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Abstract

We provide an overview of blind source extraction (BSE) algorithms whereby only one source of interest is separated at the time. First,

BSE approaches for linear instantaneous mixtures are reviewed with a particular focus on the ‘‘linear predictor’’ based approach.

A rigorous proof of the existence BSE paradigm is provided, and the mean-square prediction error (MSPE) is identified as a unique

source feature. Both the approaches based on second-order statistics (SOS) and higher-order statistics (HOS) are included, together with

extensions for BSE in the presence of noise. To help circumvent some of the problems associated with the assumption of linear mixing, an

extension in the form of post-nonlinear mixing system is further addressed. Simulation results are provided which confirm the validity of

the theoretical results and demonstrate the performance of the derived algorithms in noiseless, noisy and nonlinear mixing environments.

Crown Copyright r 2008 Published by Elsevier B.V. All rights reserved.
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1. Introduction

Due to its wide range of potential applications including
those in biomedical engineering, sonar, radar, speech
enhancement and telecommunications [34], blind source
separation (BSS) has been studied extensively and has
become one of the most important research topics in the
signal processing area [1,4,8,12,15–17]. This is a technique
which aims at recovering the original sources from all kinds
of their mixtures, without the need for prior knowledge of
the mixing process and the sources themselves. Fig. 1
shows a block diagram of the BSS process, whereby there
are n sources s1ðkÞ; s2ðkÞ; . . . ; snðkÞ passed through an
unknown mixing system with additive noise vnðkÞ; by m

sensors we acquire the received mixed signals x1ðkÞ;x2ðkÞ;
. . . ;xmðkÞ. By BSS, the original signals are recovered
from their mixtures, subject to the ambiguities of permuta-
tion and scaling. Depending on the nature of mixing,
the sources are mixed in a linear or nonlinear manner.
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The linear case can be further divided into two categories:
instantaneous mixing and convolutive mixing. In the
convolutive mixing, the mixtures are modelled as sums of
filtered versions of the sources. Compared to instantaneous
mixing, this is a more complex problem and is beyond the
scope of this paper.
Within the instantaneous mixing model, the mixtures

xðkÞ are modelled as weighted sums of individual sources
without dispersion or time delay, given by

xðkÞ ¼ AsðkÞ þ vnðkÞ, (1)

with

sðkÞ ¼ ½s1ðkÞ; s2ðkÞ; . . . ; snðkÞ�
T,

xðkÞ ¼ ½x1ðkÞ;x2ðkÞ; . . . ;xmðkÞ�
T,

½A�i;j ¼ ai;j ; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n,

vnðkÞ ¼ ½vn1ðkÞ; vn2ðkÞ; . . . ; vnnðkÞ�
T,

yðkÞ ¼ ½y1ðkÞ; y2ðkÞ; . . . ; ynðkÞ�
T, (2)

where A is the mixing matrix and y are separated outputs.
We normally assume that the sources are zero-mean and
the elements of vnðkÞ are white Gaussian and independent
of the source signals.
r B.V. All rights reserved.
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Fig. 1. Block diagram of the blind source separation problem.
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Fig. 2. Blind source extraction (BSE) and deflation.
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In general, by BSS all the n sources are obtained
simultaneously; this introduces large computational bur-
den for a large number of mixtures. In many practical
situations; however, we may choose to extract only a single
source or a subset of sources at a time [11,7,25,6,9,2]. This
process can be repeated until the last source or the last
desired source/subset of sources is extracted [5,20,26,10,21].
The BSS approach operating in this way is also called blind
source extraction (BSE) [4,22–24,28]. Compared to the
general simultaneous BSS for multiple sources, BSE
provides us with more freedom in separation. For instance,
different algorithms can be used at different stages of the
extraction process, which is achieved according to the
features of the source signal we want to extract at a
particular stage. In addition, by extracting only a limited
set of signals of interest (instead of separating all of the
sources), much of the unnecessary computation is avoided.
This is particularly beneficial when the spatial dimension of
observed mixtures is large and the number of signals of
interest is small.

The aim of this paper is two-fold: (i) to provide an
overview and theoretical justification for a class of BSE
algorithms, (ii) to suggest feasible practical extensions of
standard BSE. The focus is on the approaches for noisy
instantaneous linear/post-nonlinear (PNL) mixtures. The
paper is organised as follows. In Section 2, a brief review of
the BSE for instantaneous linear noise-free mixtures is
given, including algorithms based on both the higher- and
second-order statistics (SOS). By analysis of the kurtosis
based method for noisy mixtures, a BSE method for
instantaneously mixed noisy mixtures is provided. In
Section 3, we extend the BSE for linearly mixed sources
to the case of PNL mixtures. Simulation results are given in
Section 4 to illustrate the validity of the proposed
methodology. Finally, conclusions are drawn in Section 5.

