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ABSTRACT
A new class of complex domain blind source extraction (BSE)

algorithms suitable for the extraction of both circular and noncircular
complex signals is proposed. This is achieved through sequential
extraction based on the degree of kurtosis and in the presence
of noncircular measurement noise. The existence and uniqueness
analysis of the solution is followed by a study of fast converging
variants of the algorithm. The performance is first assessed through
simulations on well understood benchmark signals, followed by a
case study on real-time artifact removal from EEG signals, verified
using both qualitative and quantitative metrics. The results illustrate
the power of the proposed approach in real-time blind extraction of
general complex-valued sources.

Keywords: Blind source extraction, complex noncircularity, noisy
mixtures, noncircular noise, complex kurtosis, EEG artifact removal

1 INTRODUCTION
The aim of blind source separation (BSS) is to reconstruct the
original sources by identifying the inverse of the mixing system,
without having explicit knowledge of the mixing parameters or
sources (Cichocki and Amari, 2002), and has found application in
diverse areas including biomedical engineering, communications,
sonar and radar (Cichocki and Amari, 2002; Anemüller et al.,
2003). Standard BSS methods use cost functions based on second-
and higher-order statistics, together with the maximisation of
likelihood and entropy (Amari et al., 1997; Bell and Sejnowski,
1995; Hyv̈arinen et al., 2001). In addition, to facilitate the
modelling of real-world systems, noisy environments and post-
nonlinear mixtures have been recently studied in real domain
algorithms (Leong and Mandic, 2008; Särel̈a and Valpola, 2005).
Within the BSS methodology, the latent sources are separated
in a random order through either a deflationary or symmetric
orthogonalisation procedure, that is, one by one or simultaneously.
A class of BSS algorithms, termed blind source extraction (BSE),
aims to retrieve the sources one by one, based on a fundamental
signal property (nonlinearity, sparsity), effectively inducing an order
into the separation process. The benefit of BSE becomes apparent
in large-scale problems where only a small subset of the sources

are of interest, making it possible to extract such sources at a
dramatically reduced computational complexity and in real-time.
This also relaxes the requirement for pre- or post-processing of the
mixture or separated sources, that may be necessary if parallel BSS
techniques were employed.
Real domain algorithms performing BSE based on the temporal
structure (predictability) of signals are well established (Barros and
Cichocki, 2001; Cichocki and Amari, 2002; Mandic and Cichocki,
2003) and modifications to the cost function were proposed to cater
for noisy mixtures (Liu et al., 2006b,a). The algorithm in (Cichocki
et al., 1997) demonstrated the feasibility of extraction of real-
valued sources based on the degree of kurtosis, while (Liu and
Mandic, 2006) proposed a modified cost function for the extraction
in noisy environments. An overview and discussion on this class of
algorithms is also provided in (Leong et al., 2008).
Recent developments in complex statistics (Picinbono, 1994; Neeser
and Massey, 1993) have made it possible to introduce a new class of
complex domain signal processing algorithms, capable of catering
for the generality of complex signals (Mandic and Goh, 2009). This
is achieved through the consideration of the circular symmetry of
the probability distributions, whereby rotational invariance of the
distribution indicates a complexcircular random variable. However,
most complex-valued signals encountered in signal processing
application arenoncircular.
The so called augmented complex statistics (Schreier and Scharf,
2003), enables us to utilise the complete second-order information
available in a complex-valued random variable. This way, the
second-order statistics are not only based the standard covariance
matrix E{xx

H}, but also the pseudo-covarianceE{xx
T }. A

complex-valued random vector with a vanishing pseudo-covariance
is termedproper or second-order circular, and is otherwise called
improper (Picinbono and Bondon, 1997; Schreier and Scharf,
2003). Likewise, widely linear models (Picinbono and Chevalier,
1995) allow for the design of linear mean square error estimation
algorithms capable of processing both complex proper and improper
signals.
In complex-valued blind source separation research, recent
complex-valued algorithms typically use augmented statistics, so
as to cater for the generality of complex signals (Erdogan, 2009;
Douglas, 2005), with applications in fMRI modelling (Novey and
Adalı, 2008) and communications (Ollila and Koivunen, 2009b).
In comparison to standard complex BSS methodology (Anemüller
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et al., 2003; Bingham and Hyvärinen, 2000), which assumes
complex circular sources, these algorithms have been shown to
exhibit enhanced performance for noncircular sources and similar
performance for circular sources. In the same spirit, the feasibility
of blind source extraction of complex sources based on the temporal
structure of the latent sources was studied in (Javidi et al., 2009),
exploring a widely linear predictor to extract both proper and
improper sources. A class of linear predictability based algorithms
for blind extraction from noisy complex-valued mixtures has also
been recently proposed (Javidi et al., 2010).
In this paper, we introduce an online blind source extraction
algorithm suitable for the generality of complex-valued signals,
both circular and noncircular. This is achieved based on higher
order statistics of latent sources, and using the deflation approach.
Further, the cost function based on an extension of the methodology
presented in (Liu and Mandic, 2006) is designed so as to be robust
to both circular and noncircular second order additive noise. The
analysis is supported by benchmark simulations in both noise-free
and noisy scenarios, followed by studies of conditioning of EEG
signals for the automatic removal of biological and power line
artifacts.
The paper is organised as follows. Section 2 provides an overview
of complex statistics, complex-valued noise andCR calculus. The
cost function for both noise-free and noisy cases is then presented,
together with the derivation and convergence analysis of a real-
time adaptive BSE algorithm. In Section 3, after analysing the
performance in blind extraction of synthetic sources, EEG signal
conditioning for brain computer interfacing is studied. Conclusions
are presented in Section 5.

2 MODELS AND METHODS

2.1 Complex statistics: second-order circularity
Second-order circularity is a property of probability density
functions, whereby the distribution of a complex random variable
z and its rotationeϕ

z are equal for any angleϕ (Picinbono, 1994).
Within the domain of second-order statistics, to account for complex
random variables with noncircular probability density functions
(pdf), we need to use both the covarianceCzz and pseudo-covariance
Pzz matrices (Picinbono and Bondon, 1997)

Czz = E{zzH}, Pzz = E{zzT }. (1)

For second-order circular (proper) random variables, the pseudo-
covariance matrix vanishes, that isPzz = 0, whereas for
second-order noncircular (improper) random variables the pseudo-
covariance matrix is non-zero,Pzz 6= 0, and is generally complex-
valued. The pseudo-covariance matrixPzz can be written in terms
of the covariances of its real and imaginary components

Pzz = E{zrz
T
r } − E{ziz

T
i }+ 

(
E{ziz

T
r }+ E{zrz

T
i }
)

illustrating that for proper signals, the vanishing pseudo-covariance
is due to equal powers in the real and imaginary channels, while the
cross-covariance is skew-symmetric (Neeser and Massey, 1993).
For an uncorrelated random vector, both the covariance and pseudo-
covariance matrices are diagonal (Eriksson and Koivunen, 2006).
Examples of complex circular signals in signal processing research
are QPSK and BPSK signals in communications, while most

complex signals made complex by convenience of representation are
noncircular. Examples include EEG signals, and complex-valued
wind models (Mandic and Goh, 2009).
Consider a second-order stationary ‘augmented’ complex random
signal za(k) = [zT (k), z

H(k)]T and its augmented covariance
matrix,

Czaza(δ) = E

[
z(k)
z
∗(k)

][

z
H(k − δ), z

T (k − δ)

]

=

[
Czz(δ) Pzz(δ)
P∗

zz(δ) C∗zz(δ)

]

. (2)

This matrix provides a complete description of the second-order
statistics ofz(k). The transformation of this matrix to the frequency
domain gives the augmented spectral matrix (Picinbono and
Bondon, 1997; Schreier and Scharf, 2003)

