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Post-Nonlinear Blind Extraction in the Presence of
Ill-Conditioned Mixing
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Abstract—An extension of blind source extraction (BSE) of one
or a group of sources to the case of ill—conditioned and post-non-
linear (PNL) mixing is introduced. This is achieved by a “mixed
objective” type of cost function which jointly maximizes the kur-
tosis of a recovered source and estimates a measure of nonlinearity
within the mixing system. This helps to circumvent problems with
existing BSE methods, which are limited to noiseless and linear
mixing models. Simulations illustrate the performance of the pro-
posed algorithm and its usefulness, especially in the presence of
very ill-conditioned mixing systems.

Index Terms—Blind source extraction, blind source separation,
deflation, ill-conditioned matrix, post-nonlinear (PNL) model.

NOMENCLATURE

Sign of the kurtosis.

Open subset of .

Small change applied to weight nonlinear
function.
Learning rate for continuous-time algorithm.

(Sigma) Standard deviation.

Set of variables.

Superscript denotes transpose operator.
Estimation operator.

Complex conjugate, transpose.

Small change applied to weight

Mixing matrix.

Nonlinear mapping.
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Expected value.
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Discrete-time or number of iterations applied.

Condition number.

Normalized kurtosis.

Kurtosis.

log Natural logarithm.

Moments.

Number of possible inputs.

Real dimensional parameter space.

First source signal.

Vector variable of source signals.

Sign function ( for and for ).

Hyperbolic tangent.

First signal mixture.

Post-nonlinear mixtures

First weight vector.

=[w_{ij}] — Extraction matrix.

Signal extracted from by .

I. INTRODUCTION

B LIND SIGNAL SEPARATION (BSS) [4], [20], [22] aims
at recovering unobservable signals (sources) from their

linear or nonlinear mixtures. This technique has recently at-
tracted much interest due to its potentially wide number of appli-
cations. Despite the present progress in the theory of BSS [17],
standard algorithms have been typically designed for noiseless
and linear mixtures, a rather simplistic case. To the end, much
effort has been dedicated to BSS for ill-conditioned and non-
linear mixing. In those cases we may as well opt to recover
only a small subset of “interesting” sources in an ill-conditioned
system, that is to perform blind source extraction (BSE).1 A
combination of BSE and deflation was originally proposed in
[21], and has been subsequently further extended [23], [24],
[27], [28], [31]–[33]. However, the main limitation of the ex-
isting BSE algorithms is that they have been specifically de-
signed for linear instantaneous mixtures, a condition which is
not realistic for most real world situations. To help mitigate
some of these limitations, we set out to extend existing BSE
techniques and derive criteria and algorithms for simultaneous
post-nonlinear [9] extraction of arbitrary groups of (where
denotes the total number of sources) signals of interest.

1As special case, the BSE problem ought to be treated different from BSS.
BSS is meant to perform signal separation simultaneously, whereas BSE ex-
tracts individual signals sequentially.
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There are a variety of BSE algorithms in the open literature,
including those based on high-order statistics (HOS) (such as
the kurtosis) and those based on second-order statistics (SOS)
[30], such as the structure using a linear predictor [19]. In the
latter case, it has been widely assumed that as long as the source
signals exhibit different temporal structures, the minimisation of
the mean squared prediction error will lead to successful linear
extraction. However, BSE conducted this way may exhibit a rel-
atively low success rate.

The need for the inverse modelling of an ill-conditioned and
post-nonlinear system [9], [14], [29] arises in many real world
situations, yet this case is rarely addressed when developing
BSE algorithms. It is however clear that (1) sensors normally
posses nonlinear transfer characteristics; (2) the effects of reflec-
tions and interfering signals may introduce an ill-conditioned
mathematical model of the mixing system.