2. BSE for noisy linear mixtures

Fig. 2 shows a general BSE architecture for extracting
one single source at a time; it consists of two principal
stages: extraction and deflation [11]. The mixtures first
undergo the extraction stage to have one of the sources
recovered (as indicated by w1; . . . ;wn); after deflation, the
so extracted source is removed from the mixtures
(D1; . . . ;Dn). The new ‘‘deflated’’ mixtures of the remaining
sources then undergo the next extraction stage to recover
the second source; this process is repeated until the last
source of interest is recovered. In this section, we overview
a class of standard BSE algorithms, and provide a rigorous
proof of the existence of the BSE solution. After establish-
ing the conditions for uniqueness, an extension to the case
with noisy mixtures is provided.

2.1. Review of BSE for noise-free instantaneous mixtures

2.1.1. Kurtosis based BSE algorithms

When source signals are independent, ICA methods can
be conveniently used to perform the extraction. As the
mixtures of independent Gaussian sources mixed by an
orthogonal mixing matrix remain independent, the ICA
approaches are only applicable to non-Gaussian sources,
or when at most only one source is Gaussian. Under this
condition, the extraction of one original source signal is
equivalent to extracting an independent component from
the mixtures. From (1), for noise-free cases, we therefore
have

xðkÞ ¼ AsðkÞ. (3)

In the extraction stage, a linear combination of the mixed
signals is considered, given by

yðkÞ ¼ wTxðkÞ ¼ gTsðkÞ, (4)

where gT ¼ wTA is the global demixing vector.
To extract one of the source signals, it is sufficient to

maximise the non-Gaussianity of yðkÞ. A classic measure of
non-Gaussianity is the kurtosis, which for a zero-mean
random variable y is defined as [17]

ktðyÞ ¼ Efy4g � 3ðEfy2gÞ
2, (5)

where Ef�g denotes the statistical expectation operator.
The kurtosis of a Gaussian random variable is zero,

whereas for most non-Gaussian random variables it is non-
zero. Random variables with positive kurtosis are
called super-Gaussian, whereas they are termed sub-
Gaussian for a negative kurtosis. One such kurtosis based
algorithm, is based on the minimisation of the cost
function given by [7]

CðwÞ ¼ �
bktðyÞ

4ðEfy2gÞ
2
, (6)

where b ¼ 1 for the extraction of source signals with
positive kurtosis and b ¼ �1 for sources with negative
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kurtosis. Applying standard gradient descent yields

wðk þ 1Þ ¼ wðkÞ þ mfðyðkÞÞxðkÞ, (7)

where m is the stepsize and

fðyðkÞÞ ¼ b
m2ðyÞ

m4ðyÞ
y3ðkÞ � yðkÞ

� �
(8)

with

mqðyÞðkÞ ¼ ð1� lÞmqðyÞðk � 1Þ þ ljyðkÞjq; q ¼ 2; 4, (9)

where l is the forgetting factor.
In addition to this normalised kurtosis based algorithm,

other kurtosis-related algorithms include the KuicNet
algorithm [13] and FastICA algorithm [18]. For more
details, refer to [4].

2.1.2. BSE algorithms using a linear predictor

Kurtosis based algorithms are only applicable to
independent non-Gaussian sources (or at most one
Gaussian). However, if the sources are not correlated with
one another and every source has a different temporal
structure, it is still possible to perform successive separa-
tion. More specifically, assume

Rssð0Þ ¼ EfsðkÞsTðkÞg

¼ diagfr0ð0Þ;r1ð0Þ; . . . ; rn�1ð0Þg, (10)

with rið0Þ ¼ EfsiðkÞ � siðkÞg, i ¼ 0; 1; . . . ; n� 1, and

RssðDkÞ ¼ EfsðkÞsTðk � DkÞg

¼ diagfr0ðDkÞ;r1ðDkÞ; . . . ; rn�1ðDkÞg (11)

with riðDkÞa0 for some non-zero delay Dk.
One convenient way to exploit this property is to

employ a linear predictor within the BSE structure, as
shown in Fig. 3 [6,2,5,26,24], where the weighted sum
yðkÞ ¼ wTxðkÞ is passed through a linear predictor with
coefficient b and of length P. The ‘‘output’’ error in this
case is given by

eðkÞ ¼ yðkÞ � bTyðkÞ, (12)

where

b ¼ ½b1; b2; . . . ; bP�
T,

yðkÞ ¼ ½yðk � 1Þ; yðk � 2Þ; . . . ; yðk � PÞ�T. (13)

In general, different source signals have different
prediction errors for a given linear predictor. A direct use
of the prediction error as a cost function is not convenient,
since the error values depend on the magnitudes of signals;
instead consider the normalised mean squared prediction
b
+

+

−
Predictorz

w
y [k]

x1 [k]

x2 [k]

xm [k]

e [k]

Fig. 3. BSE based on a linear predictor.
error (MSPE) of the extracted signal yðkÞ, given by

JðwÞ ¼
Efe2ðkÞg

Efy2ðkÞg
. (14)

