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ABSTRACT

A new class of complex domain blind source extraction (BSE)
algorithms suitable for the extraction of both circular and noncircular
complex signals is proposed. This is achieved through sequential
extraction based on the degree of kurtosis and in the presence
of noncircular measurement noise. The existence and unigueness
analysis of the solution is followed by a study of fast converging
variants of the algorithm. The performance is first assessed through
simulations on well understood benchmark signals, followed by a
case study on real-time artifact removal from EEG signals, verified
using both qualitative and quantitative metrics. The results illustrate
the power of the proposed approach in real-time blind extraction of
general complex-valued sources.

Keywords: Blind source extraction, complex noncircularity, noisy
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1 INTRODUCTION

are of interest, making it possible to extract such sources at a
dramatically reduced computational complexity and in real-time.
This also relaxes the requirement for pre- or post-processing of the
mixture or separated sources, that may be necessary if parallel BSS
techniques were employed.

Real domain algorithms performing BSE based on the temporal
structure (predictability) of signals are well established (Barros and
Cichocki, 2001; Cichocki and Amari, 2002; Mandic and Cichocki,
2003) and modifications to the cost function were proposed to cater
for noisy mixtures (Liu et al., 2006b,a). The algorithm in (Cichocki

et al., 1997) demonstrated the feasibility of extraction of real-
valued sources based on the degree of kurtosis, while (Liu and
Mandic, 2006) proposed a modified cost function for the extraction
in noisy environments. An overview and discussion on this class of
algorithms is also provided in (Leong et al., 2008).

Recent developments in complex statistics (Picinbono, 1994; Neeser
and Massey, 1993) have made it possible to introduce a new class of
complex domain signal processing algorithms, capable of catering
for the generality of complex signals (Mandic and Goh, 2009). This
is achieved through the consideration of the circular symmetry of
the probability distributions, whereby rotational invariance of the

The aim of blind source separation (BSS) is to reconstruct thalistribution indicates a compleircular random variable. However,
original sources by identifying the inverse of the mixing system,most complex-valued signals encountered in signal processing
without having explicit knowledge of the mixing parameters or application areoncircular.

sources (Cichocki and Amari, 2002), and has found application inThe so called augmented complex statistics (Schreier and Scharf,
diverse areas including biomedical engineering, communications2003), enables us to utilise the complete second-order information
sonar and radar (Cichocki and Amari, 2002; Arigler et al., available in a complex-valued random variable. This way, the
2003). Standard BSS methods use cost functions based on secorsgcond-order statistics are not only based the standard covariance
and higher-order statistics, together with the maximisation ofmatrix E{xx™}, but also the pseudo-covariande{xx”}. A
likelihood and entropy (Amari et al., 1997; Bell and Sejnowski, complex-valued random vector with a vanishing pseudo-covariance
1995; Hywarinen et al., 2001). In addition, to facilitate the is termedproperor second-order circular, and is otherwise called
modelling of real-world systems, noisy environments and postimproper (Picinbono and Bondon, 1997; Schreier and Scharf,
nonlinear mixtures have been recently studied in real domair2003). Likewise, widely linear models (Picinbono and Chevalier,
algorithms (Leong and Mandic, 2008a®k and Valpola, 2005). 1995) allow for the design of linear mean square error estimation
Within the BSS methodology, the latent sources are separatealgorithms capable of processing both complex proper and improper
in a random order through either a deflationary or symmetricsignals.

orthogonalisation procedure, that is, one by one or simultaneouslyn complex-valued blind source separation research, recent
A class of BSS algorithms, termed blind source extraction (BSE)complex-valued algorithms typically use augmented statistics, so
aims to retrieve the sources one by one, based on a fundamenias$ to cater for the generality of complex signals (Erdogan, 2009;
signal property (nonlinearity, sparsity), effectively inducing an orde Douglas, 2005), with applications in fMRI modelling (Novey and
into the separation process. The benefit of BSE becomes apparefitiali, 2008) and communications (Ollila and Koivunen, 2009b).
in large-scale problems where only a small subset of the sourcds comparison to standard complex BSS methodology (Aillemn
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et al.,, 2003; Bingham and Hgvinen, 2000), which assumes complex signals made complex by convenience of representation are
complex circular sources, these algorithms have been shown tooncircular. Examples include EEG signals, and complex-valued
exhibit enhanced performance for noncircular sources and similawind models (Mandic and Goh, 2009).

performance for circular sources. In the same spirit, the feasibilityConsider a second-order stationary ‘augmented’ complex random
of blind source extraction of complex sources based on the temporaignal z* (k) = [z (k), z" (k)]” and its augmented covariance
structure of the latent sources was studied in (Javidi et al., 2009)mnatrix,
exploring a widely linear predictor to extract both proper and

improper sources. A class of linear predictability based algorithms Czaza(0) = E{ ZZ*((kk?) } {ZH(k —08), 2" (k- 5)}

for blind extraction from noisy complex-valued mixtures has also

been recently proposed (Javidi et al., 2010). _ { Coz(8)  Paz(d) } @
In this paper, we introduce an online blind source extraction T Pr(0) Cil(6)

algorithm suitable for the generality of complex-valued Signals'This matrix provides a complete description of the second-order

both circu_la_r and noncircular. This is a_chieved base_d on higheE,tatistics ofz(k). The transformation of this matrix to the frequency
order statistics of latent sources, and using the deflation approac[]Drnain gives the augmented spectral matrix (Picinbono and
Further, the cost function based on an extension of the methOdc’logé(ondon 1997; Schreier and Scharf, 2003)

presented in (Liu and Mandic, 2006) is designed so as to be robust .
to both circular and noncircular second order additive noise. The Syn(w) = { §z(w) Sz(w)
analysis is supported by benchmark simulations in both noise-free B S;(—w) Sz(—w)

an d n|0|sfy Scﬁ narios, foI_Iowed by Istu;:hg_s IOf _corlwdltlzmng of El_EGWith the Fourier transforms of the covariance and pseudo-covariance
er?'?;lc?s or the automatic removal of biological and power lin€ .y ces defined respectively 8s(w) andS, (w), that is
| .

The paper is organised as follows. Section 2 provides an overview Sa(w) = F(C2a(0)) = F(E{z(k)z" (k — 6)})

of complex statistics, complex-valued noise &# calculus. The 5 T

cost function for both noise-free and noisy cases is then presented, Sa(w) = F(Pea(9)) = F(E{a(k)z (k —9)}) “)

together with the derivation and convergence analysis of a realwhere the symbal denotes a discrete time lag a#d-) the Fourier

time adaptive BSE algorithm. In Section 3, after analysing thetransform operator.

performance in blind extraction of synthetic sources, EEG signaWhile the power spectrum provides information on the distribution

conditioning for brain computer interfacing is studied. Conclusionsof signal power over a frequency range, the magnitude of

are presented in Section 5. the pseudo-spectrum characterises the second-order circularity of
the random variable in the frequency domain. The augmented
spectral matrix in (3) is positive semidefinite which results in the

2 MODELS AND METHODS condition (Picinbono and Bondon, 1997)

2.1 Complex statistics: second-order circularity 1S2(W)[? < Su(w) - Sa(—w). (5)

Second-order circularity is a property of probability density

functions, whereby the distribution of a complex random variable2.2 Complex statistics: Kurtosis

z and its rotation’*z are equal for any angle (Picinbono, 1994).  Kurtosis has been used routinely to design contrast functions in