Sza(ω) =

[
Sz(ω) S̆z(ω)

S̆∗
z (−ω) Sz(−ω)

]

, (3)

with the Fourier transforms of the covariance and pseudo-covariance
matrices defined respectively asSz(ω) andS̆z(ω), that is

Sz(ω) = F
(
Czz(δ)

)
= F

(
E{z(k)zH(k − δ)}

)

S̆z(ω) = F
(
Pzz(δ)

)
= F

(
E{z(k)zT (k − δ)}

)
(4)

where the symbolδ denotes a discrete time lag andF(·) the Fourier
transform operator.
While the power spectrum provides information on the distribution
of signal power over a frequency range, the magnitude of
the pseudo-spectrum characterises the second-order circularity of
the random variable in the frequency domain. The augmented
spectral matrix in (3) is positive semidefinite which results in the
condition (Picinbono and Bondon, 1997)

|S̆z(ω)|2 ≤ Sz(ω) · Sz(−ω). (5)

2.2 Complex statistics: Kurtosis
Kurtosis has been used routinely to design contrast functions in
BSS (Hyv̈arinen and Oja, 1997) and BSE algorithms (Cichocki
et al., 1997). It is common to use the normalised kurtosisKR(·)
instead of the standard kurtosiskurtR(·), as it allows for the
comparison of the degree of non-Gaussianity of random variables,
irrespective of the range of amplitudes. In (Ollila and Koivunen,
2009a), the relevance of this concept in the complex domain,
together with as the relation between the kurtosis of the real and
imaginary components of a complex random variable,kurtR(zr)
and kurtR(zi) and the kurtosis of the complex random variable
kurtc(z) has been discussed.
The normalised kurtosis of a complex random variable (real-valued)
can be defined as

Kc(z) =
kurtc(z)

(E{|z|2})2

=
E{|z|4}

(E{|z|2})2
−
|E{z2}|2

(E{|z|2})2
− 2 (6)

with

kurtc(z) = E{|z|4} − |E{z2}|2 − 2(E{|z|2})2. (7)

The first term in (6) is the normalised fourth order moment, the
second term is the square of the circularity coefficient (Ollila, 2008),
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(a) Scatter plots of complex white noise realisations.Top row:
circular Gaussian noise (left) and noncircular Gaussian noise (r =
0.81) (right). Bottom row: circular Laplacian noise (left) and
noncircular Laplacian noise (r = 0.81) (right). The circularity
measurer is defined in (8). The kurtosis valuesKc are given for
each case.
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(b) Power spectra (thick gray line) and pseudo-power spectra (thin
gray line) of complex Gaussian noises with varying degrees of
noncircularityr = {0, 0.8, 1}

Fig. 1. Illustration of white circular and doubly white complex-valued
noises.

whereaskurtc(z) in (7) is the real-valued kurtosis of the complex
random variablez. Similar to the kurtosis of a real-valued Gaussian
random variable, the value ofKc is zero for both circular and
noncircular complex Gaussian random variables. Furthermore, for
continuity, this measure makes kurtosis values of a sub-Gaussian
complex random variable negative and that of a super-Gaussian
complex random variable positive, irrespective of the degree of
circularity/noncircularity.

2.3 Complex-valued Noise
The degree of noncircularity can be quantified by the circularity
measurer, defined in (Ollila, 2008) as the magnitude of the

circularity quotientρ(z) = reθ , τ2
z /σ2

z , where

r = |ρ(z)| =
|τ2

z |

σ2
z

, r ∈ [0, 1] (8)

measures the degree of noncircularity in the complex signal, with
τ2

z the pseudo-variance of the signal and the circularity angleθ =
arg(ρ(z)) indicating orientation of the distribution. Note that for
a purely circular signal,r = 0, with θ not providing additional
information about the distribution.
This circularity measure can also be graphically interpreted using
an ellipse (centred in the complex plane) of eccentricityǫ and
orientation α, such thatr = ǫ2 and θ = 2α (Ollila, 2008,
Theorem1). Forǫ = 0, the shape becomes a circle, which also
indicates a circular signal withr = 0, while for the extreme case
of ǫ = 1, corresponding to a highly noncircular signal withr = 1,
the ellipse becomes elongated with a maximal major axis and minor
axis of length zero. Note that the pseudo-variance of a general
complex Gaussian distribution is then related to the elliptic shape
by τ2 = ǫ2e2θ (Ollila and Koivunen, 2009b).
It is important to notice that the treatment of a noise vectorv(k) in C

is different to that in the real domain (Picinbono and Bondon, 1997).
While in R only the varianceσ2

v of the noise signal is of concern, in
C it is necessary to also consider the pseudo-varianceτ2

v , in order to
completely model the noise. We therefore differentiate between the
following cases of white noise.

1. Circular white noise, is considered white in terms of its
diagonal covariance matrix, whereas the pseudo-covariance
matrix vanishes, that is

Cvv(δ) = σ2
vI, Pvv(δ) = 0, δ = 0

whereI denotes the identity matrix.
In the frequency domain, the covariance spectrumSv(ω) (also
power spectrum, or PSD) of the circular white noise is flat,
while the pseudo-covariance spectrum̆Sv(ω) (or pPSD) is
zero.

2. Noncircular doubly white noise, is assumed white for both the
real and imaginary components, however, the corresponding
distributions and power levels may be different, such that

Cvv(δ) = σ2
vI, Pvv(δ) = τ2

v I, δ = 0, σ2
v 6= τ2

v .

In this case, the power spectrum is flat across all frequencies,
while the pseudo-spectrum is non-zero. As the noise becomes
more noncircular (r → 1), the pseudo-spectrum approaches
its upper-bound defined in (5), where for highly noncircular
noise (r ≈ 1), the magnitudes of the pPSD and PSD are
similar. For a scalar complex white noise signalv(k), the
relations between the correlation and pseudo-correlation and
the respective spectra are given by

C(δ) = E{v(k)v∗(k − δ)} = δ(0)σ2
v

F
−→ S(ω) = |σ2

v|

P(δ) = E{v(k)v(k − δ)} = δ(0)τ2
v

F
−→ S̆(ω) = |τ2

v |.

Examples of circular white Gaussian and Laplacian noise with unit
variance are illustrated in the left hand column of Fig. 1(a), whereas
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the right hand column demonstrates two examples of noncircular
white noise, with the top-right plot showing a noncircular Gaussian
noise signal with circularity measurer = 0.81 with unit variance
and pseudo-varianceτ2

v = −0.38 + 0.71, and the bottom-right
plot illustrating the scatter plot of noncircular Laplacian noise with
circularity measurer = 0.81 with unit variance and pseudo-
variance of0.45− 0.66. Also note that in Fig. 1(a) the value of the
kurtosis is approximately zero for both the circular and noncircular
Gaussian noise signals, whereas the kurtosis values for the circular
and noncircular super-Gaussian noise signals follow the real-valued
convention.
Fig. 1(b) depicts the PSD and pPSD of circular (r = 0) white
and noncircular doubly white Gaussian noise for the respective
circularity measuresr = {0.8, 1}. Observe that the pseudo-
spectrum is zero for the circular noise, while it has a magnitude
of 0.64 for the noise withr = 0.8, and reaches it upper-bound
of 1 in the third realisation where the noise is highly noncircular
(r = 1). For the Gaussian noise, the spectrumS(ω) = 1 and the
pseudo-spectrum̆S(ω) = |τ2

v | = |ǫ2e2θ| = |ǫ2| = r, across all
frequencies, thus indicating that by increasing the eccentricity of
the ellipse (degree of noncircularity), the magnitude of the pPSD
approaches its maximum value of 1.