To help circumvent the problems associated with the assump-
tion of linear mixing, an extension in the form of post-non-
linear mixing system is proven to be considerably more appli-
cable, as it allows for nonlinear mixing features to be included
within the system model. This approach has already attracted
considerable interest [9], [14], [29]. Namely, in the post-non-
linear mixing model, the linear ICA theory2 and the commonly
exploited equivariance property might not be powerful enough
to model the underlying nonlinear mapping, and BSS algorithms
for the linear mixing model will generally fail. We therefore
need to resort to nonlinear models, and make use of their more
general approximation capabilities [8], [9]. One such set of algo-
rithms for blind separating post-nonlinear mixtures using para-
metric nonlinear functions was proposed by Lee [26]. It was
assumed that the mixing is performed in two stages: a linear
mixing process followed by a nonlinear transfer function. The
focus was on a parametric sigmoidal nonlinearity and on high-
order polynomials. It was further shown in [6], that for general
nonlinear ICA, there always exist an infinite number of solutions
if the space of the nonlinear mixing functions is unlimited, and
hence the independent components extracted from the observa-
tions are not necessarily the true source signals. Furthermore, in
general, nonlinear ICA suffers from high computational com-
plexity. Solving the nonlinear BSS problem based only on the
independence assumption is possible only in some special cases,
for example, when the mixtures are post-nonlinear (PNL), and
using some weak assumptions [9].

To that cause, in this paper, we consider the BSE problem in
the presence of i) PNL mixtures and ii) ill-conditioned mixing.
Notice that in this case BSE should be treated differently from
BSS.

II. POST-NONLINEAR MIXTURES

Consider unknown zero-mean sources
at a discrete time instant . Sources

are observed through a nonlinear vector mapping

2As a generative model, ICA aims to find the independent components from
the mixture of statistically independent sources by optimising different criteria,
for review, see [3], [5], [7], [18].

Fig. 1. Block diagram of the ill-conditioned post-nonlinear mixing model.

Fig. 2. General structure of the blind source extraction (BSE).

and (possibly ill-conditioned)3 mixing matrix , to give
measurements . This nonlinear mixing problem (from
the unknown sources to the observation ) can be
mathematically described as a post-nonlinear system. We can
therefore assume the signals are nonlinear memoryless
mixtures of unknown statistically independent sources ,
and that the observation process can be expressed as (Fig. 1)

(1)

where is an unknown mixing matrix which is as-
sumed to be nonsingular.

A. Blind Source Extraction Procedure

Fig. 2 shows a general structure of the BSE process which ex-
tracts one single source at a time, where there are two principal
stages in this process: extraction and deflation [21]. The mix-
tures first undergo the extraction stage to have one source re-
covered; after deflation, the contribution of the extracted source
is removed from the mixtures. These new “deflated” mixtures
contain linear combinations of the remaining sources; the next
extraction process then recovers the second source; this process
repeats until the last source of interest is recovered.

Our goal is to extract the sources of interest without any
prior knowledge of their distributions and the (possibly ill-con-
ditioned and nonlinear) mixing mechanism. To that cause, we
need to derive an extraction structure for which the learning
rule involves both the estimation of the single processing unit,

and a procedure to estimate the nonlinear effects

3One example of an ill-conditioned matrix can be found in [1]. This matrix
can be generated as follows:� � ��� �� ; where ���� �� � �����	
���;
���� �� � ����� ��; � � 
�
���; ���� �� � 
����	
���; ���� �� � ���� ��.
In Matlab, this can be coded as� � 	������, ��� � �����
�����, �	
�� �
� � �� � ����, � � ������.
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of ill-conditioned mixing within. This way, the extraction oper-
ation for a single signal, , can be expressed as

(2)

where denotes the single extracted output signal and
for the first processing mixtures. The denotes

a global demixing vector from the sources to the outputs, where
is a nonlinear function explained later.

III. PROPOSED EXTRACTION ALGORITHM

For the extraction of ill-conditioned post-nonlinear mixtures,
analogous to “mixed norm” approaches to adaptive filtering
[16], we propose the following “mixed contrast function”
criterion based on [10], [22]

(3)

where , , , are true
probability density functions of the source signals [25], cor-
responds to the first term in the cost function (3) (kurtosis) and

to the second term (nonlinearity). The left-hand side part of
(3) performs standard BSE, whereas the right hand part of (3)
estimates the nonlinearity within the mixing process.