Within the domain of second-order statistics, to account for complexsSS (Hywvarinen and Oja, 1997) and BSE algorithms (Cichocki

random variables with noncircular probability density functions et al., 1997). It is common to use the normalised kurtdsjs(-)
(pdf), we need to use both the covariadge and pseudo-covariance instead of the standard kurtosisirtz(-), as it allows for the

; @)

‘P, matrices (Picinbono and Bondon, 1997) comparison of the degree of non-Gaussianity of random variables,
o . irrespective of the range of amplitudes. In (Ollila and Koivunen,
Cow = E{22"}, Pus= E{zz" }. @) 2009a), the relevance of this concept in the complex domain,

. . together with as the relation between the kurtosis of the real and
For second-order circular (proper) random variables, the pseudqma inary components of a complex random variabiet (=)
covariance matrix vanishes, that B,, = 0, whereas for 9 y P p R\#r

second-order noncircular (improper) random variables the pseud and kurtz(2:) and the kurtosis of the complex random variable

. L . q{urtc(z) has been discussed.
covariance matrix is non-zer®,, # 0, and is generally complex- - ; .
) . . The normalised kurtosis of a complex random variable (real-valued)
valued. The pseudo-covariance matfy, can be written in terms

: ; . X can be defined as
of the covariances of its real and imaginary components

Ko(2) = kurte(z)
Prs = E{zrzf} — E{ziz?} + ](E{zizTT} + E{zrziT}) N (B{]2]2})?
4 2712
illustrating that for proper signals, the vanishing pseudo-covariance = E{|Z|2 }2 — |E{z 2}| 5 —2 (6)
is due to equal powers in the real and imaginary channels, while the (E{|=}) (E{|=I*})

cross-covariance is skew-symmetric (Neeser and Massey, 1993). with
For an uncorrelated random vector, both the covariance and pseudo- _ 4 9412 2112
covariance matrices are diagonal (Eriksson and Koivunen, 2006). kurte(2) = B{|z|"} — |E{2"}" — 2(E{l=["})"- )

Examples of complex circular signals in signal processing researciihe first term in (6) is the normalised fourth order moment, the
are QPSK and BPSK signals in communications, while mostsecond term is the square of the circularity coefficient (Ollila, 2008),
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(a) Scatter plots of complex white noise realisatiohsp row:
circular Gaussian noise (left) and noncircular Gaussiasenp =
0.81) (right). Bottom row: circular Laplacian noise (left) and
noncircular Laplacian noise-(= 0.81) (right). The circularity
measure- is defined in (8). The kurtosis valués,. are given for

each case.
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(b) Power spectra (thick gray line) and pseudo-power saétttin
gray line) of complex Gaussian noises with varying degrees of
noncircularityr = {0, 0.8, 1}

Fig. 1. lllustration of white circular and doubly white complex-ual
noises.

circularity quotiento(z) = re?? £ 72 /02, where

r=lp(x)l = 5 reo] ®

measures the degree of noncircularity in the complex signal, with
72 the pseudo-variance of the signal and the circularity afigie
arg(p(z)) indicating orientation of the distribution. Note that for

a purely circular signaly = 0, with 6 not providing additional
information about the distribution.

This circularity measure can also be graphically interpreted using
an ellipse (centred in the complex plane) of eccentrieitand
orientation o, such thatr = ¢ and9 = 2a (Ollila, 2008,
Theoreml). For = 0, the shape becomes a circle, which also
indicates a circular signal with = 0, while for the extreme case

of e = 1, corresponding to a highly noncircular signal with= 1,

the ellipse becomes elongated with a maximal major axis and minor
axis of length zero. Note that the pseudo-variance of a general
complex Gaussian distribution is then related to the elliptic shape
by 72 = €2¢’? (Ollila and Koivunen, 2009b).

Itis important to notice that the treatment of a noise veet@dr) in C

is different to that in the real domain (Picinbono and Bondon, 1997).
While in R only the variance? of the noise signal is of concern, in

C itis necessary to also consider the pseudo-variafici order to
completely model the noise. We therefore differentiate between the
following cases of white noise.

1. Circular white noise is considered white in terms of its
diagonal covariance matrix, whereas the pseudo-covariance
matrix vanishes, that is

Cw(8) =021, Puw(8)=0, 6=0
wherel denotes the identity matrix.

In the frequency domain, the covariance spect8utw) (also

power spectrum, or PSD) of the circular white noise is flat,

while the pseudo-covariance spectra(w) (or pPSD) is
zero.

2. Noncircular doubly white noisés assumed white for both the
real and imaginary components, however, the corresponding
distributions and power levels may be different, such that

Cuv(0) = o1, Puv(d) = 21, §=0,0> #* 2.

In this case, the power spectrum is flat across all frequencies,

while the pseudo-spectrum is non-zero. As the noise becomes

whereaskurt.(z) in (7) is the real-valued kurtosis of the complex
random variable:. Similar to the kurtosis of a real-valued Gaussian
random variable, the value oK. is zero for both circular and
noncircular complex Gaussian random variables. Furthermore, for
continuity, this measure makes kurtosis values of a sub-Gaussian
complex random variable negative and that of a super-Gaussian
complex random variable positive, irrespective of the degree of
circularity/noncircularity.

2.3 Complex-valued Noise

more noncircular{ — 1), the pseudo-spectrum approaches
its upper-bound defined in (5), where for highly noncircular
noise ¢ ~ 1), the magnitudes of the pPSD and PSD are
similar. For a scalar complex white noise signdk), the
relations between the correlation and pseudo-correlation and
the respective spectra are given by

() = B{v(k)v"(k — 8)} = §(0)02 T S(w) = |02

P() = E{v(k)v(k — 8)} = 6(0)rs T S(w) = |72|.

The degree of noncircularity can be quantified by the circularityExamples of circular white Gaussian and Laplacian noise with unit
measurer, defined in (Ollila, 2008) as the magnitude of the variance are illustrated in the left hand column of Fig. 1(a), whereas
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the right hand column demonstrates two examples of noncircular ‘r
white noise, with the top-right plot showing a noncircular Gaussian 1s(k) A
noise signal with circularity measure= 0.81 with unit variance |

and pseudo-variance’? = —0.38 + ;0.71, and the bottom-right !

plot illustrating the scatter plot of noncircular Laplacian noise with  — _ _ _ _ _ _ ¥ k)~

circularity measurer = 0.81 with unit variance and pseudo-

variance 0f).45 — 50.66. Also note that in Fig. 1(a) the value of the Fig. 2. The noisy mixture model, and BSE architecture.
kurtosis is approximately zero for both the circular and noncircular

Gaussian noise signals, whereas the kurtosis values for the circular

and noncircular super-Gaussian noise signals follow the real-valuegiven by

convention.