2.4 CR calculus: Brief overview
TheCR calculus1 (Kreutz-Delgado, 2006) allows for the analysis of
functions that do not normally satisfy the stringent Cauchy-Riemann
conditions of analyticity, such as real-valued cost functions of
complex variables. Consider a typical cost functionF (z) : C

N 7→
R, a real function of complex variables, which does not satisfy
the Cauchy-Riemann properties, required for gradient calculations.
However, using theCR calculus framework, it is possible to
calculate the gradients of such functions directly inC, and without
the need to obtain derivatives of the real and imaginary components
separately.
In the framework ofCR calculus,F is taken as a function of the
complex input vectorz and its conjugatez∗, collectively termed the
conjugate coordinates, that is

F (z, z∗) : C
N × C

N 7→ R. (9)

Note that althoughz andz
∗ are not statistically independent, this

does not affect the calculation of derivatives, defined as (Kreutz-
Delgado, 2006)

R–derivative:
∂F

∂z

∣
∣
∣
∣
z∗=const

=
1

2

(
∂F

∂zr

− 
∂F

∂zi

)

R
∗–derivative:

∂F

∂z∗

∣
∣
∣
∣
z =const

=
1

2

(
∂F

∂zr

+ 
∂F

∂zi

)

. (10)

Also note that the direction of steepest descent is given by the
derivative with respect toz∗, theR

∗–derivative. This can be shown
by using the first order Taylor Series Expansion (TSE) ofF (van den
Bos, 1994); the magnitude of a small change in the functionF is

1 Also known as Wirtinger calculus.
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Fig. 2. The noisy mixture model, and BSE architecture.

given by

|δF | = 2
∣
∣
∣ℜ
{( ∂F

∂z∗

)H

δz
}∣
∣
∣

and the Cauchy-Schwarz Inequality shows that

|δF | ≤ 2
∥
∥
∥

∂F

∂z∗

∥
∥
∥ · ‖δz‖

and so|δF | is maximised whenarccos
〈 ∂F

∂z
∗

,δz〉

‖ ∂F

∂z
∗
‖ ‖δz‖

= 0, or in other

words the maximum change of the gradient is in the direction of the
conjugate of the weight vector (Brandwood, 1983; Kreutz-Delgado,
2006). The operatorsℜ{·} andℑ{·}, where used, denote the real
and imaginary part of a complex quantity, while〈·, ·〉 is the inner
product operator.
Furthermore, in calculating derivatives of analytic functions, as
defined, theR∗–derivative vanishes and the derivative is equivalent
to the Cauchy-Riemann derivative, demonstrating the flexibility of
the framework. This can be illustrated through a simple example.
Consider the non-analytic squared error cost functionG = ‖z‖22 =
zz

∗. Then, ∂G
∂z

= z
∗ and ∂G

∂z∗
= z. In contrast, for the analytic

functionH(z) = z
2, ∂H

∂z
= 2z and ∂H

∂z∗
= 0. For further insight

into CR calculus, we refer to the material in (Kreutz-Delgado, 2006;
Mandic and Goh, 2009).

2.5 BSE of Complex Noisy Mixtures
The diagram in Fig. 2 shows the complex BSE architecture, where
at time instantk, the observed signalx(k) ∈ C

N is given by a linear
mixture

x(k) = As(k) + v(k) (11)

wheres(k) ∈ C
Ns is the vector of latent sources,A ∈ CN×Ns

is the mixing matrix2, andv(k) ∈ C
N is the vector of additive

doubly white Gaussian noise (noncircular). The model (11) has been
widely used in EEG signal processing, for instance see (Cichocki
and Amari, 2002; Sanei and Chambers, 2007). The sources are
assumed to be with zero mean and distinct kurtosis values, while no
assumptions are made about the circularity. The number of mixtures
is assumed to be equal to that of the sources, however, in the case
of noisy mixtures, an overdetermined mixture is necessary so as to
estimate the second-order statistics of noise parameters.
The adaptive gradient descent algorithm at the extraction stage
adapts the parameters of the demixing vectorw such that the source

2 If a mixing process is considered for the noise given byB, the vectorwH

in the subsequent equations can be replaced byυ
H = w

H
B. This does

not affect our algorithm, for the normalised kurtosis of Gaussian noise is
unconditionally zero.
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signal with the largest (smallest) kurtosis,

y(k) = w
H
x(k)

= w
H
A

︸ ︷︷ ︸

,uH

s(k) + w
H
v(k) (12)

is first extracted. The variance ofy(k) can be written in an expanded
form as

E{|y(k)|2} = u
HCss(0)u + w

HCvv(0)w

= u
H
u + σ2

vw
H
w (13)

where the difference inCss(0) are absorbed into the mixing matrix
A and the noise covariance matrixCvv(0) = σ2

vI (due to the
whiteness assumption).
In the same spirit, the normalised kurtosis of the extracted signal
y(k) can be written as

Kc(y) =

Ns∑

n=1

Kc(u
∗
nsn) +

N∑

n=1

Kc(w
∗
nvn)

︸ ︷︷ ︸

=0

=

Ns∑

n=1

|un|
4E{|sn|

4} − 2|un|
4(E{|sn|

2})2 − |un|
4|E{s2

n}|
2

=

Ns∑

n=1

|un|
4Kc(sn) (14)

thus having zero value for Gaussian noise. In a vectorised form, this
is equivalent to

Kc(y) = û
H
Kc(s)û (15)

where

û = [u2
1, . . . , u

2
Ns

]

Kc(s) = diag
(
Kc(s1), . . . , Kc(sNs

)
)
. (16)

The next stage within the proposed BSE scheme is the deflation
process which aims to remove the extracted sourcey(k) from the
mixturex(k), such that

x(k)← x(k)− w̆y(k)

where the deflation weight coefficient vectorw̆ is updated using
an adaptive gradient descent algorithm detailed later in this section.
In principle, for y(k) being an estimate of one of the original
sources, saysn(k), the ideal deflation weight vector should be equal
to the nth column of the mixing matrixA, such that the effect
of this particular source is removed from the mixture. Finally, a
threshold can be set on the deflation process, so that extraction
is continued until some or all the required sources have been
successfully extracted (Thawonmas et al., 1998).

2.6 Cost function
The cost function we employed for the extraction of general
complex sources from noisy mixtures is given by

J (w) = −β
kurtc

(
y(k)

)

(
E{|y(k)|2} −wHCvv(0)w

)2 . (17)

Note thatJ ∈ R, represents a modified version of the normalised
kurtosis defined in (6) and is a generalisation of the methodology

presented in (Liu and Mandic, 2006). As illustrated in (13), the
variance ofy(k) contains the noise varianceσ2

v, thus allowing us
to remove the effect of noise from (17) such that only contributions
from the latent sources are accounted for. Also note that while the
noise varianceσ2

v is present in the cost function (17), its pseudo-
covarianceτ2

v is not present, suggesting that the complex domain
BSE based on kurtosis is unaffected by the pseudo-spectral effects
of the additive noise; this is further elaborated in Section 3.
In the cost function (17), the parameterβ dictates the order of
extraction where for

1. β = 1, the order of extraction is from the high to low degree of
non-Gaussianity (super-Gaussian sources are extracted first),

2. β = −1, the order of extraction is from low to high degree of
non-Gaussianity (sub-Gaussian sources are extracted first).