A. Nonlinearity: The Activation Function

Notice that criterion (3) represents a joint constrained opti-
misation problem. In order to derive a learning algorithm corre-
sponding to (3), we shall consider separately the minimisation
of each part of cost function (3). From (3), to extract only signal

, we have

(4)

where is a smooth nonlinearity and

(5)

It is important to note that (3) holds only if the functions
are invertible, a restriction that must be taken into account in the
development of learning algorithms.

Hence, on the basis of the standard gradient descent, we ob-
tain an approximate learning rule, given by

(6)

where , , denotes the expectation
operator and the learning rate.

In a special case, for symmetric pdf distributions of sources
and odd activation functions and

(7)

Therefore, we can obtain the median learning rule

(8)

where

(9)

Results in other areas show that such a median learning rule
with the activation function is robust to additive noise and
nonlinearities [12].

B. Normalized Kurtosis-Based Cost Function

A classical measure of nonGaussianity is the kurtosis, which
for zero-mean random variable is defined as in [5]. We
can represent the term in (3) as4

(10)
The normalized kurtosis, [19] is then obtained when the
kurtosis is divided by the square of the variance

, to give

(11)

As a cost function for kurtosis based BSE, we may employ

(12)
where the parameter determines the sign of the kurtosis of the
signal, within

for source signal with negative osis,
for source signal with positive osis.

(13)

Applying standard gradient descent to minimize the cost
function, we obtain

(14)

4For a zero mean variable � , the first four univariate cumulants are thus de-
fined as:

���� �� � � ����� � 	 ��� � 	 
� ����
��

���� �� � � ����� � � � 	 ����� � 	 ��� �� ������
����

���� �� � � ����� � � � � � 	 ��� �� �����
�����

���� �� � � ����� � � � � � � � 	 ��� � � ���� � �

�����������
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where . The term
is always positive, and can be absorbed

by the learning rate .
The moments , for , can

be estimated online as

(15)

Applying subsequently a stochastic approximation, we obtain
an online learning rule

(16)

where is a learning rate and

(17)

is the nonlinearity. Since the positive term
can be absorbed within the

learning rate, we can also use the following approximation of
the nonlinearity

(18)

or

(19)

For spiky signals with positive kurtosis (Super-Gaussian sig-
nals), the nonlinearity closely approximates a sigmoidal func-
tion.

As a special case, applying a simple Euler approximation to
(17), update yields the discrete-time learning rule

(20)

where is a vector of sensor signals and the nonlin-
earity.

C. The Proposed Blind Extraction Learning Rule

Finally, combining (5) and (20), our proposed algorithm for
BSS of post-nonlinear mixtures becomes

(21)

where the extracted outputs, ). This con-
cludes the derivation of the adaptive blind source extraction al-
gorithm based on cost function (3).

D. Deflation Learning Rule

After the successful extraction of the first source signal
, we can apply the deflation procedure which

removes previously extracted signals from the mixtures. This

procedure may be recursively applied to extract all source sig-
nals sequentially. This means, that for deflation we require
and online linear transformation given by

(22)

where and

(23)
where is an estimation of the column of the identified
mixing matrix , .

The proposed method is outlined below:

Procedure: Blind extraction and deflation of post-nonlinear
mixtures

For post-nonlinearly mixed signals, , the
single extracted signal is defined as ,
where is randomly initialized:

For signal

Follow the criterion

For : number of data points

1 Apply the algorithm

2 Perform Adaptive Extraction

End extraction for signal

Repeat for signals, until all signals extracted

3 Deflation method

where

End extraction for signals

IV. EXPERIMENTAL RESULTS

In the experiments, simulations were based on three source
signals: with binary distribution, with sine waveform and

with Gaussian distribution (Fig. 3). Monte Carlo simulations
with 5000 iterations of independent trials were performed. The
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Fig. 3. Original unknown sources. � with binary distribution, � with sine
waveform and � with Gaussian distribution.

Fig. 4. Three ill-conditioned post-nonlinear mixtures.

initial values of the weights and the demixing matrix
were randomly generated for each run. The simulations were
conducted without prewhitening.