Fig. 1(b) depicts the PSD and pPSD of circular £ 0) white 6F| = 2‘%{<£)H6z}’
and noncircular doubly white Gaussian noise for the respective 0z*
circularity measuress = {0.8,1}. Observe that the pseudo-

spectrum is zero for the circular noise, while it has a magnitudeand the Cauchy-Schwarz Inequality shows that
of 0.64 for the noise with- = 0.8, and reaches it upper-bound

of 1 in the third realisation where the noise is highly noncircular 6F| < 2”@” 16z

(r = 1). For the Gaussian noise, the spectrfifw) = 1 and the Oz

pseudo-spectrurS(w) = |72| = |2e’*?| = |¢2| = r, across all o 5

frequencies, thus indicating that by increasing the eccentricity ofind so|6 F'| is maximised whemrccos % =0, or in other

the ellipse (degree of noncircularity), the magnitude of the pPPSDByords the maximum change of the gradient is in the direction of the

approaches its maximum value of 1. conjugate of the weight vector (Brandwood, 1983; Kreutz-Delgado,
2006). The operator®{-} and{-}, where used, denote the real

2.4 CR calculus: Brief overview and imaginary part of a complex quantity, while-) is the inner

. product operator.
TheCR calculus (Kreutz-Delgado, 2006) allows for the analysis of Furthermore, in calculating derivatives of analytic functions, as

functions that do not normally satisfy the stringent Cauchy-Riemanrheﬂned, theR*—derivative vanishes and the derivative is equivalent

conditions O.f analytluty,_ such as real-valued cost fun](\:rtlons Ofto the Cauchy-Riemann derivative, demonstrating the flexibility of
complex variables. Consider a typical cost functio() : € — ¢ framework. This can be illustrated through a simple example.
R, a real function of complex variables, which does not Sat'SfyConsider the non-analytic squared error cost funcgon ||Z||§ _

the Cauchy-Riemann properties, required for gradient calculationsz.z*' Then, 29 — z* and 2% — 7. In contrast, for the analytic
However, using theCR calculus framework, it is possible to functionH'(za)z _ 2 on :E)zgz and 2 — o, Fc;r further insight
calculate the gradients of such functions directiyinand without into CR calculus Wé r?e?erto the ma?e?ial in (Kreutz-Delgado, 2006;
the need to obtain derivatives of the real and imaginary components, . ic and Goh’ 2009) ' '
separately. ' '

In the framework ofCR calculus, F' is taken as a function of the

complex input vectog and its conjugate™, collectively termed the

2.5 BSE of Complex Noisy Mixtures

conjugate coordinates, that is The diagram in Fig. 2 shows the complex BSE architecture, where
at time instan;, the observed signal(k) € C" is given by a linear
F(z,2") N w N - R, ) mixture
x(k) = As(k) + v(k) (11)

Note that althouglz andz* are not statistically independent, this wheres(k) € CN+ is the vector of latent sourcedy € CN*N
does not affect the calculation of derivatives, defined as (Kreutzig tne mixing matrig, andv(k) € CV is the vector of additive

Delgado, 2006) doubly white Gaussian noise (noncircular). The model (11) has been

widely used in EEG signal processing, for instance see (Cichocki

o oF 1 /0F OF and Amari, 2002; Sanei and Chambers, 2007). The sources are
R—derivative: - = 9 o

VA

9 assumed to be with zero mean and distinct kurtosis values, while no

z*=const

assumptions are made about the circularity. The number of mixtures
1 /0F oF : :
== (7 +7 ) . (10) is assumed to be equal to that of the sources, however, in the case
2\ 0z, Oz of noisy mixtures, an overdetermined mixture is necessary so as to
estimate the second-order statistics of noise parameters.
Also note that the direction of steepest descent is given by th@he adaptive gradient descent algorithm at the extraction stage
derivative with respect ta*, theR*—derivative. This can be shown adapts the parameters of the demixing veetauch that the source
by using the first order Taylor Series Expansion (TSE)'¢an den
Bos, 1994); the magnitude of a small change in the funckois

oF

7, *

R*—derivative:

z =const

2 |f a mixing process is considered for the noise giverBythe vectorw
in the subsequent equations can be replacedsy = w* B. This does
not affect our algorithm, for the normalised kurtosis of Géssoise is
1 Also known as Wirtinger calculus. unconditionally zero.
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signal with the largest (smallest) kurtosis, presented in (Liu and Mandic, 2006). As illustrated in (13), the
H variance ofy(k) contains the noise varianeg, thus allowing us
y(k) = wx(k) to remove the effect of noise from (17) such that only contributions
—wlA s(k) + WHV(k) (12) from the latent sources are accounted for. Also note that while the
— noise variancer? is present in the cost function (17), its pseudo-
covariancer? is not present, suggesting that the complex domain
is first extracted. The variance gfk) can be written in an expanded BSE based on kurtosis is unaffected by the pseudo-spectral effects
form as of the additive noise; this is further elaborated in Section 3.
E{|y(k)\2} _ uHcss(O)u+wHva(O)w In the _cost function (17), the paramet@rdictates the order of
extraction where for

auH

H 2__H
=u'uto,w'w (23)
1. B = 1, the order of extraction is from the high to low degree of

where the difference ids(0) are absorbed into the mixing matrix non-Gaussianity (super-Gaussian sources are extracted first),

A and the noise covariance matri¥.,(0) = ¢2I (due to the o )
whiteness assumption). 2. B = —1, the order of extraction is from low to high degree of
In the same spirit, the normalised kurtosis of the extracted signal ~ Non-Gaussianity (sub-Gaussian sources are extracted first).

y(k) can be written as o .
The optimisation of7 with respect tow can thus be stated as

Ng N
Ke(y) = Z Ke(unsn) + Z Ke(wnvn) Wopt = arg max J(w 18
n=1 n:lT P gHwI\§:1 ( ) ( )
N . . . - . . where the norm of the demixing vector is constrained to unity to
= Junl"E{|sn|"} = 2unl" (B{|sn[})* — |un|*|E{s}}] avoid very small coefficient values.
n=1 Rewriting and simplifying (17) in terms of (13) and (16) results in

N,
=3 Jun| Ke(sn) (14) _ AKe))E .
nz::l J(w) = ENCLI R K (s)[d (19)
thus having zero value for Gaussian noise. In a vectorised form, this h
is equivalent to where
~ ~ ~H ~
Ke(y) = 07K (s)a (15) e 5 O (20)
where ufu - lul3
~112
A= [ul,...,ux.] Notice that]||]3 = (””;‘””32)2 < 1 and is equal to unity only if one
K.(s) = diag(K.(s1), ..., Ko(sn,))- (16) of the components in the vectaris non-zero. Given the constraint

on |4, the solution to the optimisation of (19) is a vects,:
The next stage within the proposed BSE scheme is the deflatiopf unit norm such thati,,; has a single non-zero component at a
process which aims to remove the extracted soy(ég from the  position corresponding to the diagonal elemeriin(s) having the
mixturex(k), such that largest magnitude. For this to be valid, a demixing vector assumes
x(k) — x(k) — Wy(k) the f_ormwopt = Af#a,,,, where_z the symbo@-)# denotes the
matrix pseudo-inverse operator (Liu and Mandic, 2006).
where the deflation weight coefficient vectér is updated using
an adaptive gradient descent algorithm detailed later in this sectiorg.7 ~ Adaptive algorithm for extraction
In principle, for y(k) being an estimate of one of the original
sources, say, (k), the ideal deflation weight vector should be equal

to the nth column of the mixing matrixA., such that the effect modified normalised kurtosis and thus minimise the cost function

of this particular source is removeql from the mixture. Finally, "?‘j(w). Based on Section 2.4, the gradfistthus expressed as
threshold can be set on the deflation process, so that extraction

Optimisation of (17) is performed using an adaptive gradient descent
algorithm which updates the values @f so as to maximise the

is continued until some or all the required sources have been Bx(k) . ) )
successfully extracted (Thawonmas et al., 1998). VT = (ma(y) — o2)3 [?J (k) (ma(y) — 2ma(y) — |p=(y)[)
2.6 Cost function + (ma(y) = 03) (—y(R)y™ (k) + 2ma(y)y” (k) + p (y)y(k))]