The MSPE Efe2ðkÞg can be expressed as

Efe2ðkÞg ¼ wTAR̂ssA
Tw, (15)

where R̂ss is a diagonal matrix given by

R̂ss ¼ Rssð0Þ � 2
XP

p¼1

bpRssðpÞ þ
XP

p;q¼1

bpbqRssðq� pÞ. (16)

The diagonal elements of the matrix R̂ss represent the
MSPEs related to the corresponding source signals; under
the assumption Rssð0Þ ¼ I, those become the normalised
MSPEs of the source signals (for the particular linear
predictor with coefficients b).
Substituting (15) and Efy2ðkÞg ¼ wTRxxð0Þw into (14), we

have

JðwÞ ¼
wTAR̂ssA

Tw

wTARssð0ÞA
Tw

. (17)

By minimising the cost function JðwÞ with respect to the
demixing vector w, it has been proven that the global
demixing vector g ¼ wTA tends to have only one non-zero
element and consequently only the source signal with the

smallest normalised MSPE for the fixed linear predictor b
will be extracted [24].
Applying standard gradient descent optimisation to

minimise JðwÞ, and using standard stochastic approxima-
tions [14], an online update [24] can be obtained as

wðk þ 1Þ ¼ wðkÞ �
m

s2yðkÞ
eðkÞx̂ðkÞ �

s2eðkÞ
s2yðkÞ

yðkÞxðkÞ

 !
,

(18)

with m being the learning rate and

x̂ðkÞ ¼ xðkÞ �
XP

p¼1

bpxðk � pÞ,

s2eðkÞ ¼ bes
2
eðk � 1Þ þ ð1� beÞe

2ðkÞ,

s2yðkÞ ¼ bys
2
yðk � 1Þ þ ð1� byÞy

2ðkÞ, (19)

where be and by are the corresponding forgetting factors.
The so far introduced two classes of BSE algorithms

have been designed for the case of noise-free mixtures.
Although these can be applied directly to a general case,
their performance will inevitably be degraded due to the
presence of noise or nonlinearity for which they are not
designed.

2.2. BSE with a linear predictor in noisy environments

In a noisy environment, to extract one of the sources, a
demixing vector w is applied to noisy mixtures xðkÞ, to
obtain the source

yðkÞ ¼ wTxðkÞ ¼ gTsðkÞ þ wTvnðkÞ. (20)
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If the sources are independent, the method from
Section 2.1.1 is not perfectly suited, due to the presence
of noise. However, if the variance of this noise can be
estimated, the effect of noise can be removed from within
the cost function [22]. More specifically, as the kurtosis of a
Gaussian random variable is zero, the kurtosis of an
extracted signal, ktðyðkÞÞ will be the same as in the case with
no noise; this way only the denominator of (6) need to be
modified. This is equivalent to minimising

CðwÞ ¼ �
bktðyÞ

4ðEfy2g � wTRvnwÞ
2
, (21)

where wTRvnw is the contribution to the variance of the
extracted signal yðkÞ due to noise.

This idea can be extended to the case of BSE based on
linear predictor and the effect of noise can be removed
directly from the cost function (14) [23]; thus the generic
form of the cost function remains the same as that in the
noise-free case.

2.2.1. The cost function

Assume that noise vnðkÞ is uncorrelated with the source
signals and that the noise correlation matrix is given by

RvvðDkÞ ¼ EfvnðkÞvnTðk � DkÞg ¼
0 for Dka0;

Rvn for Dk ¼ 0:

(

(22)

The MSPE at a linear prediction from Fig. 3. can now be
expressed as

Efe2ðkÞg ¼ wTRxxð0Þw� 2
XP

p¼1

bpw
TRxxðpÞw

þ
XP

p;q¼1

bpbqw
TRxxðq� pÞw, (23)

where RxxðDkÞ is the correlation matrix of the observed
mixtures. After accounting for the effect of noise, from (1),
we have

RxxðDkÞ ¼ AEfsðkÞsTðk � DkÞgAT
þ EfvnðkÞvnTðk � DkÞg

¼ ARssðDkÞAT
þ RvvðDkÞ. (24)

Thus, Efe2ðkÞg can be divided into two parts

Efe2ðkÞg ¼ e2s þ e2vn, (25)

whereby the term e2s ðkÞ is associated with the source signals,
and is given by

e2s ðkÞ ¼ wTARssð0ÞA
Tw� 2

XP

p¼1

bpw
TARssðpÞA

Tw

þ
XP

p;q¼1

bpbqw
TARssðq� pÞATw

¼ wTAR̂ssA
Tw (26)

and R̂ss is given in (16).
The term e2vn corresponds to the noise term from within
the mixtures, and is given by

e2vn ¼ wTRvnwþ
XP

p¼1

b2
pw

TRvnw

¼
XP

p¼0

b2
pw

TRvnw, (27)

where b0 ¼ 1.
From (24), Efy2ðkÞg becomes

Efy2ðkÞg ¼ wTRxxð0Þw

¼ wTARssð0ÞA
Twþ wTRvnw. (28)

To remove the effects of noise from (14), a new cost
function J1, can be constructed, as [23]

J1ðwÞ ¼
Efe2ðkÞg � e2vnðkÞ

Efy2ðkÞg � wTRvnw
. (29)

Based on the above analysis, (29) can be written as

J1ðwÞ ¼
wTAR̂ssA

Tw

wTARssð0ÞA
Tw

. (30)

Observe that J1ðwÞ from (30) is exactly the same as (17)
(for more detail see [24]). We can therefore state that by
minimising J1ðwÞ with respect to w, successful extraction of
sources from noisy mixtures is achieved.
To build the cost function J1, we first need to know Rvn.