The optimisation ofJ with respect tow can thus be stated as

wopt = arg max
‖w‖2

2
=1
J (w) (18)

where the norm of the demixing vector is constrained to unity to
avoid very small coefficient values.
Rewriting and simplifying (17) in terms of (13) and (16) results in

J (w) = −
û

H |Kc(s)|û

(uHu)2
= −ú

H |Kc(s)|ú (19)

where

ú
H

,
û

H

uHu
=

û
H

‖u‖22
. (20)

Notice that‖ú‖22 =
‖û‖2

2

(‖u‖2

2
)2
≤ 1 and is equal to unity only if one

of the components in the vectoru is non-zero. Given the constraint
on ‖ú‖, the solution to the optimisation of (19) is a vectorúopt

of unit norm such thatuopt has a single non-zero component at a
position corresponding to the diagonal element inKc(s) having the
largest magnitude. For this to be valid, a demixing vector assumes
the formwopt = A

H#
uopt, where the symbol(·)# denotes the

matrix pseudo-inverse operator (Liu and Mandic, 2006).

2.7 Adaptive algorithm for extraction
Optimisation of (17) is performed using an adaptive gradient descent
algorithm which updates the values ofw so as to maximise the
modified normalised kurtosis and thus minimise the cost function
J (w). Based on Section 2.4, the gradient3 is thus expressed as

∇w∗J =
β x(k)

(m2(y)− σ2
v)3

[

y∗(k)
(
m4(y)− 2m2

2(y)− |p2(y)|2
)

+
(
m2(y)− σ2

v

)(
−y(k)y∗2(k) + 2m2(y)y∗(k) + p∗

2(y)y(k)
)]

= φ
(
y(k)

)
x(k)

whereφ
(
y(k)

)
is used for simplification andmℓ(y) andpℓ(y) are

respectively theℓ-th moment and pseudo-moment at time instant

3 Since the normalised kurtosisJ is real valued, the conjugate gradient
∂J

∂w∗
corresponds to the maximum change of the gradient.
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k (the time index dropped), estimated using the moving average
estimators

mℓ

(
y(k)

)
= (1− α)mℓ

(
y(k − 1)

)
+ α|y(k)|ℓ, ℓ = {2, 4}

pℓ

(
y(k)

)
= (1− α)pℓ

(
y(k − 1)

)
+ α

(
y(k)

)ℓ
, ℓ = 2 (21)

whereα ∈ [0, 1] is the forgetting factor.
The kurtosis based BSE update algorithm (K-cBSE) for the
demixing vector is thus given by

w(k + 1) = w(k)− µφ
(
y(k)

)
x(k)

and its expanded version is given in (22) ,whereµ is the small
positive step-size. To preserve the unit norm property, the demixing
vector is normalised at each iteration, that is

w(k + 1)←
w(k + 1)

‖w(k + 1)‖2

Notice that in extracting circular sources, the momentpℓ vanishes,
further simplifying the algorithm. Moreover, as mentioned earlier,
the cost function and thus the gradient descent algorithm are not
dependent on the pseudo-variance of the noise,τ2

v . The estimation
of the noise variance can be performed using a subspace method, as
described in (Hayes, 1996). It is thus essential that the number of
observations is larger than the number of sources,N > Ns, so as to
allow for the estimation of the noise variance via eigenvalues of the
observation covariance matrixCxx, that is

Cxx = ACssA
H + Cvv = Υ + σ2

vI. (23)

The subspace method can be briefly summarised as follows. We can
assume Rank(Υ) = Ns if A is of full rank andCss is non-singular.
Then, the(N −Ns) eigenvalues ofΥ are zero and hence the(N −
Ns) eigenvalues ofCxx are equal toσ2

v.

2.8 Modifications to the update algorithm
In order to enhance the performance of the online gradient descent
algorithm, adaptive step-size update algorithms are considered.
We consider the complex-valued Farhang-Ang type variable step-
size (VSS) algorithm (Ang and Farhang-Boroujeny, 2001) and the
complex-valued generalised normalised gradient descent (GNGD)
type algorithm (Mandic, 2004).
At each iterationk, the VSS algorithm minimises the cost function
J in (17) with respect toµ(k − 1) to provide the update of the
step-size, given as

µ(k) = µ(k − 1)− η∇µJ
∣
∣
µ=µ(k−1)

∇µJ = ∇w∗J ·
∂w

∗(k)

∂µ(k − 1)

ψ(k) = γψ(k − 1)−∇w∗J
∣
∣
w∗=w∗(k−1)

(24)

whereψ(k) ,
∂w

∗(k)
∂µ(k−1)

≈ ∂w
∗(k)

∂µ(k)
andη andγ are step-sizes.

The GNGD-type algorithm is based on a normalised version of (22),

given by

w(k + 1) = w(k)−
µ

|φ
(
y(k)

)
|2 · ‖x(k)‖22 + ǫ(k)

φ
(
y(k)

)
x(k)

(25)

where ǫ(k) is an adaptive regularisation parameter. The gradient
adaptive regularisation parameter is then given by

ǫ(k + 1) = ǫ(k)− ρµ
ℜ{φ

(
y(k)

)
x

T (k)φ∗
(
y(k − 1)

)
x
∗(k − 1)}

[
|φ
(
y(k − 1)

)
· ‖x(k − 1)‖22 + ǫ(k − 1)

]2

(26)

whereρ is a step-size. The derivation of the algorithm is given in the
Appendix.

2.9 Adaptive algorithm for deflation
The deflation procedure insures that after each extraction stage, the
estimated source is removed from all the mixture vectors, so that the
next source with maximum (minimum) kurtosis can be extracted.
This can be achieved based on the cost function (Thawonmas et al.,
1998)

Jd(w̆) = ‖xn+1(k)‖2 = x
H
n+1(k)xn+1(k) (27)

which is minimised with respect to the deflation weight coefficient
w̆. We usexn(k) to denote the mixture at thenth extraction stage,
which is given by vectors

xn+1(k) = xn(k)− w̆(k)yn(k). (28)

Given an invertible mixing matrixA, the vectorw̆ is ideally equal
to a column ofA−1, which corresponds to thenth extracted source
yn(k). The gradient can thus be calculated as

∇w̆∗Jd =
∂Jd

∂x∗
n+1

·
∂x

∗
n+1

∂w̆∗
= −y∗

n(k)xn+1(k) (29)

and the online algorithm for BSE then becomes

w̆(k + 1) = w̆(k) + µdy∗
n(k)xn+1(k) (30)

with µd a step-size. The drawback of this method is that any errors
in the deflation process will propagate and affect the extraction and
deflation of subsequent stages. It is therefore important that the step-
size parameter is set appropriately for eachnth deflation stage to
ensure successful removal of the extracted sourceyn(k).
In the design of complex adaptive algorithms, it is common
to utilise a widely linear model to ensure that the algorithm is
capable of processing the generality of complex signals (Mandic
and Goh, 2009). In the case of the update for the deflation weight
coefficient (30), however, a linear model is considered as the
original BSS mixing model (11) is strictly linear and thus a widely
linear deflation model is not required. For more detail on BSE based
on widely linear predictability, see (Javidi et al., 2010).

w(k + 1) = w(k)−
µβ
[

y∗(k)
(
m4(y)− 2m2

2(y)− |p2(y)|2
)

+
(
m2(y)− σ2

v

)(
−y(k)y∗2(k) + 2m2(y)y∗(k) + p∗

2(y)y(k)
)]

(m2(y)− σ2
v)3

x(k)

(22)
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3 RESULTS AND DISCUSSIONS
We shall consider extraction of both synthetic and real-world
sources from noise-free and noisy mixtures, with various degrees of
complex noncircular noise levels. The performance for the synthetic
data were measured using the Performance Index (PI) (Cichocki and
Amari, 2002) given by

PI = 10 log10

(

1

N

( N∑

i=1

|bi|
2

max{|b1|2, . . . , |bN |2}
− 1
)
)

. (31)

whereu = A
H
w = [u1, . . . , uM ].