The cost function we employed for the extraction of general —¢
complex sources from noisy mixtures is given by

(y(k))x(k)

kurt, (y(k)) where¢(y(k)) is used for simplification aneh,(y) andp,(y) are
J(w) =— 3 1z respectively the/-th moment and pseudo-moment at time instant
(E{ly(k)|?} — wHCyv (0)w)
Note that7 € R, represents a modified version of the normalised3 Since the normalised kurtosig is real valued, the conjugate gradient
kurtosis defined in (6) and is a generalisation of the methodology{% corresponds to the maximum change of the gradient.
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k (the time index dropped), estimated using the moving averaggiven by

estimators k1) = wik M N *
me(u() = (1 — ayme(y(h— 1) +aly®l €= 2,2y D =) e Il 1 ey V)X
(25)

pe(y(k) = (L= a)pe(y(k — 1) +a(y(k)’, £=2  (21)
wherea € [0, 1] is the forgetting factor.
The kurtosis based BSE update algorithm (K-cBSE) for the
demixing vector is thus given by R{o(y(E))xT (k)o™ (y(k — 1))x*(k — 1

(1) = ) — e TLEWENXT B0 (ylk — 1) )}
w(k+1) = w(k) — uo(y(k))x(k) [lo(y(k = 1)) - Ix(k — D)3 + e(k — 1)]

and its expanded version is given in (22) ,wherds the small (26)
positive step-size. To preserve the unit norm property, the demixingvherep is a step-size. The derivation of the algorithm is given in the

wheree(k) is an adaptive regularisation parameter. The gradient
adaptive regularisation parameter is then given by

vector is normalised at each iteration, that is Appendix.
w(k+1)
w(k+1) [w(k + D]l 2.9 Adaptive algorithm for deflation

Notice that in extracting circular sources, the momentanishes, ~ The deflation procedure insures that after each extraction stage, the
further simplifying the algorithm. Moreover, as mentioned earlier, €stimated source is removed from all the mixture vectors, so that the
the cost function and thus the gradient descent algorithm are ndt€xt source with maximum (minimum) kurtosis can be extracted.

dependent on the pseudo-variance of the noige:rhe estimation This can be achieved based on the cost function (Thawonmas et al.,
of the noise variance can be performed using a subspace method, $298)
oo s o i oo o st e om0 = o =X s 2D
allow for the estimation of the noise variance via eigenvalues of thevhich is minimised with respect to the deflation weight coefficient

observation covariance matiix, that is w. We usex,, (k) to denote the mixture at theth extraction stage,
Cox = ACAY 4 Coy = Y + 021 (23) which is given by vectors
The subspace method can be briefly summarised as follows. We can xn+1(k) = xn (k) — W(k)yn (k). (28)

assume Rar(Rr') = N, if A is of full rank andCss is non-singular.
Then, the( N — N,) eigenvalues off are zero and hence tfiéy —
N.) eigenvalues ofx are equal tar2.

Given an invertible mixing matripA, the vectorw is ideally equal
to a column ofA ~!, which corresponds to theth extracted source
yn (k). The gradient can thus be calculated as

2.8 Modifications to the update algorithm Vo Ty = 0Ja  OXpia

In order to enhance the performance of the online gradient descent Xy OW*
algorithm, adaptive step-size update algorithms are considereging the online algorithm for BSE then becomes

We consider the complex-valued Farhang-Ang type variable step-

size (VSS) algorithm (Ang and Farhang-Boroujeny, 2001) and the w(k + 1) = W(k) + payn (k)xn+1(k) (30)
complex-valued generalised normalised gradient descent (GNGD\)I
type algorithm (Mandic, 2004).

At each iteratiork, the VSS algorithm minimises the cost function
J in (17) with respect tqu(k — 1) to provide the update of the
step-size, given as

= —Yn(k)xnt1(k) (29)

ith 4 a step-size. The drawback of this method is that any errors
in the deflation process will propagate and affect the extraction and
deflation of subsequent stages. It is therefore important that the step-
size parameter is set appropriately for eath deflation stage to
ensure successful removal of the extracted soyx¢e).
wk) =plk—1) — "Vﬂ*ﬂpﬁ:u(k—n In the design of complex adaptive algorithms, it is common
to utilise a widely linear model to ensure that the algorithm is
L() capable of processing the generality of complex signals (Mandic
(k= 1) and Goh, 2009). In the case of the update for the deflation weight
P(k) =yp(k—1) — Vw*j|w*:w*(k71) (24) coefficient (30), however, a linear model is considered as the
o

VT =Ve=T -

original BSS mixing model (11) is strictly linear and thus a widely
wherey (k) £ “’k"“l) ~ 2 &) andy andy are step-sizes. linear deflation model is not required. For more detail on BSE based
The GNGD- type algorlthm |s&)ased on a normalised version of (22)pn widely linear predictability, see (Javidi et al., 2010).

s, [y*(k)(m(y) —2m3(y) — |p2(¥)|?) + (m2(y) — 02) (—y(k)y** (k) + 2ma(y)y* (k) + p5 (y)y(k))}
(ma(y) —03)3

w(k+1) =w(k) —
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3 RESULTS AND DISCUSSIONS

We shall consider extraction of both synthetic and real-world 2
sources from noise-free and noisy mixtures, with various degrees ¢ 0 2
complex noncircular noise levels. The performance for the syntheti & = - _2
data were measured using the Performance Index (PI) (Cichogki ar
Amari, 2002) given by - 0 5 5
s,(K)
5 8 2
Ly buf? i | o
PI = 10logy (N(Zmax{|b1|2,...7b1\r2} _1>>' (31) -5 3 -
i=1 -10 0 10 -4 4
s4(k)
whereu = A w = [us, ..., un]. ' ’ o
For each synthetic experiment, the results were produced throug 0o oo
averaging 100 independent trials. The mixing matéx was 1 o 0,05 o
generated randomly as a full rank complex matrix. The values o -2 g 2 -01 I% 01

the extraction and deflation step-sjzevere set empirically, and the

forgetting factora in (21) was set as 0.975. The complex additive

Gaussian noise was both of circular white with circularity measurerig. 3. Scatter plot of the complex-valued soureesk), so (k) andss (k),

r = 0 and noncircular doubly white with = 0.93. The real-world  with the signal properties described in Tableldft(hand columh Scatter
sources were the electroencephalogram data corrupted by power lipit of estimated sourceg (k), y2 (k) andys(k), extracted according to a
noise and electrooculogram artifacts. decreasing order of kurtosig (= 1) (right hand columin

3.1 Benchmark Simulation 1: Synthetic sources

In the first set of simulations, a noise-free mixture of 3 complex
sources with various degrees of circularity avd= 5000 samples
were generated and mixed using3ax 3 mixing matrix. These
signals are illustrated in Fig. 3 and their properties listed in Table 1
Extraction was performed in order from highest to lowest kurtosis,
hence the value o8 = 1 in (17).

