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Abstract—A class of second-order complex domain blind
source extraction algorithms is introduced to cater for signals
with noncircular probability distributions, which is a typical
case in real-world scenarios. This is achieved by employing the
so-called augmented complex statistics and based on the temporal
structures of the sources, thus permitting widely linear (WL)
predictability to be the extraction criterion. For rigor, the analysis
of the existence and uniqueness of the solution is provided based
on both the covariance and the pseudocovariance and for both
noise-free and noisy cases, and serves as a platform for the deriva-
tion of the algorithms. Both direct solutions and those requiring
prewhitening are provided based on a WL predictor, thus making
the methodology suitable for the generality of complex signals
(both circular and noncircular). Simulations on synthetic non-
circular sources support the uniqueness and convergence study,
followed by a real-world example of electrooculogram artifact
removal from electroencephalogram recordings in real time.

Index Terms—Augmented complex least mean square (ACLMS),
blind source extraction (BSE), complex noncircularity, complex
pseudocovariance, electroencephalogram (EEG) artifact removal,
noisy mixtures, widely linear (WL) model.

I. INTRODUCTION

B LIND SOURCE separation (BSS) is an active topic of re-
search in the signal processing community and has found

application in a wide range of areas, including biomedical engi-
neering, communications, radar, and sonar [1]. Various method-
ologies have been discussed in the past two decades to separate
latent sources from their linear (and nonlinear) mixtures in both
noise-free and noisy environments [2]–[7]. The BSS paradigm
aims to find an inverse of the mixing system in order to recover
the original sources from the observed mixtures without explicit
knowledge of the mixing process or the sources. This is achieved
by a variety of optimization methods, including the minimiza-
tion of mutual information and maximization of likelihood and
non-Gaussianity [8], [9].
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Algorithms based on these methods use either deflationary or
symmetric orthogonalization procedures to separate the source
signals, that is, one by one or simultaneously. However, in some
situations, it may be more appropriate to extract only a single
source of interest based on a certain fundamental signal prop-
erty; this procedure is called blind source extraction (BSE) [2].
BSE offers advantages compared with standard BSS methods
as it can be used in large-scale problems where only a small
subset of sources with specific properties may be of interest.
This leads to lower computational complexity and the possi-
bility to relax the need for preprocessing or postprocessing. Al-
gorithms for the BSE of real-valued sources utilize both second-
and higher-order statistical properties of signals to discrimi-
nate between the sources. Algorithms based on higher-order
statistics achieve this by minimizing cost functions typically
based on skewness [10] and kurtosis (and generalized kurtosis)
[2], [11]–[13]. Alternatively, the predictability of the sources
(arising from their temporal structure) leads to another class
of algorithms that minimize cost functions based on the mean
square prediction error (MSPE) [2], [14], [15].

The algorithms described in [2] and [14] minimize the MSPE
at the output of a linear predictor and in an online adaptive
manner. While the different sources have different prediction er-
rors, due to the changes in the signal magnitude through mixing,
their power levels and thus the prediction errors can vary. The
normalized MSPE was thus proposed as an alternative extrac-
tion criterion to remove the ambiguity associated with the error
power levels [16]. A modified version of this cost function was
subsequently used to extract source signals from noisy mixtures
based on their temporal features [17], [18].

The recent resurgence of complex domain signal processing
[19], [20] has been made possible due to advances in complex
statistics [21]–[23]. The enhanced modeling of complex signals
and the utilization of the full statistical information available
has been achieved by considering both the pseudocovariance

and the traditional covariance . In addition,
the so-called calculus (also known as Wirtinger calculus)
has allowed for another perspective in the analysis of complex
functions, specifically those that do not satisfy the strin-
gent Cauchy–Riemann conditions for analytic (holomorphic)
functions [24], [25].

The advantages offered by augmented complex statistics
have already been exploited in supervised learning, where
algorithms such as augmented complex least mean square
(ACLMS), widely linear (WL) affine projection algorithm, and
WL infinite-impulse-response (IIR) filters have been demon-
strated to be suitable for processing the generality of real-world

1549-8328/$26.00 © 2010 IEEE

Authorized licensed use limited to: Imperial College London. Downloaded on July 27,2010 at 09:42:56 UTC from IEEE Xplore.  Restrictions apply. 