For each synthetic experiment, the results were produced through
averaging 100 independent trials. The mixing matrixA was
generated randomly as a full rank complex matrix. The values of
the extraction and deflation step-sizeµ were set empirically, and the
forgetting factorα in (21) was set as 0.975. The complex additive
Gaussian noise was both of circular white with circularity measure
r = 0 and noncircular doubly white withr = 0.93. The real-world
sources were the electroencephalogram data corrupted by power line
noise and electrooculogram artifacts.

3.1 Benchmark Simulation 1: Synthetic sources
In the first set of simulations, a noise-free mixture of 3 complex
sources with various degrees of circularity andN = 5000 samples
were generated and mixed using a3 × 3 mixing matrix. These
signals are illustrated in Fig. 3 and their properties listed in Table 1.
Extraction was performed in order from highest to lowest kurtosis,
hence the value ofβ = 1 in (17).
In the first experiment, the performance of the algorithm (22) using
the adaptive step-size methods was compared in the extraction of
the first source with the value ofµ set to0.01. It can be seen from
the performance curves in Fig. 4 that the best performance was
achieved using the GNGD method with a PI of around -45dB at the
steady-state. The performance curve resulting from the normalised
method indicates successful extraction with a PI of around -25dB.
The performance of the algorithm using the standard step-size and
VSS were comparable, with a PI of around -20dB. In the following
simulations, the GNGD based K-cBSE algorithm is utilised.
In the next set of simulations, we considered the extraction of all
the three sources (Fig. 3). The value ofµ was set respectively
to 0.01, 0.008 and10−5 for the consecutive extraction stages. As
shown in Fig. 5, the algorithm successfully extracted all the three
sources, as indicated by a PI of less than -20dB at the steady-state
for the extraction iterationi = {1, 2, 3}, converging to steady-
state after 2500 samples in the first extraction stage (i = 1)
and around 1000 samples in the second and third extraction stage
(i = {2, 3}). The decreasing PI value at each consecutive extraction
stage can be attributed to the unavoidable errors accumulated
in the deflation. The scatter plot of the three estimated sources
y1(k), y2(k) and y3(k) are illustrated in Fig. 3. The normalised
kurtosis of the estimated sources were respectively calculated as
Kc(y1) = 11.8425, Kc(y2) = 1.3599 andKc(y3) = −1.9956
corresponding to those of the original sources, given in Table 1;
the scale and rotation ambiguities of the source estimates are also
visible.
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Fig. 3. Scatter plot of the complex-valued sourcess1(k), s2(k) ands3(k),
with the signal properties described in Table 1 (left hand column). Scatter
plot of estimated sourcesy1(k), y2(k) andy3(k), extracted according to a
decreasing order of kurtosis (β = 1) (right hand column).
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Fig. 4. Comparison of the effect of step-size adaptation on the performance
of algorithm (22) for the extraction of a single source.

3.2 Benchmark Simulation 3: Noisy mixture
In the next experiment, we considered the extraction of a complex-
valued source from a noisy mixture. Three sources ofN = 5000
samples were considered (see Table 2, Fig. 6) and mixed using a
randomly generated4× 3 mixing matrixA. The additive noise was
doubly white Gaussian noise with varianceσ2

v = 0.1 and pseudo-
varianceτ2

v = 0.0924 + 0.0011, estimated using the subspace
method described in Section 2.5. The sources were extracted in an
increasing order of kurtosis (β = −1) with the step-sizeµ = 0.5.
The scatter plot of the first estimated source with the smallest
kurtosis,y1(k) is illustrated in Fig. 6 with a calculated normalised
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Fig. 5. Extraction of complex circular and noncircular sources froma noise-
free mixture based on kurtosis.
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first estimated sourcey1(k) is shown in the bottom-right plot.

kurtosis ofKc(y1) = −1.8002, which is within a10% range of
the true value, given in Table 2. The Performance Index, shown
in Fig. 7, demonstrates a fast convergence to a value of around
-40dB in approximately 1000 samples, and continuing a steady
convergence to -50dB by 5000 samples.

It was shown in Section 2.5 that the performance of the
algorithm (22) is not affected by the degree of circularity of
the additive noise, such that doubly white noise is treated in a
similar manner to circular white noise, where the pseudo-covariance
vanishes. This was explored experimentally by systematically
analysing the effect of various noise levels on the BSE
algorithm (22). The circularity measurer was varied from a value
of r = 0 (circular) to a value ofr = 0.9998 (highly noncircular),
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Fig. 7. Extraction of a complex-valued source from a noisy mixture, with
the source properties given in Table 2.

Table 1. Source properties for noise-free extraction Benchmark Simulation
1

Source Distribution Kurtosis circ. measure (r)

s1(k) Super-Gaussian 1.3587 0.0386
s2(k) Super-Gaussian 11.8890 0.9955
s3(k) Sub-Gaussian -1.9999 1.0000

Table 2. Source properties for noisy extraction in Benchmark Simulation 3

Source Distribution Kurtosis circ. measure (r)

s1(k) Sub-Gaussian -1.9985 1.0000
s2(k) Super-Gaussian 19.1167 0.9988
s3(k) Super-Gaussian 1.5426 0.0147

while the signal-to-noise ratio (SNR) was adjusted from a near-zero
noise SNR of 50dB to a high noise environment with SNR value
of -10dB. The initial values were generated randomly and PI was
averaged over 100 trials. Fig. 8 illustrates the performance curve
for the different variations in the noise properties, and confirms that
while the performance is dependent on the SNR value, it does not
vary with changes in the degree of noise noncircularity. In addition,
the maximum effective range of the algorithm in extracting sources
(PI < -20dB) can be estimated as an SNR of 1 dB.

3.3 EEG artifact extraction
In order to obtain useful information from EEG data in real-time,
it is often necessary to perform post-processing to remove artifacts
such as line noise and biological artifacts including those pertaining
to eye movement, captured in the form of electrooculogram (EOG)
and facial muscle activity represented as electromyogram (EMG).
Removal of the effect of such signals from the contaminated
EEG has been subject of study in previous years, with several
methodologies introduced that attempt to accomplish this utilising
both online and offline algorithms (Vigário, 1997; Jung et al.,
2000; Delorme et al., 2001; Barbati et al., 2004; Greco et al.,
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Fig. 8. Comparison of the performance of algorithm (22) with respect to
changes in the SNR and the degree of noise circularity.

2005; Delorme et al., 2007; Kumar et al., 2009). While offline
algorithms are suitable for processing the recorded EEG data in
clinical applications, it is necessary to utilise online algorithms for
real-time applications such as those encountered in brain computer
interface (BCI) scenarios.
In (Kumar et al., 2009) the authors propose an online algorithm
whereby the recorded EEG signals are transformed to the wavelet
domain and the EOG contaminants are removed using an adaptive
recursive least squares (RLS) algorithm, before transforming the
signal back to the time domain. Simulations demonstrate good
performance from the algorithm, however, it would be advantageous
to perform all the necessary processing in the time domain, as
this way the signals are retained in their original form and less
computation is required.
In its basic form, ICA can be applied to the contaminated EEG
recording and the artifacts removed through visual inspection. As
detailed in (Viǵario, 1997), an ICA algorithm separates the recorded
EEG mixture into its original sources as independent components
(ICs), with artifact sources identified and removed. In semi-
automatic (Greco et al., 2005) and automatic (Delorme et al., 2001)
artifact removal methodologies, several classifications (markers)
based on the statistical characteristics of the ICs are considered that
allow for the detection of artifacts in the contaminated EEG, which
are then compared against thresholds that determine the rejection
of particular components. In these methods, both the kurtosis and
entropy of independent components have been utilised to identify
and remove the artifacts. While the EEG mixtures typically have
near-zero kurtosis values, artifacts such as EOG exhibit peaky
distributions with highly positive kurtosis values (Delorme et al.,
2001), while periodic power line noise has a highly negative kurtosis
value. This has been used as the main discrimination in defining
classifications based on the the fourth order moment.