In the first experiment, the performance of the algorithm (22) using
the adaptive step-size methods was compared in the extraction
the first source with the value ¢f set t00.01. It can be seen from
the performance curves in Fig. 4 that the best performance wa
achieved using the GNGD method with a PI of around -45dB at the
steady-state. The performance curve resulting from the normalise
method indicates successful extraction with a Pl of around -25dB
The performance of the algorithm using the standard step-size ar
\/_SS were comparable, with a PI of around -_20dB_. In _the following 60, 1000 2000 2000 2000 5000
simulations, the GNGD based K-cBSE algorithm is utilised. sample number

In the next set of simulations, we considered the extraction of al

the three sources (Fig. 3). The value pfwas set respectively

to 0.01,0.008 and 10~° for the consecutive extraction stages. As Fig- 4. Comparison of the effect of step-size adaptation on the peefoce
shown in Fig. 5, the algorithm successfully extracted all the three®f algorithm (22) for the extraction of a single source.

sources, as indicated by a PI of less than -20dB at the steady-state

for the extraction iteration = {1,2,3}, converging to steady- ) ) ) )

state after 2500 samples in the first extraction stage=( 1)  3-2 Benchmark Simulation 3: Noisy mixture

and around 1000 samples in the second and third extraction stade the next experiment, we considered the extraction of a complex-
(¢ = {2, 3}). The decreasing PI value at each consecutive extractioralued source from a noisy mixture. Three sourcesVot= 5000

stage can be attributed to the unavoidable errors accumulateshmples were considered (see Table 2, Fig. 6) and mixed using a
in the deflation. The scatter plot of the three estimated sourcemandomly generatedl x 3 mixing matrix A. The additive noise was
y1(k),y2(k) andys(k) are illustrated in Fig. 3. The normalised doubly white Gaussian noise with variangg = 0.1 and pseudo-
kurtosis of the estimated sources were respectively calculated agriancer? = 0.0924 4+ 50.0011, estimated using the subspace
Kc(y1) = 11.8425, Kc(y2) = 1.3599 and K.(y3) = —1.9956 method described in Section 2.5. The sources were extracted in an
corresponding to those of the original sources, given in Table lincreasing order of kurtosigi(= —1) with the step-sizg. = 0.5.

the scale and rotation ambiguities of the source estimates are alSthe scatter plot of the first estimated source with the smallest
visible. kurtosis,y (k) is illustrated in Fig. 6 with a calculated normalised

‘/Standard

Normalised

Performance index (dB)
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Fig. 7. Extraction of a complex-valued source from a noisy mixturehwi

the source properties given in Table 2.

Fig. 5. Extraction of complex circular and noncircular sources febnoise-

free mixture based on kurtosis. Table 1. Source properties for noise-free extraction Benchmark Sitiau
1
s,() y s,k) Source Distribution Kurtosis circ. measurg (
1 o o si(k) Super-Gaussian 1.3587 0.0386
5 s2(k) Super-Gaussian 11.8890 0.9955
O o o o s3(k) Sub-Gaussian -1.9999 1.0000
. -5
-1 Table 2. Source properties for noisy extraction in Benchmark Simaoite®
-1 0 1 % 0 10
SD(k) E('k) Source Distribution Kurtosis circ. measuré (
y
4 ° 05 ! si1(k) Sub-Gaussian  -1.9985 1.0000
X s2(k) Super-Gaussian 19.1167 0.9988
s3(k) Super-Gaussian 1.5426 0.0147
o of ° ° O o L y
-2
_4 o5 while the signal-to-noise ratio (SNR) was adjusted from a near-zero
-5 g 5 05 S 05 noise SNR of 50dB to a high noise environment with SNR value

of -10dB. The initial values were generated randomly and Pl was
averaged over 100 trials. Fig. 8 illustrates the performance curve
Fig. 6. Scatter plots of the original sources (k), s3(k) and s3 (k). The for_the different variatior_ls in the noise properties, and cor)firms that
first estimated sourcg; (k) is shown in the bottom-right plot. while the performance is dependent on the SNR value, it does not
vary with changes in the degree of noise noncircularity. In addition,
the maximum effective range of the algorithm in extracting sources
kurtosis of K.(y1) — —1.8002, which is within a10% range of ~ (| < ~20dB) can be estimated as an SNR of 1 dB.
the true value, given in Table 2. The Performance Index, shown . )
in Fig. 7, demonstrates a fast convergence to a value of aroung-3 EEG artifact extraction
-40dB in approximately 1000 samples, and continuing a steadyn order to obtain useful information from EEG data in real-time,
convergence to -50dB by 5000 samples. it is often necessary to perform post-processing to remove artifacts
It was shown in Section 2.5 that the performance of thesuch as line noise and biological artifacts including those pertaining
algorithm (22) is not affected by the degree of circularity of to eye movement, captured in the form of electrooculogram (EOG)
the additive noise, such that doubly white noise is treated in and facial muscle activity represented as electromyogram (EMG).
similar manner to circular white noise, where the pseudo-covariancRemoval of the effect of such signals from the contaminated
vanishes. This was explored experimentally by systematicallEEG has been subject of study in previous years, with several
analysing the effect of various noise levels on the BSEmethodologies introduced that attempt to accomplish this utilising
algorithm (22). The circularity measurewas varied from a value both online and offline algorithms (Magio, 1997; Jung et al.,
of » = 0 (circular) to a value of- = 0.9998 (highly noncircular),  2000; Delorme et al., 2001; Barbati et al., 2004; Greco et al.,
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mixture directly in the time domain. To this end, the contaminated
EEG signals were paired as the real and imaginary components of
a complex signal and processed using the architecture described in
Section 2.5. In this manner, the phase-amplitude relationship and the
full cross-statistical information between symmetric electrode pairs
are contained in the corresponding complex-valued EEG signal, and
allow for the simultaneous processing of both channels. Further
iterations of the extraction process can then be used to obtain the
individual pure EEG signals, or even, pipelined to a further post-
processing stage, which would then extract the EEG signals based
on a desired fundamental property, such as predictability.
The electrodes were placed according to the 10-20 system (Fig. 9),
and sampled at 256Hz for 30 seconds. The EEG activity was
—a0d- a 06 recorded from electrodes placed at positions Fpl, Fp2, C3, C4,
_10 04 01, 02 with the ground placed at Cz, while the EOG activity was
02 recorded from the VEOG and hEOG channels with electrodes placed
0 7o Circ. above and on the side of the left eye socket.
SNR (dB) measure r T_hree studies were_performt_ad vyith the aim to remove the arti_facts
simultaneously. While the rejection of the power line noise artifact
is feasible by passing the recorded EEG signals through a notch
filter, this solution also leads to the removal of useful information
around the 50Hz range pertaining to the EEG signals, in particular
those within the gamma band (25Hz-100Hz). It would therefore
be desirable to automatically extract the line noise artifact along
2005; Delorme et al., 2007; Kumar et al., 2009). While offline with the biological artifact from the corrupted EEG signals. In the
algorithms are suitable for processing the recorded EEG data ifirst study we consider the removal of EOG artifactsyEBLINK'
clinical applications, it is necessary to utilise online algorithms forset)’ the second study focused on eye muscle artifacts from rolling
real-time applications such as those encountered in brain computgfie eyes (‘E'EROLL’ set), whereas the third study addressed the
interface (BCI) scenarios. removal of muscle activity from raising the eyebrow ¢EsrRow
In (Kumar et al., 2009) the authors propose an online algorithmset).
whereby the recorded EEG signals are transformed to the wavelg gl the studies, the temporal signals from each channel pair were
domain and the EOG contaminants are removed using an adaptiv@mbined to form three complex EEG channels, given by
recursive least squares (RLS) algorithm, before transforming the
signal back to the time domain. Simulations demonstrate good z1(k) = Fpl(k) + jFp2k)
performance from the algorithm, however, it would be advantageous xo(k) = C3(k) + jC4(k)
to perform all the necessary processing in the time domain, as
this way the signals are retained in their original form and less w3 (k) = OL(k) + jJO(k). (32)
computation is required. This construction of the complex EEG signals allows for the
In its basic form, ICA can be applied to the contaminated EEGsimultaneous processing of the amplitude and phase information
recording and the artifacts removed through visual inspection. Agising the K-cBSE algorithm (22). Note that the EOG channels were
detailed in (Vigario, 1997), an ICA algorithm separates the recordednot part of the mixtures considered. They are only used to assess the
EEG mixture into its original sources as independent componentgerformance of the proposed BSE algorithm in the extraction of the
(ICs), with artifact sources identified and removed. In semi-EQG artifacts.