JAVIDI et al.: COMPLEX BLIND SOURCE EXTRACTION FROM NOISY MIXTURES USING SECOND-ORDER STATISTICS 1405

data [26]–[28]. These algorithms are based on the concept of
WL modeling, whereby complex data are modeled as a linear
function of both the complex signal and its complex conju-
gate. In this manner, the available “augmented” second-order
information is completely utilized, resulting in improved per-
formance.

In the field of unsupervised learning, complex BSS algo-
rithms [29]–[31] utilizing the augmented complex statistics are
WL extensions of the traditional ones [1], [32]. As BSE based
on the temporal structure of sources utilizes linear prediction, it
is therefore natural to extend the BSE paradigm to the complex
domain. This will offer a new perspective and generalization
of real-valued BSE methods, as by design these algorithms
cater both for noncircular (improper) and second-order circular
(proper) sources; they simplify into their real-valued counter-
parts when operating on real signals.

In our previous work [33], it was shown that by utilizing a
WL predictor, it was possible to extract both complex circular
and non-circular signals. Generalizing this idea, we here pro-
pose a class of algorithms for the blind extraction of the gener-
ality of complex-valued sources from both noise-free and noisy
mixtures. Algorithms based on prewhitened mixtures are also
derived and shown to provide simpler solutions. By considering
a general complex doubly white noise model, these algorithms
are designed so as to successfully extract sources from noisy
mixtures with both circular and noncircular additive noise.

This paper is organized as follows: In Section II, we provide
an overview of complex statistics calculus and discuss com-
plex-valued noise and WL modeling. In Section III, the complex
BSE problem is introduced, the noise-free cost function and the
online algorithm are briefly reviewed, and the cost function and
the respective online algorithm for the noisy case are given. Sim-
ulations using synthesized complex signals and real-world elec-
troencephalogram (EEG) signals in Section IV demonstrate the
performance of the mentioned algorithms followed by analysis
of the results. Finally, Section V concludes this paper.

II. PRELIMINARIES

A. Second-Order Statistics of Complex Random Vectors

For a complex random vector , the com-
plete second-order information is provided by the covariance
and pseudocovariance matrices defined as [22]

(1)

The covariance is a standard complex covariance, whereas
the pseudocovariance accounts for the correlation between
the real and imaginary components. A random vector with a
vanishing pseudocovariance is termed second-order circular or
proper [21], [23]. In general, the term circular refers to a signal
with rotation invariant probability distribution, whereas proper-
ness (second-order circularity) specifically refers to the second-
order statistical properties. Note that the majority of complex
signals encountered in signal processing applications1 are non-

1Either those complex by design such as communications signals or those
made complex by convenience of representation such as wind and EEG signals
[20].

circular. It is therefore necessary to have a complete and uni-
fied treatment of such signals when designing complex BSS
algorithms.

Complex random vectors are considered uncorrelated if the
covariance and pseudocovariance matrices are diagonal [34]. In
this case, the diagonal elements of the covariance and pseu-
dovariance matrices are denoted by the variance and the
pseudovariance , which is normally complex valued [35].

B. Brief Overview of Calculus

When dealing with functions in the complex domain, it is re-
quired that the Cauchy–Riemann equations are satisfied when
calculating the gradients. Most cost functions encountered in
signal processing are nonanalytic real-valued functions of com-
plex variables (error power), and thus, standard calculus in
does not allow for a straightforward evaluation of their deriva-
tives. However, by using calculus, it is possible to perform
derivatives of real-valued cost functions directly in and in a
straightforward manner (for more detail,2 see [20] and [25]).