A 3 3 ill-conditioned mixing matrix5 [1] was randomly
generated (based on Fig. 1), the ill-conditioned mixing matrix

is given by

(24)

5The condition number of a matrix� is the quantity ���� � ����� �.
It is a measure of the sensitivity of the solution of�� � � to perturbations of
� or �. If the condition number of� is ‘large’,� is said to be ill-conditioned.
If the condition number is unity, � is said to be perfectly conditioned [15]. If
� is normal then ���� � � ����� ���, where � ���, � ���
are respectively maximal and minimal (by moduli) eigenvalues of �. If � � �
is � norm then ���� � � ����� ���, where � ���, � ��� are
respectively the maximal and minimal singular values of � [11].

Fig. 5. Extracted signals with binary distribution (top), sine waveform (middle)
and Gaussian distribution (bottom) using linear predictor [19].

Fig. 6. Extracted signals with binary distribution (top), sine waveform
(middle), and Gaussian distribution (bottom) using the proposed nonlinear
predictor.

where the condition number,
.

If, as a nonlinear function from Section II, we use the sig-
moid saturation type function , our ill-conditioned post-
nonlinear mixtures (Fig. 4) can be modelled as

(25)

To measure the quantitative performance of the proposed algo-
rithm, we employ the performance index (PI) defined by [2]

(26)

where . The smaller the
value of PI, the better the quality of extraction.

The measure of qualitative performance were scatter plots,
presented in Fig. 7, which show that the proposed method has
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Fig. 7. Scatter plot comparing the independence of the output signals; Column 1: signal 1 and 2; Column 2: signal 2 and 3; Column 3: signal 1 and 3.

Fig. 8. Learning curve of the extraction algorithms with condition number�

�������� (a) normalized kurtosis [19]. (b) The proposed adaptive
method.

the potential to extract the ill-conditioned post-nonlinearly
mixtures (Fig. 6), as indicated by the output scatter plots
being closely matched with the original sources (Fig. 7). The
proposed adaptive method also exhibits faster convergence and
better performance index than the recently introduced state
of the art method [19] in Fig. 8 and Fig. 9 with condition
number 213.5601 and 450.4487, respectively. Fig. 10 shown
the performance index for three different nonlinearities after
first and second extraction in condition number 473.8132.
The monomial nonlinearity and (as
addressed in [13], the scaling condition) shown performance
index less than 17 dB after the first extraction.

Fig. 9. Learning curve of the extraction algorithms with condition

number� ��	�����. (a) normalized kurtosis [19]. (b) The
proposed adaptive method.

Table I shows the Performance Index of the extracted
signals with different condition numbers (1.9247, 38.7087,
190.9155, 213.5601, 363.6029, 349.6226, and 450.4487) using
the normalized kurtosis method [19] and the proposed adaptive
method. We observed that the proposed adaptive method out-
performed the conventional normalized kurtosis method [19],
and showed a natural trend, whether the normalized kurtosis
method showed very inconsistent performance.

V. CONCLUSION

We have addressed a special class of BSS algorithms, namely
ill-conditioned post-nonlinear BSE, by which we can recover a
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Fig. 10. A learning curve of the extraction algorithms with 3 different nonlin-
earities as show in [13].

TABLE I
PERFORMANCE INDEX OF THE EXTRACTED SIGNALS WITH DIFFERENT

CONDITION NUMBERS USING THE NORMALIZED KURTOSIS METHOD [19] AND

THE PROPOSED ADAPTIVE METHOD

single source or a subset of sources at a time, instead of recov-
ering all of the sources simultaneously. The proposed adaptive
algorithm does not require any prepocessing (prewhitening),
and due to the design of the contrast function, it is particularly
suitable for sequential blind source extraction with ill-condi-
tioned post-nonlinear mixing matrices. Simulation results have
confirmed the validity of the theoretical results and demon-
strated the performance of the algorithm.

APPENDIX

By changing , the nonlinearity can be varied between a
linear device and a hard limiter. The effects of can be
studied by scaling by a constant.

A convenient nonlinearity is a hyperbolic tangent function,
given by

(27)

the positive scalar is used to modify the shape (slope) of .
In such a case

(28)

For sub-Gaussian source signals, the cubic nonlinear function
has been a favorite choice. For mixtures of sub-

and super-Gaussian source signals, according to the estimated

kurtosis of the extracted signals, the nonlinear function can be
selected from [10].
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