automatic (Greco et al., 2005) and automatic (Delorme et al., 2001)

artifact removal methodologies, several classifications (markers@_g_z Performance measure#\s we have no knowledge of the
based on the statistical characteristics of the ICs are considered th@ﬁxing process, the Performance Index (31) is not app|icab|e for
allow for the detection of artifacts in the contaminated EEG, whichthjs case and thus several alternative quantitative and qualitative
are then compared against thresholds that determine the rejectiReasures were used for the evaluation of the algorithm performance.
of particular components. In these methods, both the kurtosis angihese are briefly discussed below.

entropy of independent components have been utilised to identify

and remove the artifacts. While the EEG mixtures typically have

near-zero kurtosis values, artifacts such as EOG exhibit peaky 1. Quantitative metrics

distributions with highly positive kurtosis values (Delorme et al.,

2001), while periodic power line noise has a highly negative kurtosis 3. Kurtosis The kurtosis value. of the complex extracted

|
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Performance Index (dB)

20 30

Fig. 8. Comparison of the performance of algorithm (22) with respect t
changes in the SNR and the degree of noise circularity.

value. This has been used as the main discrimination in defining Signa|s indicate the success of the a|gorithm in extracting
classifications based on the the fourth order moment. super-Gaussian or sub-Gaussian artifact in a specified

order. In addition, the magnitude of the kurtosis: of the
3.3.1 Data acquisition and methodOur aim is to remove real and imaginary components of the extracted sources are
artifacts as independent sources extracted from the recorded EEG used to automatically select desired components.
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b. Power spectra Correlationin a similar manner to (Barbati EOG artifacts are visible (with a duration of around 1 seconds);

et al., 2004), the correlation coefficient between theconstant frequency components are seen around the 50Hz range
power spectra of the complex-valued recorded artifactdue to the line noise. Note that due to the low sampling rate of the
(e.g. EOG) and extracted sources, and likewise, therecording device, the 50Hz frequency componentis not well defined
correlation coefficient between the pseudo-power spectrén the T-F analysis and results in scattering of frequency components
of the complex-valued recorded artifact and the extractecbetween 40Hz-60Hz.
sources is calculated. This measure indicates the degreghe complex EEG signals formed using (32) were processed using
of similarity between the extracted and originally recorded the K-cBSE algorithm with the value gf = {5,0.09} andj =
artifact, and can be used to automatically select the{—1,1} for the consecutive iterations and= 0.975. The choice of
extracted source pertaining to the biological artifact, value for3 ensures that the line noise is initially extracted, followed
while also quantifying the degree of performance of theby the EOG components in the second iteration. The normalised
extraction algorithm. kurtosis values of the original real-valued EEG signals and the
extracted EEG signals are given in Tables 3 and 4.

2. Qualitative metrics The order of the extracted complex signals were as expected, with

the first extracted sourcg (k) (line noise) being sub-Gaussian

a. Hilbert-Huang Time-Frequency Analysi8y employing  and y2(k) (EOG) super-Gaussian. The imaginary component of

time-frequency (T-F) analysis using the Hilbert-Huang (H- y: (k) had the smallest kurtosis, and was automatically chosen as
H) transform (Huang et al., 1998; Huang and Shen, 2005)the extracted line noise source, while the near zero kurtosis of the
we can qualitatively assess the extraction performanceeal componentR{y:(k)} indicates an EEG source. Also, both
through comparison of the frequency components of thecomponents of the second extracted source, having a high kurtosis
mixture and extracted source during the recording sessiorvalue, were considered as the extracted EOG sources. Fig. 10(c)
Also, the T-F analysis of the extracted artifacts will shows the T-F plots of the imaginary components of the first
demonstrate the corresponding frequency components aneitracted signaj, (k) where the presence of the power line artifact
their changes over time, making it possible to assess thés seen, while in Fig. 10(d) the T-F plot of the real and imaginary
quality of the extraction procedure over the recording time.components ofj»(k) is shown where the frequency components of
In comparison to Fourier transform based T-F analysis,the EOG artifacts are seen.

such as the Short-Time Fourier Transform, the H-HWe next concentrate on the power spectrum and pseudo-power
transform results in much more detailed spectrogram forspectrum of the complex EOG signal, constructed in a similar
a given resolution. The intrinsic mode functions (IMFs) manner to that in (32); the extracted soureg$k) and y2 (k)
required by the H-H transform were obtained using are depicted in Fig. 10(e). Notice that the distribution of power
a multivariate empirical mode decomposition (MEMD) Spo¢ and pseudo-poweszo¢ is concentrated respectively in the
algorithm (Rehman and Mandic, 2010), where the frequency range (0-5)Hz and 50Hz. The spectgyn and pseudo-

real and imaginary component of the complex-valuedspectrums,, of the first extracted source can be seen to contain
signals were taken as a single multivariate signal andaround 0dB of power for a frequency of 50Hz, while having an
processed simultaneously. It was observed that thisaverage power of -40dB in the (0-5)Hz frequency range. These
resulted in a spectrogram with better resolution than thosgesults can also be seen by comparing the frequency components
obtained through the separate processing of the individuabf the recorded EEG mixture and extracted artifactual sources
components using the standard EMD algorithm. around the 50Hz range, shown in Fig. 10(f). While the presence
. Power Spectral Distribution The power and pseudo- Of the power line artifact is evident in all recorded channels, after

power spectra of the complex-valued extracted artifactsthe extraction procedure the 50Hz frequency component is only
were compared to those belonging to the complex-

valued recorded artifact. In addition, the pseudo-spectrum
demonstrates the quality of the proposed method in

extracting noncircular sources. It is also possible to

consider the cross-spectrum of the recorded and extracted
sources (Palmer et al., 2009).

3.3.3 Case Study 1 — EOG extractioifhe ‘EYEBLINK’ dataset
contained the EEG recordings contaminated with eye blink artifact
as well as line noise. The recorded EEG and EOG signals are plotted
in Fig. 10(a), where the effect of the EOG activity is pronounced in
the frontal lobe (Fpl and Fp2 channels), with the effect diminishing
with an increase in the distance of the electrodes to the eyes. The
effect of the line noise is also visible on the occipital O1 and
02 channels. The H-H T-F spectrogram (Fig 10(b)) describes the

frequency changes of the ensemble average of the 6 EEG channélig. 9. Placement of the EEG electrodes on the scalp according to the

over the recording period. In correspondence with the time plot, théecording 10-20 system.