In the context of calculus, a cost function
can be considered as a function of a complex vector and its

complex conjugate such that ,
where and are the conjugate coordinates. Alternatively, it
can be written in terms of the real and imaginary components of
the complex variable and given as .
The derivatives are taken with respect to both and while
keeping the other variable constant, that is,

-

- (2)

It can be shown that the direction of steepest descent is given
by the derivative with respect to . The use of calculus
is not limited to nonanalytic functions and can be applied for
any general complex function. The elegance of this framework
lies in the fact that when applied to holomorphic functions, the
derivative vanishes and so is equal to the standard com-
plex derivative defined based on the Cauchy–Riemann equa-
tions ( -derivative), whereas when applied to nonholomorphic
functions such as real-valued cost functions, it is equal to the
standard pseudogradient ( -derivative).

C. Complex-Valued Noise

In real-valued BSS, the additive noise is commonly as-
sumed to be white Gaussian and independent of the source sig-
nals. In the complex domain, the situation is different, and we
shall consider noise in the following two forms [22].

1) Circular white noise: While the assumption of whiteness
holds for the covariance matrix, the pseudocovariance
vanishes, that is,

2The online material [25] by K. Kreutz-Delgado provides an excellent and
comprehensive account of calculus, whereas [20] uses calculus con-
cepts to introduce widely linear adaptive filtering algorithms.
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where denotes the identity matrix. In other words, the
powers and of the real and imaginary parts of the
complex noise are equal, and as

, the pseudocovariance matrix of proper signals vanishes.
2) Doubly white noncircular noise: The condition of white-

ness is assumed for both covariance and pseudocovariance
matrices so that

The power levels and distributions can be different for
the real and imaginary parts. Thus, the probability density
functions of doubly white noise are in general non-circular
(not rotation invariant) and are named after the distribution
of the amplitude, as shown in Fig. 1.
The circularity measure is given as the following ratio of
the standard deviation of the real to imaginary component
of the signal [29], [36], [37]:

(3)

where the value of indicates equal powers in the
real and imaginary components and thus a proper signal,
whereas indicates improperness.

D. Widely Linear Modeling

To allow for the design of algorithms that cater for the gener-
ality of complex signals, we utilize the WL model [38] for the
prediction filter. The WL model is linear in both the complex
input and its complex conjugate and can be written as

(4)

where and are complex-valued weight vectors. The advan-
tage of this approach can be seen by the form of the correla-
tion matrices introduced by the augmented input vector

, that is,

(5)

This demonstrates that the second-order information available
in the signal is fully modeled by the WL approach, fully de-
scribing noncircular signals that have a nonzero pseudocovari-
ance, whereas for circular signals, the value of in (4) is zero
and the pseudocovariance vanishes. Utilizing this approach, in
[33], a complex BSE algorithm using a WL predictor was shown
to outperform the corresponding one based on a linear predictor.
We will therefore consider the WL model within BSE schemes
for both noise-free and noisy signals.

1) Brief Derivation of the ACLMS Algorithm: Based on the
discussion on WL modeling of complex signals and by com-
bining elements of calculus, we briefly provide the deriva-
tion of the ACLMS algorithm [26], [39], which is the basis for
our proposed prediction filter.

Consider the complex-valued input and a finite-impulse-
response WL filter in the prediction setting, with filter coeffi-

Fig. 1. Scatter plots of complex white noise realizations. (Top row, left) Cir-
cular uniform noise and (right) circular Gaussian noise. (Bottom row, left) Non-
circular uniform noise �� � �� and (right) noncircular Gaussian noise �� �
���. The circularity measure � is defined in (3).

cients and , output , and the desired signal . By
using an adaptive version of the WL model (4), the error signal

is given by

(6)

The corresponding cost function
is minimized with respect to the two coefficient

vectors of the WL filter using a steepest-descent adaptation
given by

(7)

(8)

Recall that the direction of steepest descent is given by the
-derivative for both update equations. By using calculus

and the chain rule,3 we then simply calculate

and substitute in (7) and (8) to form the complete update equa-
tions for the ACLMS algorithm [20]

(9)

(10)

It is also possible to consider the complex vectors as “aug-
mented” vectors given by the pair of complex vector and its
complex conjugate, to obtain

(11)

3For a complex vector-valued composite function � � �, the chain rule
states that ���������� � �������������� � ������ ���� ���� and
��������� � � ������������� � � ������ ���� ��� � [25].