In practice, it is reasonable to assume Rvn ¼ s2vnI, where I is
the identity matrix and s2vn is the variance of the noise. As

Rxxð0Þ ¼ ARssð0ÞA
T
þ s2vnI, (31)

when m4n, (that is, the number of mixtures is larger than
the number of sources), a subspace method can be used to
estimate s2vn (which in this case represents the smallest
eigenvalue of Rxxð0Þ [14]). Alternatively, for noisy mixtures,
an adaptive principal component analysis method may be
employed to estimate s2vn online [17].
2.2.2. BSE algorithms for noisy mixtures

To simplify the derivation of the adaptive algorithms, a
normalisation of w will be performed after each update,
which can be expressed as

wðk þ 1Þ  wðk þ 1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTðk þ 1Þwðk þ 1Þ

p
, (32)

which also helps to avoid the critical case when the norm of
wðkÞ becomes too small. Thus, we have

e2vn ¼
XP

p¼0

b2
ps

2
vn ¼ s2cs

2
vn, (33)

where s2c ¼
PP

p¼0b2
p is a constant. Now J1ðwÞ becomes

J1ðwÞ ¼
Efe2ðkÞg � s2cs

2
vn

Efy2ðkÞg � s2vn
. (34)
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Applying standard gradient descent to J1ðwÞ, yields

rwJ1 ¼
2

Efy2ðkÞg � s2vn
EfeðkÞx̂ðkÞgð

�
Efe2ðkÞg � s2cs

2
vn

Efy2ðkÞg � s2vn
EfyðkÞxðkÞg, (35)

where Efe2ðkÞg and Efy2ðkÞg can be estimated, respectively,
by

s2eðkÞ ¼ bes
2
eðk � 1Þ þ ð1� beÞe

2ðkÞ,

s2yðkÞ ¼ bys
2
yðk � 1Þ þ ð1� byÞy

2ðkÞ, (36)

where be and by are the corresponding forgetting factors
with 0pbe;byo1.

Using again standard stochastic approximations, the
following update of the demixing vector is obtained [23]

wðk þ 1Þ ¼ wðkÞ �
2m

s2yðkÞ � s2vn

� eðkÞx̂ðkÞ �
s2eðkÞ � s2cs

2
vn

s2yðkÞ � s2vn
yðkÞxðkÞ

 !
. (37)

The above algorithm is a direct gradient method and is
suitable for online implementation (as there is no
preprocessing involved). Notice that by a combination of
preprocessing and normalisation of the demixing vector
wðkÞ, the variance of the extracted signal yðkÞ can be
reduced to a fixed value, which can greatly simplify the cost
function and the associated adaptive algorithm.

Note that Rxxð0Þ can be decomposed as

Rxxð0Þ ¼ EDxE
T, (38)

where E is an orthogonal matrix whose columns are the
eigenvectors of Rxxð0Þ, and Dx is a diagonal matrix whose
diagonal elements are the corresponding eigenvalues.
Multiplying the mixtures by the whitening matrix
P ¼ D�1=2x ET, we obtain the prewhitened vector ~x as

~x ¼ D�1=2x ETx. (39)

The correlation matrix of the prewhitened mixtures R ~x ~xð0Þ
now becomes

P ~x ~xð0Þ ¼ PRxxð0ÞP
T

¼ PARssð0ÞA
TPT þ PRvnP

T

¼ ÂRssð0ÞÂ
T
þ R̂v ¼ I (40)

with Â ¼ PA and R̂v ¼ PRvnP
T.

Due to prewhitening, the numerator and the denomi-
nator of (14) become, respectively

Efe2ðkÞg ¼ e2s þ e2vn

¼ wTÂR̂ssÂ
T
wþ

XP

p¼0

b2
pw

TR̂vw, (41)

Efy2ðkÞg ¼ wTRx̂x̂ð0Þw ¼ wTw

¼ wTÂRssð0ÞÂ
T
wþ wTR̂vw. (42)
From (30), after the multiplication of P with the mixing
matrix A, the cost function J1ðwÞ becomes

J1ðwÞ ¼
Efe2ðkÞg �

PP
p¼0b2

pw
TR̂vw

Efy2ðkÞg � wTR̂vw

¼
Efe2ðkÞg � s2cw

TR̂vw

wTw� wTR̂vw

¼
Efe2ðkÞg � s2cw

TR̂vw

wTðI� R̂vÞw
. (43)