3.3.1 Data acquisition and methodOur aim is to remove
artifacts as independent sources extracted from the recorded EEG

mixture directly in the time domain. To this end, the contaminated
EEG signals were paired as the real and imaginary components of
a complex signal and processed using the architecture described in
Section 2.5. In this manner, the phase-amplitude relationship and the
full cross-statistical information between symmetric electrode pairs
are contained in the corresponding complex-valued EEG signal, and
allow for the simultaneous processing of both channels. Further
iterations of the extraction process can then be used to obtain the
individual pure EEG signals, or even, pipelined to a further post-
processing stage, which would then extract the EEG signals based
on a desired fundamental property, such as predictability.
The electrodes were placed according to the 10-20 system (Fig. 9),
and sampled at 256Hz for 30 seconds. The EEG activity was
recorded from electrodes placed at positions Fp1, Fp2, C3, C4,
O1, O2 with the ground placed at Cz, while the EOG activity was
recorded from the vEOG and hEOG channels with electrodes placed
above and on the side of the left eye socket.
Three studies were performed with the aim to remove the artifacts
simultaneously. While the rejection of the power line noise artifact
is feasible by passing the recorded EEG signals through a notch
filter, this solution also leads to the removal of useful information
around the 50Hz range pertaining to the EEG signals, in particular
those within the gamma band (25Hz-100Hz). It would therefore
be desirable to automatically extract the line noise artifact along
with the biological artifact from the corrupted EEG signals. In the
first study we consider the removal of EOG artifacts (‘EYEBLINK ’
set), the second study focused on eye muscle artifacts from rolling
the eyes (‘EYEROLL’ set), whereas the third study addressed the
removal of muscle activity from raising the eyebrow (‘EYEBROW’
set).
In all the studies, the temporal signals from each channel pair were
combined to form three complex EEG channels, given by

x1(k) = Fp1(k) + Fp2(k)

x2(k) = C3(k) + C4(k)

x3(k) = O1(k) + O2(k). (32)

This construction of the complex EEG signals allows for the
simultaneous processing of the amplitude and phase information
using the K-cBSE algorithm (22). Note that the EOG channels were
not part of the mixtures considered. They are only used to assess the
performance of the proposed BSE algorithm in the extraction of the
EOG artifacts.

3.3.2 Performance measuresAs we have no knowledge of the
mixing process, the Performance Index (31) is not applicable for
this case and thus several alternative quantitative and qualitative
measures were used for the evaluation of the algorithm performance.
These are briefly discussed below.

1. Quantitative metrics

a. Kurtosis: The kurtosis valuesKc of the complex extracted
signals indicate the success of the algorithm in extracting
super-Gaussian or sub-Gaussian artifact in a specified
order. In addition, the magnitude of the kurtosisKR of the
real and imaginary components of the extracted sources are
used to automatically select desired components.

9



Javidi et al.

b. Power spectra Correlation: In a similar manner to (Barbati
et al., 2004), the correlation coefficient between the
power spectra of the complex-valued recorded artifact
(e.g. EOG) and extracted sources, and likewise, the
correlation coefficient between the pseudo-power spectra
of the complex-valued recorded artifact and the extracted
sources is calculated. This measure indicates the degree
of similarity between the extracted and originally recorded
artifact, and can be used to automatically select the
extracted source pertaining to the biological artifact,
while also quantifying the degree of performance of the
extraction algorithm.

2. Qualitative metrics

a. Hilbert-Huang Time-Frequency Analysis: By employing
time-frequency (T-F) analysis using the Hilbert-Huang (H-
H) transform (Huang et al., 1998; Huang and Shen, 2005),
we can qualitatively assess the extraction performance
through comparison of the frequency components of the
mixture and extracted source during the recording session.
Also, the T-F analysis of the extracted artifacts will
demonstrate the corresponding frequency components and
their changes over time, making it possible to assess the
quality of the extraction procedure over the recording time.
In comparison to Fourier transform based T-F analysis,
such as the Short-Time Fourier Transform, the H-H
transform results in much more detailed spectrogram for
a given resolution. The intrinsic mode functions (IMFs)
required by the H-H transform were obtained using
a multivariate empirical mode decomposition (MEMD)
algorithm (Rehman and Mandic, 2010), where the
real and imaginary component of the complex-valued
signals were taken as a single multivariate signal and
processed simultaneously. It was observed that this
resulted in a spectrogram with better resolution than those
obtained through the separate processing of the individual
components using the standard EMD algorithm.

b. Power Spectral Distribution: The power and pseudo-
power spectra of the complex-valued extracted artifacts
were compared to those belonging to the complex-
valued recorded artifact. In addition, the pseudo-spectrum
demonstrates the quality of the proposed method in
extracting noncircular sources. It is also possible to
consider the cross-spectrum of the recorded and extracted
sources (Palmer et al., 2009).

3.3.3 Case Study 1 – EOG extractionThe ‘EYEBLINK ’ dataset
contained the EEG recordings contaminated with eye blink artifact
as well as line noise. The recorded EEG and EOG signals are plotted
in Fig. 10(a), where the effect of the EOG activity is pronounced in
the frontal lobe (Fp1 and Fp2 channels), with the effect diminishing
with an increase in the distance of the electrodes to the eyes. The
effect of the line noise is also visible on the occipital O1 and
O2 channels. The H-H T-F spectrogram (Fig 10(b)) describes the
frequency changes of the ensemble average of the 6 EEG channels
over the recording period. In correspondence with the time plot, the

EOG artifacts are visible (with a duration of around 1 seconds);
constant frequency components are seen around the 50Hz range
due to the line noise. Note that due to the low sampling rate of the
recording device, the 50Hz frequency component is not well defined
in the T-F analysis and results in scattering of frequency components
between 40Hz-60Hz.
The complex EEG signals formed using (32) were processed using
the K-cBSE algorithm with the value ofµ = {5, 0.09} andβ =
{−1, 1} for the consecutive iterations andα = 0.975. The choice of
value forβ ensures that the line noise is initially extracted, followed
by the EOG components in the second iteration. The normalised
kurtosis values of the original real-valued EEG signals and the
extracted EEG signals are given in Tables 3 and 4.
The order of the extracted complex signals were as expected, with
the first extracted sourcey1(k) (line noise) being sub-Gaussian
and y2(k) (EOG) super-Gaussian. The imaginary component of
y1(k) had the smallest kurtosis, and was automatically chosen as
the extracted line noise source, while the near zero kurtosis of the
real componentℜ{y1(k)} indicates an EEG source. Also, both
components of the second extracted source, having a high kurtosis
value, were considered as the extracted EOG sources. Fig. 10(c)
shows the T-F plots of the imaginary components of the first
extracted signaly1(k) where the presence of the power line artifact
is seen, while in Fig. 10(d) the T-F plot of the real and imaginary
components ofy2(k) is shown where the frequency components of
the EOG artifacts are seen.
We next concentrate on the power spectrum and pseudo-power
spectrum of the complex EOG signal, constructed in a similar
manner to that in (32); the extracted sourcesy1(k) and y2(k)
are depicted in Fig. 10(e). Notice that the distribution of power
SEOG and pseudo-power̆SEOG is concentrated respectively in the
frequency range (0-5)Hz and 50Hz. The spectrumSy1

and pseudo-
spectrumS̆y2

of the first extracted source can be seen to contain
around 0dB of power for a frequency of 50Hz, while having an
average power of -40dB in the (0-5)Hz frequency range. These
results can also be seen by comparing the frequency components
of the recorded EEG mixture and extracted artifactual sources
around the 50Hz range, shown in Fig. 10(f). While the presence
of the power line artifact is evident in all recorded channels, after
the extraction procedure the 50Hz frequency component is only