Authorized licensed use limited to: Imperial College London. Downloaded on July 27,2010 at 09:42:56 UTC from IEEE Xplore.  Restrictions apply. 



JAVIDI et al.: COMPLEX BLIND SOURCE EXTRACTION FROM NOISY MIXTURES USING SECOND-ORDER STATISTICS 1407

where , is the aug-
mented coefficient vector, is the aug-
mented input vector, and is a
complex scalar value measuring the distance of the output of
the predictor to the desired signal.

The performance of this algorithm for the prediction of
complex-valued wind signals was analyzed in [39] and demon-
strated superiority over the standard complex least mean square
(CLMS) algorithm in the prediction of noncircular signals. As
derived, in the prediction of circular signals, the WL filter be-
haves in a similar fashion to a standard filter as the “conjugate”
part of the update (10), that is, , vanishes to form the standard
CLMS algorithm. This makes the ACLMS an ideal candidate
for BSE-based linear prediction of both proper and improper
signals in the complex domain.

III. COMPLEX BSE OF NOISE-FREE AND NOISY MIXTURES

A. Normalized MSPE

The mixing vector at time index is observed
from the linear mixture of the complex sources as

(12)

where is the mixing matrix, and de-
notes the additive noise. Here, it is assumed that the number of
observations is equal to that of the sources. The next section
shows how the overdetermined case can be used for the estima-
tion of the second-order statistics of the noise .

The sources are assumed to be stationary and spatially
uncorrelated with unit variance and zero mean, with no assump-
tions regarding their second-order circularity. For a lag , we
can therefore formulate the covariance and pseudocovari-
ance as

(13)

Fig. 2 shows the blind extraction architecture for complex sig-
nals based on the minimization of the MSPE. For the observa-
tion vector , the extracted signal is formed as

(14)

The aim of the demixing process is to find a demixing vector
such that and thus extract

only a single source with the smallest MSPE. The prediction
error is given by

(15)

where denotes the output of the prediction filter and
given by

(16)

Fig. 2. Complex BSE algorithm using a WL predictor.

where and are the coefficient vectors of length ,
and is a delayed version of the extracted signal given by

. The length of the filter
affects the performance of the predictor such that sources with
rapid variations can be extracted using a short tap length while
smoother sources require a much larger tap length [14]. By up-
dating the coefficient vectors adaptively, it is possible to intro-
duce the largest relative difference in the MSPE as a criterion4

for extraction [16].
The MSPE can then be calculated as

(17)

where

The operator denotes the real part of a complex quantity.
We can see that the prediction error is a function of both covari-
ance and pseudocovariance of the sources, and as the sources are
assumed uncorrelated, and are diagonal matrices with
the value of the th element corresponding to the error of the

th source . Denoting this value by , the MSPE re-
lating to is given as

(18)

where . Due to the
vanishing pseudocovariance of complex circular
sources, the MSPE in (17) and that given in (18) for the th
source simplify and are only functions of the covariance matrix.

4It is also possible to assign fixed values to the coefficient vectors � and �;
however, this results in poorer performance.
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A complete derivation of the extraction based on MSPE as the
extraction criterion is given in the Appendix.

B. Noise-Free Complex BSE

1) Cost Function: The algorithms derived for the complex
BSE of noise-free mixtures are based on a cost function that
minimizes the normalized MSPE. As described in [16], the vari-
ation in the magnitude of source signals results in an ambiguity
of the power levels, and so algorithms based on the minimiza-
tion of the MSPE cannot effectively extract a source of interest.
This can be seen by considering (17) and noticing that changes
in the values of and can effectively be absorbed into the
mixing matrix, thus enabling the minimization independent of
the source power levels. This way, by using the MSPE, this am-
biguity is removed as different signals exhibit different degrees
of normalized predictability despite the varying power levels.