Further, if the denominator wTðI� R̂vÞw is used to
normalise w at every update, that is

wðk þ 1Þ  wðk þ 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTðI� R̂vÞw

q
, (44)

then

Efy2ðkÞg � wTR̂vw ¼ wTðI� R̂vÞw ¼ 1. (45)

This way, the cost function is simplified to

J1ðwÞ ¼ Efe2ðkÞg � s2cw
TR̂vw

¼ Efe2ðkÞg � s2cðEfy
2ðkÞg � 1Þ. (46)

In this case, for linear predictor with fixed coefficients,
after applying standard gradient descent to J1ðwÞ, the
following online update rule is obtained [23]

wðk þ 1Þ ¼ wðkÞ � 2mðeðkÞ ~̂xðkÞ � s2cyðkÞ ~xðkÞÞ, (47)

where ~̂xðkÞ is given by

~̂xðkÞ ¼ ~xðkÞ �
XP

p¼1

bp ~x½k � p�. (48)

This update equation is followed by the normalisation
operation given in (44). The simulation results are shown in
Section 4.

3. Post-nonlinear BSE

The algorithms introduced in Section 2 are designed for
linear mixtures, a condition which is not realistic for a
range of real world sensors; for instance those with
saturation type nonlinearity. To help mitigate this pro-
blem, nonlinear models ought to be considered [29,30]; one
such model is the PNL mixing model [30], a focus of this
Section.

3.1. PNL mixtures

In the PNL mixing model, the n unknown sources are
first mixed linearly by a mixing matrix A 2 Rm�n, the
measurements xðkÞ are obtained through a nonlinear
vector function Mð�Þ ¼ ½M1ð�Þ; . . . ;Mmð�Þ�

T, as shown in
Fig. 4 given by

xðkÞ ¼MðAsðkÞÞ.

Our goal is to extract the sources of interest without any
prior knowledge of their distributions and the features of
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Fig. 4. Block diagram of the post-nonlinear mixing model.
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Fig. 5. A BSE structure for the extraction of a single source using a

nonlinear adaptive FIR filter with nonlinear activation function F.
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the nonlinear mixing mechanism. By extending the results
from Section 2, source extraction in this case can be
achieved by first estimating the inverse of the nonlinearities
in the mixing process and then applying a demixing vector
w1 to extract the desired signal, given by

y1ðkÞ ¼ wT
1M
�1ðxðkÞÞ ¼ wT

1
~MðxðkÞÞ, (49)

where

~M ¼M�1 ¼ ½ ~M1ð�Þ; . . . ; ~Mmð�Þ�
T,

w1 ¼ ½w11ðkÞ; . . . ;w1mðkÞ�
T. (50)

The learning rule involves both the estimation of the
demixing vector w1 and the nonlinearity. The estimation of
w1 is based on the nonlinear predictability of the sources, as
shown in Fig. 5.
3.2. Estimating the inverse of the nonlinearity

To estimate ~M, the alternating conditional expectation
(ACE) algorithm [3,19,27,31–33] may be exploited to
approximately invert the component-wise nonlinear func-
tions within M. Using ACE, to make the inverse of the
nonlinear functions M1 and M2, the quantity to be
minimised is

corrð ~M1ðx1Þ; ~M2ðx2ÞÞ (51)
with respect to some nonlinear functions ~M1 and ~M2 [3].
The aim here is to find the transformations ~M1 and ~M2

such that the relationship between the transformed
variables becomes as linear as possible.
The ACE method finds the optimal transformation ~M

�

1

and ~M
�

2 which maximise (51) [3]. For fixed ~M1 the optimal
~M2 is given by

~M2ðx2Þ ¼ Ef ~M1ðx1Þjx2g

and conversely, for fixed ~M2 and the optimal ~M1 is

~M1ðx1Þ ¼ Ef ~M2ðx2Þjx1g. (52)

The idea of the iterative ACE algorithm is then to compute
these conditional expectations alternatively until conver-
gence has been reached. The optimality is defined by the
least squares criterion, which yields

e2r ¼ min
~M1; ~M2

Ef ~M1ðx1Þ � ~M2ðx2Þg
2

Ef ~M
2

1ðx1Þg
, (53)

The minimisation of e2r is carried out through a series of
single function minimisations. The optimal transformation
in the least squares sense is equivalent to the transforma-
tion with maximal correlation,

max
~M1; ~M2

corrð ~M1ðx1Þ; ~M2ðx2ÞÞ, (54)