C3

O1 O2

Cz C4

Fp1 Fp2

Fig. 9. Placement of the EEG electrodes on the scalp according to the
recording 10-20 system.
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Fig. 10. Recorded and extracted artifacts from the ‘EYEBLINK ’ set. (a) Recorded EEG signals from the ‘EYEBLINK ’ set. (b) The Hilbert-Huang time-
frequency plot of the recorded EEG signals. (c) The Hilbert-Huang time-frequency plot of the extracted line noiseℑ{y1(k)}. (d) The Hilbert-Huang time-
frequency plot of the extracted EOGℜ{y2(k)},ℑ{y2(k)}. (e) The power spectra (S) and pseudo-spectra (pS) of the recorded EOG, and the extracted
signalsy1(k) andy2(k). (e) The power spectra (S) and pseudo-spectra (pS) of the recorded EOG, and the extracted signalsy1(k) andy2(k). (f) Frequency
components of the recorded EEG signals and the extracted artifacts at the 50Hz frequency range. After extraction, the power line noise is contained inℑ{y1}.
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Table 3. Normalised kurtosis values of the recorded EEG/EOG signals in
real- and complex-valued form

Set
Electrode ‘EYEBLINK ’ ‘E YEROLL’ ‘E YEBROW’

Fp1 7.7452 3.3601 7.4152
Fp2 6.4793 2.2608 7.5034
C3 -0.2922 -0.0938 -0.4951
C4 1.1548 1.2469 1.5348
O1 -0.2550 0.8303 -0.5989
O2 -0.9574 -0.6782 -0.9526

vEOG 7.7541 4.8385 10.8653
hEOG -0.1475 2.3883 -0.3264
x1(k) 7.0318 2.6390 6.1156
x2(k) 0.1006 0.4501 -0.0146
x3(k) -0.9164 -0.4601 -0.9285

present inℑ{y1(k)}. Likewise, the spectra ofy2(k) illustrate the
diminished effect of the line noise source with a power of -20dB,
while retaining the frequency components of the EOG in the low
frequency range. To quantify the observed results, the correlation
coefficient between the recorded EOG’s PSD and pPSD and those
of the extracted sources were calculated (Barbati et al., 2004)
and presented in Table 4. For the extracted sourcey1(k) these
values were respectively 0.2313 and 0.2847, whereas for the source
y2(k) they were 0.9698 and 0.9822. The correspondence of the
results between the power and pseudo-power spectra demonstrates
the effectiveness of the methodology in extracting artifacts in the
complex domain.

3.3.4 Case Study 2 – Eye muscle artifact extractionThe
‘EYEROLL’ dataset had contained artifacts from round movement
of the eye during the recording session with EOG activity from eye
blinks, shown in Fig. 11(a) and kurtosis values given in Table 3.
The resultant electrical activity from the artifacts were recorded
using the vEOG and hEOG channels, with EOG activity seen on
the vEOG channel at time instants 5s, 13s, 17s, 23s, 25s and 29s,
and eye muscle activity present more clearly on the hEOG channel
with a duration of around 2s. The eye muscle artifact was present
on all six EEG channels, while the EOG artifact is strong on the
Frontal lobe electrodes and the effect of the power line noise is seen
more strongly on the central and occipital lobe electrodes. The H-
H T-F analysis of Fig. 11(b) illustrates the presence of frequency
components up to 10Hz, as well as scattered frequencies belonging

to the 50Hz power line noise.
In the extraction procedure, the step-size of the K-cBSE algorithm
wasµ = {5, 0.2} andβ = {−1, 1}, while α = 0.975. The T-F
analysis of the extraction are illustrated in Fig. 11(c)–(d), and the
kurtosis values of the complex-valued extracted signals and their
real and imaginary components given in Table 4.
The real component of the first extracted source,ℜ{y1(k)}, having
the smallest kurtosis ofKc(ℜ{y1) = −1.1958 contained the power
line noise artifact. The eye muscle activity and EOG artifacts were
collectively extracted using the real and imaginary components of
the second extracted sourcey2(k). The five instances of the eye
muscle activity and the EOG can be detected in Fig. 11(d), while the
lack of power line noise frequency components in the 50Hz range is
visible.
These results were also confirmed based on the power spectra of
the recorded artifacts and the extracted sources, given in Fig. 11(e).
While the PSD and pPSD of the complex-valuedy1(k) contained
the 50Hz components, these were suppressed to -40dB in the spectra
of y2(k). The frequency components of the mixture channels and
extracted artifacts in the 50Hz range also showed that the line noise
artifact was successfully removed (see Fig. 11(f)). Conversely, the
spectral components pertaining to the eye muscle and EOG artifacts
are present in the PSD and pPSD ofy2(k) corresponding to the
(0-10)Hz range of the PSD and pPSD of the complex-valued EOG.
The correlation coefficient between the PSD spectra of the complex-
valued recorded EOG channel and extracted sourcey2(k) is 0.8244,
while the correlation between the pPSD spectra was 0.8222; these
values were respectively 0.0792 and 0.1844 fory1(k).

3.3.5 Case Study 3 – EMG extractionIn the ‘EYEBROW’ set, the
EEG mixture was heavily contaminated with EMG artifacts from
raising the eyebrows, and are shown in Fig. 12(a) with kurtosis
values given in Table 3. The EMG signals were recorded using the
vEOG and hEOG electrodes, with the effect more prominent on the
vEOG recording. All EEG channels were affected by the artifact,
though this is not clearly visible in the occipital lobe channels
due to the strong presence of power line noise. In the T-F domain
(Fig. 12(b)) the EMG frequency range had a large span containing
both low and high frequency components, present in the duration
of the raising of the eyebrows and lasting for around 2s. In addition,
the 50Hz frequency component cloud reflecting the power line noise
can also be seen.
The extraction of the artifacts was performed using the K-cBSE
algorithm (22) with step-sizeµ = {2, 0.2}, β = {−1, 1} and
α = 0.975.

Table 4. Normalised kurtosis values of the extracted artifacts, and the correlation coefficient of the power and pseudo-power spectra respectively with the
spectra of the recorded EOG

Spectra corr.
Set Signal Kc KR(ℜ,ℑ) PSD pPSD

‘EYEBLINK ’
y1(k) -1.2223 -0.0893, -1.2392 0.2313 0.1847
y2(k) 7.3914 7.5051, 5.1583 0.9698 0.9822

‘EYEROLL’
y1(k) -1.1744 -1.1958, -0.0341 0.0792 0.1844
y2(k) 3.0644 3.5217, 2.7289 0.8244 0.8222