10
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Fig. 10. Recorded and extracted artifacts from ther&@BLINK’ set. (a) Recorded EEG signals from theY#EBLINK' set. (b) The Hilbert-Huang time-
frequency plot of the recorded EEG signals. (c) The Hilbtwng time-frequency plot of the extracted line nosgy; (k) }. (d) The Hilbert-Huang time-
frequency plot of the extracted EOB{y2(k)}, S{y2(k)}. (€) The power spectra (S) and pseudo-spectra (pS) of tleedet EOG, and the extracted
signalsy1 (k) andy2 (k). (e) The power spectra (S) and pseudo-spectra (pS) of tbedext EOG, and the extracted signgl$k) andyz (k). (f) Frequency
components of the recorded EEG signals and the extractéactstat the 50Hz frequency range. After extraction, thegqudime noise is contained i¥{y1 }.
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Table 3. Normalised kurtosis values of the recorded EEG/EOG sigmals i

to the 50Hz power line noise.
real- and complex-valued form

In the extraction procedure, the step-size of the K-cBSE algorithm
wasp = {5,0.2} and3 = {—1,1}, while « = 0.975. The T-F

analysis of the extraction are illustrated in Fig. 11(c)—(d), and the
kurtosis values of the complex-valued extracted signals and their

Set
Electrode ‘BYEBLINK’ ‘EYEROLL ‘EYEBROW

Fpl 7.7452 3.3601 7.4152 real and imaginary components given in Table 4.

Fp2 6.4793 2.2608 7.5034 The real component of the first extracted souftgy: (k) }, having

C3  -0.2922 -0.0938 -0.4951 the smallest kurtosis ot (%{y1) = —1.1958 contained the power

C4 1.1548 1.2469 1.5348 line noise artifact. The eye muscle activity and EOG artifacts were

o1 -0.2550 0.8303 -0.5989 collectively extracted using the real and imaginary components of

02 -0.9574 -0.6782 -0.9526 the second extracted sourge(k). The five instances of the eye
VEOG 7.7541 4.8385 10.8653 muscle activity and the EOG can be detected in Fig. 11(d), while the
hEOG -0.1475 2.3883 -0.3264 lack of power line noise frequency components in the 50Hz range is
x1(k) 7.0318 2.6390 6.1156 visible.
x2(k) 0.1006 0.4501 -0.0146 These results were also confirmed based on the power spectra of
z3(k) -0.9164 -0.4601 -0.9285 the recorded artifacts and the extracted sources, given in Fig. 11(e).

While the PSD and pPSD of the complex-valugdk) contained

the 50Hz components, these were suppressed to -40dB in the spectra
) o ) of y2(k). The frequency components of the mixture channels and
p_rege_nt inS{y1 ()} L|kew|se, the spectra Q;Q(k) lllustrate the extracted artifacts in the 50Hz range also showed that the line noise
diminished effect of the line noise source with a power of -20dB, _ tit- ¢ \was successfully removed (see Fig. 11(f)). Conversedy, th

while retaining the frequency components of the EOG in the IoWspectral components pertaining to the eye muscle and EOG artifacts

frequency range. To quantify the observed results, the correlatiogre present in the PSD and pPSDafk) corresponding to the
coefficient between the recorded EOG’s PSD and pPSD and tho -10)Hz range of the PSD and pPSD of the complex-valued EOG.
of the extracted sources were calculated (Barbati et al., 20043y,q ¢ rrelation coefficient between the PSD spectra of the complex-
and presented in Table 4. For the extracted soyidd) these 5,64 recorded EOG channel and extracted sourge) is 0.8244,

values were respectively 0.2313 and 0.2847, whereas for thee;ourwh”e the correlation between the pPSD spectra was 0.8222; these
y2(k) they were 0.9698 and 0.9822. The correspondence of th@alues were respectively 0.0792 and 0.1844yfdk)
results between the power and pseudo-power spectra demonstrates

the effectiveness of the methodology in extracting artifacts in the

complex domain. 3.3.5 Case Study 3 — EMG extractionn the ‘EYEBROW set, the
EEG mixture was heavily contaminated with EMG artifacts from
3.3.4 Case Study 2 — Eye muscle artifact extractidme raising the eyebrows, and are shown in Fig. 12(a) with kurtosis
‘EYEROLL’ dataset had contained artifacts from round movementvalues given in Table 3. The EMG signals were recorded using the
of the eye during the recording session with EOG activity from eyevEOG and hEOG electrodes, with the effect more prominent on the
blinks, shown in Fig. 11(a) and kurtosis values given in Table 3.  VEOG recording. All EEG channels were affected by the artifact,
The resultant electrical activity from the artifacts were recordedthough this is not clearly visible in the occipital lobe channels
using the VEOG and hEOG channels, with EOG activity seen ordue to the strong presence of power line noise. In the T-F domain
the VEOG channel at time instants 5s, 13s, 17s, 23s, 25s and 29%;ig. 12(b)) the EMG frequency range had a large span containing
and eye muscle activity present more clearly on the hEOG channddoth low and high frequency components, present in the duration
with a duration of around 2s. The eye muscle artifact was presentf the raising of the eyebrows and lasting for around 2s. In addition,
on all six EEG channels, while the EOG artifact is strong on thethe 50Hz frequency component cloud reflecting the power line noise
Frontal lobe electrodes and the effect of the power line noise is seecan also be seen.
more strongly on the central and occipital lobe electrodes. The HThe extraction of the artifacts was performed using the K-cBSE
H T-F analysis of Fig. 11(b) illustrates the presence of frequencyalgorithm (22) with step-sizee = {2,0.2}, 3 = {-1,1} and
components up to 10Hz, as well as scattered frequencies belonging= 0.975.

Table 4. Normalised kurtosis values of the extracted artifacts, &edcbrrelation coefficient of the power and pseudo-powectspeespectively with the
spectra of the recorded EOG

Spectra corr.
Set Signal K. Kgr(R, Q) PSD pPSD

‘EVEBLINK’ y1(k) -1.2223 -0.0893,-1.2392 0.2313 0.1847
y2(k) 7.3914  7.5051,5.1583 0.9698 0.9822
‘EVEROLL’ yi(k) -1.1744 -1.1958,-0.0341 0.0792 0.1844
y2(k) 3.0644 3.5217,2.7289 0.8244 0.8222
‘EVEBROW y1(k) -1.0100 -0.7254,-1.1319 0.1287 0.1078
y2(k) 4.5144 5.4278,6.3792 0.7593 0.7906

12



Kurtosis based blind source extraction of complex noncircular signals with application in EEG artifact removal in real-time

1

Fp2 Fpl

;

%

1

f

e

e

hEOG VEOG 02

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
time (s)
(a)
60
50 i LR S e .
401 B
—~
N
I
=
)
c 30 4
(]
=]
o
£
201 1
10+ —
N
0 L RtV p L | L Ly T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3(
time (s)
(©
0 .0
~
o - o _
g 20 T 20
-4 O -4
} ¢
” ‘e
-80 -80
20 40 0 20 40
0 0
o -20 m 20
o Z
=, —40 o 40
>
0~ -60 fQ -60
-80 -80
20 40 20 40
0 0
s —~
— [ R
@ 20 g 20
S -40 m(; -40
»n~ -60 N -60
-80 -80
20 40 20 40
frequency (Hz) frequency (Hz)
(e)

60
50 1
4ot 1
N
<
oy
c 30 i
[}
=}
o
1
= 20t 1
101 1
WA A WAL TN AN A o W A
AL N PVt N, NIy
U S A SN
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
time (s)
(b)
60
50 1
401 1
—
N
I
<
3
c 30 4
[}
>
=y
£
20 1
10+ q
v , VN \ £ _"\ SN ~
N A i Lo Nt o T A
0 RN —_—= X K
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
time (s)
(d)