The normalized MSPE cost function is therefore given as

(19)

where and is a function of the demixing vector and
the coefficient vectors. In the noise-free case, the optimization
problem for the demixing vector can be expressed as

(20)

where the norm of is constrained to unity, and
only has a single nonzero value with unit magnitude that corre-
sponds to the source with the smallest normalized MSPE. This
can be illustrated by observing the cost function in (19) and its
components in (17), that is,

(21)

and noting that the sources have unit variance and the noise vari-
ance is zero. The cost function [see (19)] then becomes

(22)

Consider a new variable and the associated cost
function

(23)

where . With this constraint, the minimum of (23) is a
vector with a single nonzero element with arbitrary phase
and unit magnitude at a position corresponding to the smallest
combination of the diagonal elements of and . In the
case of circular sources, this argument simplifies so that only the
smallest diagonal element of is considered. This solution
is similar for with only a single nonzero value. Likewise,
the optimal value of the demixing vector can be recovered as

, where the symbol denotes the matrix
pseudoinverse. As described in [17], if a value exists such

that and hence respectively assume their optimal value to
be and , then the cost function of (19) can successfully
be minimized with respect to .

2) Algorithms for the Noise-Free Case: We will use a gra-
dient-descent approach to update the values of the demixing
vector and the coefficient vectors and . As mentioned ear-
lier, the value of the demixing vector is constrained to unit norm
and is normalized after each update. The complex gradients are
thus calculated as

(24)

where

and the MSPE and variance of the extracted signal
are estimated by an online moving average relation [2]

(25)

where and are the corresponding forgetting factors for the
MSPE and the signal power.

The update algorithm [that is, second-order complex domain
blind source extraction algorithm (P-cBSE)] for the demixing
vector is given as

(26)

for the noise-free case, and the filter coefficient updates are
given by

(27)

(28)

From the expressions for gradients and in (24),
we notice that the update equations (27) and (28) can be com-
bined to form a normalized ACLMS-type adaptation [26]. Re-
call that for circular sources, the pseudocovariance matrix van-
ishes; thus, a standard complex linear predictor (say based on
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CLMS) can be used. However, this case is already incorpo-
rated within the WL predictor as, e.g., the conjugate part of
the ACLMS weight vector vanishes for circular data ,
demonstrating the flexibility of the proposed approach.

One way to remove the effects of source power ambiguity
is to prewhiten the observation vector to make the power
levels of the output (extracted) signals constant. This also helps
to orthogonalize an ill-conditioned mixing matrix; however, per-
forming prewhitening for an online algorithm is not convenient.
Denoting the prewhitening matrix , where is
a diagonal matrix containing the eigenvalues of , and
is an orthogonal matrix whose columns are the eigenvectors of

, the covariance matrix ; the
symbol denotes a prewhitened observation vector. From
(21) and the constraint on the norm of , that is,

, the cost function in (19) can be simplified to

(29)

The resulting coefficient updates

(30)

(31)

(32)

are simpler than those in (26)–(28), and the coefficients of the
WL predictor in (31) and (32) are updated using the ACLMS
algorithm.

C. Noisy Complex BSE

1) Cost Function: The algorithms described above do not
account for the effect of the additive noise and thus un-
derperform for the extraction of sources from noisy mixtures.
By modifying the cost function, it is possible to derive a new
class of algorithms for the extraction of complex sources from
noisy mixtures. We can make use of the modified cost func-
tion described in [17], which employs a normalized MSPE-type
cost function, to remove the effect of noise from the MSPE and
output variance.

Taking a closer look at the covariance and pseudocovariance
of the observation vector with additive noise

(33)

we note that the MSPE can be divided into two parts and
, where the first term is related to the MSPE relevant to the

sources in (17), and the second term pertains to that of the noise,
and so . The expression for is derived in
the Appendix. The cost function for the noisy BSE thus becomes

(34)

where the signal variance is given in (21). The existence of a so-
lution to the minimization of the cost function can be considered
similarly to that of the noiseless case. By removing the effect of
noise from , the resultant cost function is expanded exactly
as in (22), and a similar argument can be used for the analysis.