This equivalence, which was proven in [3], also reveals the
ways to extend the ACE algorithm to the multivariate case.
The underlying idea for applying the ACE framework to
the PNL problem is based on the fact that we can
approximate the inverse of the post-nonlinearities by
searching for those nonlinear transformations which
maximise the linear correlations between the nonlinearly

transformed observed variables (more detail can be found
in the Appendix).
3.3. Blind extraction of sources based on nonlinear

predictability

Now that we are able to find estimates of nonlinear
transformations ~M from Fig. 5, a standard extraction
process (as shown in Section 2) with extracting coefficients
w1ðkÞ is used to extract one signal (denoted by y1ðkÞ) from
the mixtures. A nonlinear adaptive finite impulse response
(FIR) filter with coefficients b1ðkÞ is used as a predictor to
assist the extraction. Such a nonlinear predictor is
particularly important to support the ACE algorithm in
eliminating the effects of the remaining nonlinearities. In
Fig. 5, the filter output ~y1ðkÞ is an estimate of the extracted
signal y1ðkÞ and the filter nonlinearity Fð�Þ is typically a
sigmoid function. The estimation of the extracted signal
y1ðkÞ is naturally accompanied by the corresponding
prediction error, defined by

e1ðkÞ ¼ y1ðkÞ � ~y1ðkÞ, (55)
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Fig. 6. The three source signals used in the simulations.
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where

~y1ðkÞ ¼ FðyT1 b1ðkÞÞ,

b1ðkÞ ¼ ½b11ðkÞ; b12ðkÞ; . . . ; b1pðkÞ�
T,

y1ðkÞ ¼ ½y1ðk � 1Þ; y1ðk � 2Þ; . . . ; y1ðk � PÞ�T. (56)

To adjust the time varying filter coefficients b1ðkÞ and the
extracting coefficients w1ðkÞ, a gradient descent algorithm
is next introduced; this is based on the minimisation of the
prediction error e1ðkÞ. Similarly to the previous cases, the
cost function for the first extracted signal is therefore
defined as

Jðw1ðkÞ; b1ðkÞÞ ¼ 1
2
e21ðkÞ. (57)

The extracted signal y1ðkÞ and its estimate ~y1ðkÞ can be
found from

y1ðkÞ ¼
Xm

i¼1

xiðkÞw1iðkÞ,

~y1ðkÞ ¼ F
XP

p¼1

b1pðkÞy1ðk � pÞ

 !

¼ F
XP

p¼1

b1pðkÞ
Xm

i�1

xiðk � pÞw1iðk � pÞ

 !
. (58)

To derive a gradient descent adaptation for every
element b1pðkÞ, p ¼ 1; 2; . . . ;P of the filter coefficient vector
b1 and every element w1iðkÞ, i ¼ 1; 2; . . . ;m of the extracting
coefficient vector w1, we need to calculate the correspond-
ing gradients within the updates

b1pðk þ 1Þ ¼ b1pðkÞ � mbrb1p
Jðw1ðkÞ; b1ðkÞÞ, (59)

w1iðk þ 1Þ ¼ w1iðkÞ � mwrw1i
Jðw1ðkÞ; b1ðkÞÞ, (60)

where mb and mw denote, respectively, the learning rates for
the adaptation of b1 and w1. From the prediction error
term

e1ðkÞ ¼ y1ðkÞ � ~y1ðkÞ

¼
Xm

i¼1

xiðkÞw1iðkÞ � F
XP

p¼1

b1pðkÞ

 

�
Xm

i�1

xiðk � pÞw1iðk � pÞ

!
(61)

we have

rb1p
Jðw1ðkÞ; b1ðkÞÞ ¼ e1ðkÞ

qe1ðkÞ

qb1pðkÞ
¼ �e1ðkÞF0ðkÞy1ðk � pÞ,

(62)

where, for convenience, FðkÞ denotes the value of the
nonlinear function FðbT1 ðkÞw1ðkÞÞ from (61) at time instant
k, F0ðkÞ denotes its derivative, and

rw1i
Jðw1ðkÞ; b1ðkÞÞ ¼ e1ðkÞxiðkÞ. (63)
The updates for the filter and the extracting coefficients
now become

b1pðk þ 1Þ ¼ blpðkÞ þ mbðkÞe1ðkÞF
0ðkÞy1ðk � pÞ,

w1iðk þ 1Þ ¼ w1iðkÞ � mwe1ðkÞxiðkÞ (64)

which can be expressed more compactly in the vector
form as

b1ðk þ 1Þ ¼ b1ðkÞ þ mbðkÞe1ðkÞF
0ðkÞy1ðkÞ,

w1ðk þ 1Þ ¼ w1ðkÞ � mwe1ðkÞxðkÞ. (65)

This completes the derivation of the adaptive BSE
algorithm for post-nonlinearly mixed sources.
4. Experiments

We now provide experimental support for the presented
BSE algorithms. We shall consider the cases of noisy
mixtures and PNL mixtures separately. This is because
each have their own specific merits. Blind PNL extraction
of noisy mixtures is a difficult and open problem which is
beyond the scope of this work.
4.1. Simulations for noisy mixtures

Three source signals shown in Fig. 6 were used in
simulations (these can be found in the ICALAB toolbox
[4]). The coefficients of the linear predictor with a length of
P ¼ 3 were randomly generated, and are given by

b ¼ ½0:2 0:9 0:1�. (66)

