosis) and/ to the second term (nonlinearity). Observe signal, where

that _ | —1, for source signal with negative kurtosis 11
~ OS" logfi(5i(k)) A +1, for source signal with positive kurtosis (11)
IN(W(k),Y(k)) = _ _ .
OW (k) Applying standard gradient descent to minimise the cost
_ O, logfi5i(k)) 9Y(k) . function, we have
a oy(k) OW (k)
AW(E) = ) 2D
wheref (9(K) = [£1 (51 (k) fo(G2(k)), -, Fu (G (k)] is the W (k)
column vector whosih component is _ no(k)ﬁmfl( (%))
oo (51050 m3(y(k)
- 099i\Y; mo (Y
filgi(h) = o | BT B (x(0)} — EX()
i(k
(5 (k) ())( ) whereno (k) > 0. It should be noted that the term
= ®) _ _
4 (5:(k)) E{y(R)[Y/ EXHY(F) Y = ma(Y(K))/m5(9(k))  (13)
where q;(7;(k)), i =1, ..., n, are true probability density is always positive, and can be absorbed by the learning rate

functions of the source signals. In fact, minimising the abovey, (k) = 43 (k) > 0.
) S . 5(¥(k))
cost function leads to the minimisation of the mutual infor-
mation [14]. As a special case, applying a simple Euler approximation
On the basis of the standard gradient descent, we obtaio the update (12), yields the discrete-time learning rule
an approximate learning rule, given by

W(k +1) = W(k) +no(k)f(Y(k))x(k) (14)

AW(k) = —no(k)ae\‘ljé\];) wherex(k) is a vector of sensor signals afd) the nonlin-
earity.
= no(k)l + W(R)f(Y(k)Y" (k)  (6) Our proposed algorithm for BSS of ill-conditioned post-

nonlinear mixtures can be derived as

W (k +1) = W(k) +no(k)F((k)) X (k) = (I + W ()" (k)]
W (k + 1) = W(k) + no(k)[I + W(R)If(I(k)Y" (k) (7) (15)
where the separated outpuigk) = W (M ~*(k)x(k)). We pro-

A classical measure of non-Gaussianity is the kurtosispose to subsequently apply a sequential deflation procedure
which for zero-mean random variabjék) is defined as [3]. based on Kalman filter in order to refine these estimates.

which finally yields a sequential update in the form of



4. DEFLATION METHOD Another way of approaching the weighting & is that as

the measurement error covariarR@pproaches zero, the ac-

After the separation by means of cost function (3), we pertual measuremenis(k) is "trusted” more and more, while the

form source extraction, via a post-processing stage in order {sredicated measuremeHty(k) is trusted less and less. On

remove any remaining effects of post-nonlinear mixing. Thishe other hand, as the a priori estimate error covari@{ég

is achieved by a combination of a Kalman filter and the Soapproaches zero the actual measurerdsfi) is trusted less

called BSE based on linear predictor [10]. and less, while the predicted measuremdgi{k) is trusted
more and more.

4.1. The Use of Kalman Filter

To cope with signals that are both nonlinear and nonstation- 5. EXPERIMENTS
ary, where the dynamical range of the signal is not know . . .

beforehand, we propose to use Kalman filter. In derivin r'1the expenment_s,the §|mglat|_onswer§a ba;ed on three source
the equations for the Kalman filter, we begin with finding an5|gnals. 51 with bln'ary d.|strl|but'|on,52 W'th sine wavefqrm,
equation that computes a deflated outyfiit+ 1) as a combi- and s; with Gaussian distribution. The input for all signals
nation of ana priori estimatey(k) and a weighted difference was scaled to range [0, 2], with positive kurtosis € 1),

between an actual measuremeistt) and a measurement Iearning rgtes;o(k). Mont-e Carlo simulations with 5(.)0.0. iter-
predictionHy(k), whereH is an identity matrix, as shown ations of mdepgndent ‘T'a's were performgq. The mmal val-
below ues of the predictor weights and the demixing matrix vector

W (k) were randomly generated for each run. The simulations
y(k+1) =y(k) — G(ds(k) — HY(k)) (16)  were conducted without prewhitening. In theory, by minimi-

. ~ . . sation of the normalised kurtosis of the extracted signal, we
The difference(ds(k) — Hy(k)) in (16) is called the mea-

- > ) , will recover the first source, since it has the smallest kurtosis
surement innovation, or the residual. The residual reflects ﬂ\?alue (binary signal).

discrepancy between the predicted measuredgit) and
the actual measuremeti$(k). A residual of zero means that
the two are in complete agreement.

Then x m matrix G in (16) is the gain or blending factor -0.8623 -0.5502 -0.054
that minimizes the posteriorierror covariance, given by A= 01812 0.3532 -0.256 (23)

P(k) — E[e(k)e(k)T} (17) -0.5511 -0.4358 0.975

A 3 x 3 mixing matrix was randomly generated, and is
given by

where the estimation error Hence, post-nonlinear mixtures can be modelled as

e(k) = ds(k) — y(k) (18) X(k) = tanh(As(k)) (24)

This minimization can be accomplished by first substituting ~ To measure the quantitative performance of the proposed
(16) into the above definition far(k), substituting that into  algorithm, we employ the performance index (PI) defined by
(17), performing the indicated expectations, taking the derivall]

tive of the trace of the result with respeci@pand setting that

L—1
result equal to zero. This way, resulti@ghat minimizes (17) p, _ 100010 1 Z g7 1
L-1 ag%—l}

is given by prd max{g3, g?,. ..
_ T T “1 (25)
Gk+1) = P(kH (HTP(k)H +R) (19) hence, the smaller the value of PI, the better the quality of
_ P(k)H (20) extraction.
HP(k)HT +R Initial simulation results presented in Fig.1 show that the

I;I)_roposed method has the potential to separate the post-nonlinear
mixtures for which the output scatter plots are closely matched
with the original sources (Fig.1). The proposed adaptive method

is also likely to exhibit faster convergence and better perfor-

From (19) we see that as the measurement error coval
anceR approaches zero, the gdihweighs the residual more
heavily. More specifically,

lim G(k)=H! (21) mance index than the normalised method [10] as shown in
R(k)—0 Fig.2.
On the other hand, as the a priori estimate error covariance
P(k) approaches zero, the gaih weights the residual less 6. CONCLUSIONS

heavily. Specifically,
. 9 We have proposed an approach for post-nonlinear blind source
R(l,iﬂo G(k) = (22) extraction whereby Kalman filter is used on the deflation stage.
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Fig. 1. Scatter plot comparing the independence of the outputig- 2. Learing curve of the extraction algorithms (without
signals; Column 1: signal 1 vs signal 2; Column 2: signal 2°rewhitening).

vs signal 3; Column 3: signal 1 vs signal 3.

(8]
The proposed adaptive algorithm which does not require any
prepocessing (prewhitening), it is particularly suitable for blind
source extraction with post-nonlinear mixing matrices. Sim-
ulation results have confirmed the validity of the theoretical [°]
results and demonstrated the performance of the algorithm.

[10]
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