2) Algorithms for the Noisy Case: The cost function in (34)
is minimized using steepest descent, and the coefficient vectors

, , and are updated via an online algorithm, similar to the
noise-free case. The corresponding equations are calculated as

(35)
where

and the demixing vector is normalized after each up-
date so that

For circular white additive noise, the pseudovariance is zero
and thus the terms related to the pseudocovariance. It is apparent
that the estimation of noise variance and pseudovariance is nec-
essary for the operation of this BSE method, as discussed in the
next section. The algorithms for the BSE of noisy mixtures are
given as

(36)

(37)

(38)
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The case of the prewhitened observation vector is next consid-
ered, where the variance of the extracted signal is constant, and
the resulting algorithms are somewhat simpler. The prewhitened
covariance and pseudocovariance are now given as

(39)

with , , and
. It is possible to use a strong uncorrelating

transform (SUT) [34] to whiten the covariance matrix and di-
agonalize the pseudocovariance such that contains
nonnegative real values. In the case of circular signals, the SUT
simplifies to a standard whitening.

This way, the term can be expanded as

(40)

and the variance of the extracted signal

(41)

The cost function in (34) can thus be rewritten as

(42)

where the demixing vector is normalized as

(43)

The gradients within the updates of the online algorithms for
noisy BSE can be calculated as

(44)

to form the final online update for the BSE of prewhitened noisy
mixtures, with the update algorithm for the demixing vector
given as

(45)

with the update equations for the filter coefficient vectors given
by

(46)

(47)

D. Remark on the Estimation of Noise Variance and
Pseudovariance

The adaptive algorithms derived in the previous section re-
quire estimation of the noise variance and pseudovariance for
their operation. As mentioned in Section II, the noise is consid-
ered to have a constant and equal variance and pseudovari-
ance so that and . Furthermore, two
variants of complex noise were discussed: circular white noise
and doubly white noise. One possible method for the estimation
of the variance of circular white noise is by means of a subspace
method [40] and can intuitively be extended for the estimation
of the pseudovariance of doubly white noise, as detailed below.

Consider the number of observations larger than that of the
sources . It is then possible to estimate the noise
variance and pseudovariance based on

(48)

For both cases, by assuming that the matrix is of full column
rank Rank and that is nonsingular, then Rank
Rank , and so the smallest eigenvalues of

and are zero. Hence, the smallest eigenvalues of
and are respectively equal to and .

IV. SIMULATIONS AND DISCUSSION

A. Performance Analysis for Synthetic Data

The performances of the proposed algorithms were analyzed
using sources with different degrees of noncircularity and distri-
butions and in various simulation settings comprising of noise-
free and noisy mixtures. The performances of the algorithms
were measured using the performance index (PI) [2], which for

is given as

PI (49)

and indicates the closeness of to having only a single nonzero
element.

The values of the step sizes and were set empirically,
the mixing matrix was generated randomly, and in all the ex-
periments the forgetting factors . The additive
noise had a Gaussian distribution in two variants of proper
white and doubly white improper . Its variance
and pseudovariance were estimated using the subspace method
[see (48)].
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Fig. 3. Scatter plots of the complex sources � ���, � ���, and � ���, whose
properties are described in Table I. Scatter plot of the extracted signal ����,
corresponding to the source � ���, is given in the bottom right plot.

Fig. 4. Learning curves for the extraction of complex sources from noise-free
mixtures using the algorithm in (26)–(28) based on (solid line) WL predictor
and (broken line) linear predictor.

In the first set of experiments, sources with 5000
samples were generated (Fig. 3) and subsequently mixed to form
a noise-free mixture. The sources were mixed using a 3 3
mixing matrix, and the resultant observation vector was input to
the adaptive algorithm of (26) with a step size of .
The coefficients of the WL predictor were updated using (27)
and (28) with filter length and . The
resultant learning curve shown in Fig. 4 was averaged over 100
independent trials. The source properties are shown in Table I,
which also includes the circularity measure and the value of the
normalized MSPE corresponding to the source [see (18)].