This way, the obtained normalised prediction errors of the
three source signals were, respectively, f1:61; 1:05; 0:05g.
The 4� 3 mixing matrix A was randomly generated and is
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Fig. 9. The learning curve using the algorithm (37) with s2vn ¼ 0:04.
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Fig. 10. The learning curve using the algorithm (47) with s2vn ¼ 0:01.
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given by

A ¼

�0:2121 0:0724 �0:3481

�2:0734 �0:6688 1:2110

1:2410 �0:2463 �1:0882

�1:7048 �1:0232 0:0708

2
6664

3
7775. (67)

As there is one more mixture than the number of sources,
this additional degree of freedom was used to estimate the
variance of the additive white Gaussian noise. To further
illustrate the proposed approach, two different noise levels
were used. For the first set of simulations, the variance of
the noise was s2vn ¼ 0:01. By minimising the normalised
MSPE, it is expected that the signal with the smallest
normalised prediction error would be extracted, in our case
this is the third signal.

For comparison, the direct BSE algorithm (designed for
noisy mixtures) given in Eq. (37) was first tested. The
forgetting factors were be ¼ by ¼ 0:98 and the stepsize
m ¼ 0:0017. The learning curve for this case is shown in
Fig. 7, whereby the performance index was defined as [4]

PI ¼ 10 log10
1

n� 1

Xn�1
m¼0

g2
m

maxfg2
0; g

2
1; . . . ; g

2
n�1g
� 1

 ! !
,

(68)

with g ¼ ATw ¼ ½g0 g1 � � � gn�1�
T. The resulting signal

to interference plus noise ratio (SINR) was about 16.5 dB.
As the performance index reached the level well below
�30 dB on the average, we can say signal 3 had been
extracted successfully, as shown in Fig. 8.

To further illustrate the performance of the proposed
algorithm, in the next experiment, the variance of noise was
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Fig. 7. The learning curve using the algorithm (37) with s2vn ¼ 0:01.
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Fig. 8. The extracted signal 3 using the algorithm (37).
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Fig. 11. The learning curve using the algorithm (47) with s2vn ¼ 0:04.
increased to s2vn ¼ 0:04. The associated learning curve is
shown in Fig. 9 with the resulting SINR value of
approximately 10:6 dB. The corresponding value of the
performance index at the steady state (well below 20 dB on
the average) indicates a successful extraction.
Next, the same experiments were constructed for the

algorithm given in (47). The stepsize was chosen to be
m ¼ 3. It may at first seem surprising to have such a large
stepsize, but this is a direct consequence of a very small
instantaneous gradient value 2ðeðkÞx̂ðkÞ � scyðkÞxðkÞÞ,
which takes values in the region of 10�3 during the
adaptation. This stepsize is also much larger (about 1000
times) than that for the direct approach (the first set of
simulations). This is also consistent with the observation
for the noise-free BSE algorithms [24], where the stepsize
when prewhitening was performed was about 103 times the
value of that when using the normalised MSPE as the
cost function. This clearly indicates a close relationship
between the prewhitening and the value of the stepsize.
The corresponding learning curves for the two different
noise levels are shown, respectively, in Figs. 10 and 11.
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The resulting SINRs were, respectively, about 15.9 and
11.1 dB, and in both cases the algorithm was able to extract
the source successfully.

Finally, a comparison between the algorithm given in
(37) and that in (18) is provided. The number of sources
was increased to four and the fourth source had similar
characteristics to signal 1 (Fig. 6), with a normalised MSPE
of 1:88. The noise variance was s2vn ¼ 0:16. The learning
curves of the two algorithms with a stepsize m ¼ 0:0024 are
shown in Fig. 12, which were obtained by averaging 1000
independent simulations, each with a randomly generated
mixing matrix and a randomly generated initial value of the
demixing vector. Observe that some of the trials may have
had an ill-conditioned or nearly ill-conditioned mixing
matrix; this affected the performance of both the algo-
rithms. From Fig. 12 notice that in the case of noisy
mixtures, the algorithm designed for the noisy case
outperformed the original one, as illustrated by the
performance index of the proposed method reaching a
lower level.
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Fig. 12. The learning curves of the algorithm in (37) and the original

algorithm in (18), obtained by averaging 1000 independent trials.
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4.2. Simulations for PNL mixtures

To illustrate the operation of BSE from nonlinear
mixtures, the simulations were based on three source
signals: s1 with binary distribution, s2 a sine waveform and
s3 with Gaussian distribution, as shown in Fig. 13. The
signals s1 and s2 had positive kurtosis (b ¼ 1), the adaptive
filter length was P ¼ 3, and learning rates mb and mw ¼

0.0001. Monte Carlo simulations with 5000 iterations of
independent trials were performed.
The initial values of the predictor and the demixing

vector w1ð0Þ coefficients were randomly generated for each
run. The simulations were conducted without prewhiten-
ing. Matrix A was a 3� 3 mixing matrix and was randomly
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Fig. 14. Extracted output signals with binary (top), sine waveform

(middle) and Gaussian distribution (bottom) using the post-nonlinear

BSE.
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generated, given by

A ¼

0:0413 0:1025 �0:9389

�0:4786 �0:3694 0:8490

0:6005 �0:0585 �0:0180

2
64

3
75. (69)

The PNL mixtures were based on a saturation type
nonlinearity, in this case

xðkÞ ¼ tanhðAsðkÞÞ. (70)

The waveforms of the sequentially extracted signals by
the proposed algorithm are given in Fig. 14, matching the
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Fig. 16. Comparison between ACE+normalised kurtosis and ACE+

nonlinear predictor algorithms.