‘EYEBROW’
y1(k) -1.0100 -0.7254, -1.1319 0.1287 0.1078
y2(k) 4.5144 5.4278, 6.3792 0.7593 0.7906
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Fig. 11. Recorded and extracted artifacts from the ‘EYEROLL’ set. (a) Recorded EEG signals from the ‘EYEROLL’ set. (b) The Hilbert-Huang time-frequency
plot of the recorded EEG signals. (c) The Hilbert-Huang time-frequency plot of the extracted line noiseℜ{y1(k)}. (d) The Hilbert-Huang time-frequency
plot of the extracted EOGℜ{y2(k)},ℑ{y2(k)}. (e) The power spectra (S) and pseudo-spectra(pS) of the recorded EOG, and the extracted signalsy1(k) and
y2(k). (f) Frequency components of the recorded EEG signals and theextracted artifacts around the 50Hz frequency range. Afterextraction, the power line
noise is contained inℜ{y1}.
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Fig. 12. Recorded and extracted artifacts from the ‘EYEBROW’ set. (a) Recorded EEG signals from the ‘EYEBROW’ set. (b) The Hilbert-Huang time-frequency
plot of the recorded EEG signals. (c) The Hilbert-Huang time-frequency plot of the extracted line noiseℑ{y1(k)}. (d) The Hilbert-Huang time-frequency plot
of the extracted EMGℜ{y2(k)},ℑ{y2(k)}. (e) The power spectra (S) and pseudo-spectra (pS) of the recorded EMG, and the extracted signalsy1(k) and
y2(k). (f) Frequency components of the recorded EEG signals and theextracted artifacts around the 50Hz frequency range. Afterextraction, the power line
noise is contained inℑ{y1}.
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Fig. 13. EEG after extracting artifacts from the ‘EYEBLINK ’, ‘E YEROLL ’ and ‘EYEBROW’ set. (a) EYEBLINK : Kurtosis-based method. (b) EYEBLINK :
Predictor-based method in (Javidi et al., 2010). (c) EYEROLL: Kurtosis-based method. (d) EYEBROW: Kurtosis-based method.

As shown in Fig. 12(c) and Fig. 12(d), the algorithm successfully
extracted the power line noise as the imaginary component of the
first extracted signaly1(k) and the EMG signal as the real and
imaginary components of the second extracted signaly2(k). From
the T-F plot ofy2(k) in Fig. 12(d), the complete EMG frequency
component range was successfully extracted, with power line noise
frequency components not present.
Considering the power spectraSEMG and pseudo-power spectra
S̆EMG in Fig. 12(e), the spectral distribution of the power and

pseudo-power spectral density were strong in the (0-10)Hz range
with an amplitude of around -10dB and in the (20-40)Hz range,
though having a much lower value. In addition, a single spike at
50Hz of amplitude -10dB indicates the presence of power line noise.
After the extraction, the power line noise was contained in the
spectra of they1(k) while the (0-10)Hz and (20-40)Hz frequency
components were present in the PSD and pPSD ofy2(k). For
the ‘EYEBROW’ set, the spectra correlation coefficients between
SEMG andS̆EMG and those ofy1(k) andy2(k) were respectively
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{0.1287, 0.1078} and{0.7593, 0.7906}. Also, the 50Hz frequency
range for the contaminated mixture and the extracted artifacts
are shown in Fig. 12(f). It can be seen that after the extraction
procedure, the 50Hz component is contained inℑ{y1(k)}, while
in comparison to the EOG and eye muscle extracted components
from the ‘EYEBLINK ’ and ‘EYEROLL’ studies (see Fig. 10(f) and
Fig. 11(f)), componentsℜ{y2(k)} and ℑ{y2(k)} had a higher
power level in this range, reflecting the wider frequency range of
the EMG artifact.

3.3.6 EEGs after EOG and 50 Hz power line artifacts removal.
Fig. 13 shows the EEG waveforms after the extraction of
‘EYEBLINK ’, ‘E YEROLL ’, ‘E YEBROW’ and 50 Hz noise artifacts.
The top two plots compare the proposed method with the widely
linear prediction based one in (Javidi et al., 2010). Notice for
the first two EEG electrodes Fp1 and Fp2, the predictor-based
technique in (Javidi et al., 2010) performed well, with the successful
removal of the EYEBLINK artifact. However, it performed poorly in
terms of the 50Hz noise removal, which caused the ‘EYEBLINK ’
artifact to be present (but attenuated) in the remaining EEG
electrodes. Comparing Fig. 13(c) with Fig. 11(a), it is clear that
the ‘EYEROLL ’ artifact was either heavily attenuated or removed;
whereas comparing Fig. 13(d) with 12(a) demonstrates that it is
quite challenging to remove completely the ‘EYEBROW’ artifact;
however, the 50 Hz noise has been removed almost perfectly, as
illustrated by comparing the bottom plots of Figs. 13(d) and 12(a).

4 DISCUSSION
Both qualitative and quantitative metrics have showed that the
kurtosis-based extraction method yields enhanced results for real-
time extraction of artifacts. Excellent results were obtained for the
removal of eye blink, eye roll and power line artifacts. Although
artifacts arising from eye rolling and raising the eye brow might
seem similar to that of an eye blink, it is much more challenging
to perform their complete removal in the context of real-time EEG
processing, as they involve longer firing of larger groups of muscles.
These are critical cases, as the EMG source goes into saturation; and
to our knowledge, these artifacts have not been considered before in
the literature. These results are promising, as our technique operates
real-time, in contrast to methods such as in (Vigário, 1997; Jung
et al., 2000; Delorme et al., 2001; Barbati et al., 2004; Greco et al.,
2005; Delorme et al., 2007; Kumar et al., 2009). The advantage of
the proposed kurtosis based method as compared to our previous
method (Javidi et al., 2010) is also in that the proposed method
allows us to select a particular artifact to be extracted. For instance,
if we wish only the EOG artifact such as eye-blink to be removed,
the parameterβ in (22) can be set to unity; whereas in (Javidi et al.,
2010), we do not have full control over which artifact is going to be
extracted.

5 CONCLUSIONS
Blind source extraction of the generality of complex-valued signals
based on the degree of non-Gaussianity and from noisy mixtures has
been addressed. A cost function based on the normalised kurtosis
has been utilised to perform blind extraction, and the corresponding
online algorithm (K-cBSE) has been derived. The existence and

uniqueness of the solutions have been discussed and variable step-
size variants of to the algorithm have been addressed. It has been
shown that the algorithm is robust to the degree of noncircularity of
the additive noise and the success of the algorithm over increasing
noise levels has been demonstrated. Simulations in noise-free and
noisy environments illustrate the successful performance of the
algorithm in the extraction of both circular and non-circular signals,
while the extraction of EOG and EMG artifacts from recorded
EEG signals in real-time demonstrate a practical application for the
proposed methodology.

APPENDIX: UPDATE OF ǫ(k) FOR THE GNGD-TYPE
COMPLEX BSE
The gradient descent update for the regularisation parameterǫ(k) is
written as

ǫ(k + 1) = ǫ(k)− ρ∇ǫJ
∣
∣
ǫ=ǫ(k−1)

and the gradient derived as follows. Defining the adaptive step-size
in (25) as

υ(k) ,
µ

|φ
(
y(k)

)
|2 · ‖x(k)‖22 + ǫ(k)

the gradient∇ǫJ is given by

∇ǫJ =
(
∇w∗J

)T
·

∂w
∗(k)

∂υ(k − 1)
·
∂υ(k − 1)

∂ǫ(k − 1)
(33)

where

∂w
∗(k)

∂υ(k − 1)
=

∂w
∗(k)

∂υ(k − 1)
− φ∗(y(k − 1)

)
x
∗(k − 1)−

∂φ∗
(
y(k − 1)

)

∂υ(k − 1)
υ(k − 1)x∗(k − 1)

≈ −φ∗(y(k − 1)
)
x
∗(k − 1)

and only the driving term of the recursion is considered, and

∂υ(k − 1)

∂ǫ(k − 1)
=

−µ
[
|φ
(
y(k − 1)

)
|2 · ‖x(k − 1)‖22 + ǫ(k − 1)

]2 .

While the derivative in (33) is calculated according to theCR

calculus,ǫ(k) is real-valued and so only the real component of the
R

∗–derivative in (33) is required. This leads to the update equation
given in (26).
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