TABLE I
SOURCE PROPERTIES FOR NOISE-FREE EXTRACTION EXPERIMENTS

Fig. 5. Normalized absolute values of the sources � ���, � ���, and � ���,
whose properties are described in Table I. The extracted source ����, shown in
the bottom plot, is obtained from a noise-free mixture using the algorithm in
(26)–(28).

The algorithm was able to extract the source with the smallest
normalized MSPE, with the PI reaching a value of 22 dB at
steady state after 2000 samples (Fig. 4). The normalized ab-
solute values of the sources , , and are
shown in Fig. 5, illustrating that the desired source , with
the smallest MSPE, was extracted successfully. Fig. 3 shows the
scatter plots of the three sources and the extracted signal. The
scatter plot of the extracted signal is a scaled and rotated
version of due to the ambiguity problem of BSS. Next,
for the same setting, the resulting mixture was prewhitened, and
extraction was performed using the algorithm (30)–(32). The re-
sulting learning curve shown in Fig. 6 exhibits slow convergence
with an average steady-state value of 19 dB after 4000 sam-
ples. The step-size parameters were set to and

.
For comparison, we next demonstrate the performance of the

algorithm (26)–(28), which uses a standard linear predictor for
the extraction of the complex sources. We performed the ex-
traction of the noncircular sources (whose properties are given
in Table I) using the same mixing matrix as in the previous ex-
periments. This is straightforward by assuming the conjugate
part of the coefficient vector of the WL predictor in (27) and
(28) and updating only the coefficient vector , as shown
in Section III. As shown in the analysis, the linear predictor is
not suited for modeling the full second-order information and
did not provide satisfactory extraction (as seen from Fig. 4),
reaching an average PI of only 6.5 dB as opposed to 22 dB
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Fig. 6. Extraction of complex sources from a noise-free prewhitened mixture
using the algorithm in (30)–(32) based on a WL predictor.

TABLE II
SOURCE PROPERTIES FOR NOISY EXTRACTION EXPERIMENTS

Fig. 7. Extraction of complex sources from a noisy mixture with addi-
tive circular white Gaussian noise using the algorithm in (36)–(38) with a
WL predictor.

for the WL case using the ACLMS. In the next set of experi-
ments, the performance of the proposed algorithms for the noisy
case were investigated. A new set of three complex source sig-
nals was generated with 5000 samples, whose properties are
described in Table II, and the 4 3 mixing matrix was gen-
erated randomly. Circular white Gaussian noise with variance

was added to the mixture to create the observed noisy
mixture. The algorithm given in (36) was used to minimize the
cost function and extract the source with the smallest normal-

ized MSPE. The values of the WL predictor coefficient vectors
were updated via (37) and (38) with filter length and
step-size values and . The
learning curve in Fig. 7 demonstrates the performance of the al-
gorithm, reaching steady state after 2000 samples and with an
average PI of 30 dB, indicating a successful extraction of the
source .

We next investigated the effect of doubly white noncircular
Gaussian noise with circularity measure while keeping
the source and mixing matrix values unchanged. The noise vari-
ance was , and the estimated pseudovariance of the
noise was [using the subspace method
in (48)]. The learning curve in Fig. 8 indicates the algorithm
in (36)–(38) converging to a solution in around 1500 samples
and with an average steady-state value of 21 dB for the step
sizes and . For comparison,
the learning curve using the algorithm in (26)–(28) is also in-
cluded, illustrating the inability to extract the desired source
from the noisy noncircular mixture. Finally, the input was pre-
whitened and sources extracted based on (45) for the update of
the de-mixing vector, and using (46) and (47) for the update of
the coefficient vectors, to produce the learning curve in Fig. 9. In
this scenario, the step-size parameters were chosen as
and , leading to slow convergence.

B. EEG Artifact Extraction

We next demonstrate the usefulness of the proposed complex
BSE scheme on the task of the extraction of eye muscle activity
[electrooculogram (EOG)] from real-world EEG recordings. In
real-time brain computer interfaces, it is desirable to identify
and remove such artifacts from the contaminated EEG [41].