Power spectrum of mixture

—=— Fpl
—=— Fp2

—*—C4
—e—01
02
VEOG
hEOG

power (dB)

49 49.5 50 50.5 51

power (dB)

frequency (Hz)

®

Fig. 11. Recorded and extracted artifacts from the HRoLL’ set. (a) Recorded EEG signals from therRoLL’ set. (b) The Hilbert-Huang time-frequency
plot of the recorded EEG signals. (c) The Hilbert-Huang timeetuency plot of the extracted line noi®{y: (k) }. (d) The Hilbert-Huang time-frequency
plot of the extracted EO®{y2 (k) }, S{y2(k)}. (€) The power spectra (S) and pseudo-spectra(pS) of tbedet EOG, and the extracted signgi¢k) and
y2 (k). (f) Frequency components of the recorded EEG signals anetinacted artifacts around the 50Hz frequency range. Aftéaction, the power line

noise is contained ifR{y; }.
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Fig. 12. Recorded and extracted artifacts from the HBROW set. (a) Recorded EEG signals from therfBBRow’ set. (b) The Hilbert-Huang time-frequency
plot of the recorded EEG signals. (c) The Hilbert-Huang timeguency plot of the extracted line noi8gy: (k)}. (d) The Hilbert-Huang time-frequency plot
of the extracted EMG{y2(k)}, S{y2(k)}. () The power spectra (S) and pseudo-spectra (pS) of thedet EMG, and the extracted signalgk) and
y2(k). (f) Frequency components of the recorded EEG signals anexthacted artifacts around the 50Hz frequency range. Afterction, the power line
noise is contained i&{y1 }.
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Fig. 13. EEG after extracting artifacts from the YEBLINK’, ‘E YEROLL" and ‘EYEBROW set. (a) EvEBLINK: Kurtosis-based method. (b)YEBLINK :
Predictor-based method in (Javidi et al., 2010). (eERoLL: Kurtosis-based method. (dvEBRow: Kurtosis-based method.

As shown in Fig. 12(c) and Fig. 12(d), the algorithm successfullypseudo-power spectral density were strong in the (0-10)Hz range
extracted the power line noise as the imaginary component of theith an amplitude of around -10dB and in the (20-40)Hz range,
first extracted signal: (k) and the EMG signal as the real and though having a much lower value. In addition, a single spike at
imaginary components of the second extracted sigpgt). From  50Hz of amplitude -10dB indicates the presence of power line noise.
the T-F plot ofy» (k) in Fig. 12(d), the complete EMG frequency After the extraction, the power line noise was contained in the
component range was successfully extracted, with power line noisspectra of they; (k) while the (0-10)Hz and (20-40)Hz frequency
frequency components not present. components were present in the PSD and pPSDy.¢k). For
Considering the power spect®er¢ and pseudo-power spectra the ‘EYEBROW' set, the spectra correlation coefficients between
Senme in Fig. 12(e), the spectral distribution of the power and Sgnc andSg ¢ and those ofj1 (k) andy2 (k) were respectively
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{0.1287,0.1078} and{0.7593,0.7906 }. Also, the 50Hz frequency uniqueness of the solutions have been discussed and variable step-

range for the contaminated mixture and the extracted artifactsize variants of to the algorithm have been addressed. It has been

are shown in Fig. 12(f). It can be seen that after the extractiorshown that the algorithm is robust to the degree of noncircularity of

procedure, the 50Hz component is containedify, (k)}, while the additive noise and the success of the algorithm over increasing

in comparison to the EOG and eye muscle extracted component®ise levels has been demonstrated. Simulations in noise-free and

from the ‘EYEBLINK’ and ‘EYEROLL’ studies (see Fig. 10(f) and noisy environments illustrate the successful performance of the

Fig. 11(f)), component®{y2(k)} and S{y2(k)} had a higher algorithm in the extraction of both circular and non-circular signals,

power level in this range, reflecting the wider frequency range ofwhile the extraction of EOG and EMG artifacts from recorded

the EMG artifact. EEG signals in real-time demonstrate a practical application for the

proposed methodology.

3.3.6 EEGs after EOG and 50 Hz power line artifacts removal.

Fig. 13 shows the EEG waveforms after the extraction of

‘EYEBLINK’, ‘EYEROLL’, ‘E YEBROW and 50 Hz noise artifacts. APPENDIX: UPDATE OF e(k) FOR THE GNGD-TYPE

The top two plots compare the proposed method with the widelyCOMPLEX BSE

linear prediction based one in (Javidi et al., 2010). Notice for

the first two EEG electrodes Fpl and Fp2, the predictor-base

technique in (Javidi et al., 2010) performed well, with the successfu

removal of the EFEBLINK artifact. However, it performed poorly in

terms of the 50Hz noise removal, which caused theEELINK’

artifact to be presgnt (l_)ut attenugted)_ in the remaining EEGand the gradient derived as follows. Defining the adaptive step-size

electrodes. Comparing Fig. 13(c) with Fig. 11(a), it is clear thatin (25) as

the ‘EYEROLL’ artifact was either heavily attenuated or removed;

whereas comparing Fig. 13(d) with 12(a) demonstrates that it is ~ 1
, : A v(k) =

quite challenging to remove completely theyEBRoOW artifact; \¢(y(/€))\2 Ix(k)||2 + e(k)

however, the 50 Hz noise has been removed almost perfectly, as

illustrated by comparing the bottom plots of Figs. 13(d) and 12(a). the gradienv .7 is given by

ghe gradient descent update for the regularisation paramiéteis
i/vritten as

e(k+1)=e(k) — pVEJL:EUﬁD

r ow*(k ov(k —
= (g Y

4 DISCUSSION

Both qualitative and quantitative metrics have showed that thg nere

kurtosis-based extraction method yields enhanced results for real-

time extraction of artifacts. Excellent results were obtained for the ow (k)  ow"(k) _ ¢*( (- 1))x*(k _ 1y

removal of eye blink, eye roll and power line artifacts. Although ou(k—1)  Ov(k—1) 4

artifacts arising from eye rolling and raising the eye brow might .

seem similar to that of an eye blink, it i i 09" (y(k — 1))
ye blink, it is much more challenging T I )

to perform their complete removal in the context of real-time EEG du(k —1)

processing, as they involve longer firing of larger groups of muscles. ~—¢" (y(k: - 1))x*(k —-1)

These are critical cases, as the EMG source goes into saturation; and

to our knowledge, these artifacts have not been considered before énd only the driving term of the recursion is considered, and

the literature. These results are promising, as our technique operates

real-time, in contrast to methods such as in @rig, 1997; Jung ov(k—1) —p

et al., 2000; Delorme et al., 2001; Barbati et al., 2004; Grecoetal. 0Oe(k —1) [o(y(k —1))2 - [|x(k — 1)|13 + e(k — 1)]2'

2005; Delorme et al., 2007; Kumar et al., 2009). The advantage of

the proposed kurtosis based method as compared to our previowghile the derivative in (33) is calculated according to tG&

method (Javidi et al., 2010) is also in that the proposed methodalculus,e(k) is real-valued and so only the real component of the

allows us to select a particular artifact to be extracted. For instance&®*—derivative in (33) is required. This leads to the update equation

if we wish only the EOG artifact such as eye-blink to be removed,given in (26).

the parametef in (22) can be set to unity; whereas in (Javidi et al.,

2010), we do not have full control over which artifact is going to be
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