Fig. 17. Scatter plots comparing the independence of the output signals in

noiseless environment. Column 1: signals 1 and 2; Column 2: signals 2 and

3; Column 3: signals 1 and 3. Row 1: original sources; Row 2: mixtures;

Row 3: the proposed adaptive PNL method.
first source signal. Fig. 15 illustrates the values of PI,
along the adaptation, for both the normalised kurtosis
based [22] and the proposed PNL extraction approach. For
the PNL extraction, the PI reached a level of around
�30 dB after 1000 iterations, indicating successful PNL
blind extraction; the extraction using the normalised
kurtosis was not successful. Next, the comparison between
ACE+normalised kurtosis and ACE+nonlinear predictor
is shown in Fig. 16. The PNL approach exhibited
better qualitative performance clearly indicating the
usefulness of the nonlinear predictor in assisting the
extraction process.
To illustrate the qualitative performance of the intro-

duced algorithms, scatter plots of the original sources
and the recovered output signals are displayed in Fig. 17.
These scatter plots illustrate the degree of independence
between the outputs, whereby every point on the diagram
corresponds to a data vector. Conforming with the
above results, the extracted output signals using the PNL
method outperformed the normalised kurtosis [22] based
extraction.

5. Conclusions

An overview of BSE algorithms has been provided and
some of their extensions are proposed. First, BSE
approaches for linear instantaneous mixtures are reviewed
with an emphasis on the linear predictor based approach,
including algorithms for both noise-free and noisy mixing.
To help circumvent some of the problems associated with
the assumption of linear mixing, an extension in the form
of PNL mixing system is addressed, this is achieved for a
special case of invertible sensor nonlinearities. Simulation
results have been provided to support the introduced
algorithms for both the case of linear, PNL and noisy
mixtures.

Appendix

To implement the ACE algorithm, estimation of the
conditional expectations from the data is very important.
These conditional expectations are computed by data
smoothing for which numerous techniques exist [3]. In
the following, applying ~M

�

1 and
~M
�

2 to the mixed signals x1

and x2 removes the effect of the nonlinear functions M1

and M2. To that end, we show that for F1 ¼ A11s1 þ A12s2
and F 2 ¼ A21s1 þ A22s2 functions ~M

�

1 and ~M
�

2 obtained
from the ACE procedure are the desired inverse functions
given that F1 and F2 are jointly normally distributed. In
other words, the following relationship holds:

h�1ðF 1Þ :¼ ~M
�

1ðM1ðF1ÞÞ / F 1,

h�2ðF 2Þ :¼ ~M
�

2ðM2ðF2ÞÞ / F 2. (71)

The above statement proceeds exactly along the idea from
[3,19,31–33]. Noticing that the correlation between two
signals does not change, if we scale one or both signals and
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following, it can be stated that

~M
�

1ðx1Þ / Ef ~M
�

2ðx2Þjx1g,

~M
�

2ðx2Þ / Ef ~M
�

1ðx1Þjx2g. (72)

Here the conditional expectation Ef ~M
�

2ðx2Þjx1g is a
function of x1 and the expectation is taken with respect
to x2, analogously with the second expression.

Since ~M
�

1ðx1Þ ¼ h�1ðF1Þ and ~M
�

2ðx2Þ ¼ h�2ðF2Þ, further-
more x1 ¼M1ðF1Þ and x2 ¼M2ðF2Þ we obtain

h�1ðF1Þ / Efh�2ðz2ÞjM1ðF1Þg,

h�2ðF2Þ / Efh�1ðz1ÞjM2ðF2Þg. (73)

Since M1 and M2 are invertible functions, they can be
omitted from the conditional expectation, leading to

h�1ðF1Þ / Efh�2ðF2ÞjF1g,

h�2ðF2Þ / Efh�1ðF1ÞjF2g. (74)

Assuming that the vector ðF 1;F2Þ
T is normally distributed

and the correlation coefficient corrðF1;F2Þ is non-zero, a
straightforward calculation shows

EfF 2jF1g / F1,

EfF 1jF2g / F2 (75)

meaning that F 1 and F2 satisfy (74), which then
immediately implies (73).

The above assumptions are usually fulfilled in nonlinear
mixtures since mixtures of independent signals have a
distribution that is closer to the Gaussian than the most
non-Gaussian ones and they are also more correlated than
the unmixed signals. This suggests that the ACE algorithm
may be able to equalise the nonlinearities, even if the
assumptions are not perfectly met, though there might be
difficulties in the presence of large variance noise or low
correlations.
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