In our experiment, the EEG signals used were from electrodes
Fp1, Fp2, C5, C6, O1, and O2 with the ground electrode placed
at Cz, as shown in Fig. 10(a). In addition, EOG activity was
also recorded from vEOG and hEOG channels to provide a ref-
erence for the performance assessment of the extraction.5 Data
were sampled at 512 Hz and recorded for 30 s. Notice that the
effects of the artifacts diminish with the distance from the eyes,
being most pronounced for the frontal electrodes Fp1 and Fp2
[Fig. 10(b)].

Pairing spatially symmetric electrodes to form complex sig-
nals facilitates the use of cross information and simultaneous
modeling of the amplitude–phase relationships. Thus, pairs of
symmetric electrodes were combined to form three temporal
complex EEG signals given by

(50)

First, the algorithm in (26)–(28) was used to remove EOG using
the step size with filter length and
step-sizes for the standard and conjugate co-
efficients of the ACLMS. The estimated EOG artifact was rep-
resented by the real component of the extracted signal ,

5As we do not have knowledge of the mixing matrix, we used the comparison
of power spectra of the original and extracted EOG to validate the performance
of the proposed complex BSE algorithms.
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Fig. 8. Extraction of complex sources from a noisy mixture with additive
doubly white noncircular Gaussian noise using (solid line) the algorithm in
(36)–(38) and (broken line) the algorithm in (26)–(28) with a WL predictor.

Fig. 9. Extraction of complex sources from a prewhitened noisy mixture
with additive doubly white noncircular Gaussian noise using the algorithm in
(45)–(47) with a WL predictor.

as illustrated in Fig. 10(c), in both time and frequency domains
(the normalized power spectrum). The original vEOG signal is
included for reference, confirming the successful extraction of
the EOG artifact from EEG.

V. CONCLUSION

The BSE of complex signals from both noise-free and noisy
mixtures has been addressed. The normalized MSPE, measured
at the output of a WL predictor, is utilized as a criterion to ex-
tract sources based on their degree of predictability. The effec-
tiveness of the WL model in this context has been demonstrated,
verifying that the proposed approach is suitable for both second-
order circular (proper) and noncircular (improper) signals and
for general doubly white additive complex noises (improper).

Fig. 10. Extraction of the EOG artifact due to eye movement from EEG data
using the algorithm in (26)–(28). (a) EEG channels used in the experiment (ac-
cording to the 10–20 system). (b) First 8 s of the EEG and EOG recordings.
(c) (Top) First 8 s of the extracted EOG signal (thick grey line) and recorded
vEOG signal (thin line), after normalizing amplitudes. (Bottom) Normalized
power spectra of the extracted EOG signal (thin line) and the original vEOG
signal (thick grey line).

For circular sources, the proposed BSE approach (P-cBSE) has
been shown to perform as good as standard approaches, whereas
for noncircular sources, it exhibits theoretical and practical ad-
vantages over the existing methods. The performance of the pro-
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posed algorithm has been illustrated by simulations in noise-free
and noisy conditions. In addition, the application of the pro-
posed method has been demonstrated in the extraction of arti-
facts from corrupted EEG signals directly in the time domain.

APPENDIX

DERIVATION OF THE MSPE

The error at the output of the WL predictor can be written
as

(51)

and the MSPE can be expanded as

(52)

where

Recall that the observation , so the
MSPE can be divided into terms relating to the source (denoted
by ) and those relating to the noise (denoted by ), giving

. Assuming a noise-free case, that is,
, the values of , , can be expressed as

(53)

(54)

(55)

(56)

Since and , (53)–(56) can be
simplified and substituted in (52) to produce the final result

, as given in (17).
To derive the MSPE relating to the th source, notice that the

sources are assumed uncorrelated, and so the covariance and
pseudocovariance matrices are diagonal. It is then straightfor-
ward to express the th diagonal element of (53)–(56) to pro-
duce (18).

In the noisy case, the values of pertaining to (denoted by
) can be evaluated in a similar fashion to that in (53)–(56),

noticing that for . Thus

(57)

(58)

(59)

(60)

which when substituted in (52) and simplified results in

(61)

(62)

for doubly white
for circular white

(63)

where and are written in their vector form.
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