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Abstract

A new member of the family of natural gradient algorithms for on-line blind separation of independent sources is proposed.
The method is based upon an adaptive step-size which varies in sympathy with the dynamics of the input signals and
properties of the de-mixing matrix, and is robust to the perturbations in the initial value of the learning rate parameter.
As a result, the convergence speed is signi3cantly improved, especially in non-stationary mixing environments. Simulations
support the expected improvement in convergence speed of the approach.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In many practical applications, such as communica-
tions and biomedical signal processing, it is necessary
to estimate the unknown source signals from a set of
observed measurements. Whenm unobservable source
signals contained within s(k)∈Rm are mixed by an
unknown, full column rank matrix A∈Rn×m, n mix-
ture signals are generated according to x(k) =As(k),
where x(k)∈Rn represents the vector of observed sig-
nals, and k denotes the discrete time index. The goal
of blind source separation (BSS) is then to recover
the original sources given only the observed mixtures,
using the separating model y(k) =W(k)x(k), where
y(k) is an estimate of s(k) to within the well-known

∗ Corresponding author.
E-mail address: maria.jafari@kcl.ac.uk (M.G. Jafari).

permutation and scaling ambiguities, andW(k)∈Rm×n
is the separating matrix. The crucial assumption at the
core of conventional BSS is that the original sources
are mutually statistically independent. In addition, it
is assumed that the sources have unit variance, and
in this paper, for convenience of presentation, we
assume that there are as many sources as mixtures,
that is m = n. The blind separation of sources ef-
fectively involves the application of blind channel
identi3cation and signal estimation techniques, since
the separation procedure requires the estimation, ex-
plicit or otherwise, of an unmixing matrix, which is
subsequently used to evaluate the separating model,
leading to the recovery of the sources. The natural
gradient algorithm [1] is a BSS method that updates
the separating matrix coe@cients according to

W(k + 1) =W(k) + �[I−f(y(k))yT(k)]W(k); (1)
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where f(y(k)) is an odd non-linear function which acts
upon the elements of the output vector y(k), and � is
a positive step-size parameter.

2. Adaptive step-size algorithm

The function of the step-size parameter in the
stochastic gradient descent setting is to control the
magnitudes of the updates of the estimated param-
eters at each iteration. Its choice is crucial to the
performance of the algorithm, and generally the use
of a 3xed step-size parameter can lead to slow con-
vergence speed and poor tracking performance. An
alternative approach is to use an adaptive step-size,
whose value is adjusted according to the time-varying
dynamics of the signals and the separating matrix
[5–7]. In [3], the learning rate changes according to a
non-linear function of the mean values of the gradient
components:

ĝ(k) = (1− �2)ĝ(k − 1) + �2g̃(k);

�(k) = (1− �1)�(k − 1) + �1�	(‖ĝ(k)‖); (2)

where 0¡�1¡ 1, 0¡�2¡ 1, and �¿ 0 are 3xed
coe@cients, g̃(k) =−(I− f(y(k))yT(k))W(k), is the
gradient at time k, and 	(‖ĝ(k)‖) is a non-linear func-
tion de3ned in [3]. However, the algorithm in (2) has
the disadvantage of requiring the selection of three ad-
ditional parameters used in the update, and its perfor-
mance is sensitive to their values. Thus, in this paper
we propose a gradient adaptive step-size algorithm,
which updates the learning rate according to

�(k) = �(k − 1)− �∇�J (k)|�=�(k−1); (3)

where � is a small constant, and J (k) is the natural gra-
dient algorithms (NGA) cost function. Methods exist
for the exact calculation of this quantity [4], but they
result in greatly increased computational complexity
and are sensitive to small variations in the parame-
ters which are used in the update equation. Here, we
propose a simple, yet eJective update of �(k) by em-
ploying a gradient-based adaptation. In the derivation
of the algorithm, following the approach in [2], we
introduce an inner product of matrices, de3ned as

〈C;D〉= tr(CTD) (4)

to evaluate the gradient term on the right-hand side of
(3). In Eq. (4) 〈·; ·〉 denotes the inner product, tr(·) is
the trace operator, and C;D∈Rm×n. Notice that, due
to the complexities of matrix diJerential calculus

∇�J (k)|�=�(k−1) 	= @J (k)
@W(k)

× @W(k)
@�(k − 1)

: (5)

Hence, to evaluate the gradient term on the right-hand
side of (3), we employ the inner product as de3ned in
(4), leading to

∇�J (k)|�=�(k−1)

=
〈
@J (k)
@W(k)

;
(
@W(k)
@�(k − 1)

)〉

= tr

(
@J (k)
@W(k)

×
(
@W(k)
@�(k − 1)

)T)
; (6)

where
@J (k)
@W(k)

=−[I−f(y(k))yT(k)]W(k); (7)

which is the instantaneous estimate of the natural gra-
dient of the cost function J (k) [1]. Notice that from
(1), the separating matrix at time k is given by

W(k) =W(k − 1) + �(k − 1)[I−f

×(y(k − 1))yT(k − 1)]W(k − 1): (8)

Following the approach from [7], and considering the
direct path only, from (8) we have
@W(k)
@�(k − 1)

= [I−f(y(k − 1))

× yT(k − 1)]W(k − 1): (9)

Substituting (7) and (9) into (6) leads to
@J (k)

@�(k − 1)

= − tr([I−f(y(k))yT(k)]W(k)

×WT(k − 1)[I−y(k − 1)fT(y(k − 1))]): (10)

Finally, substituting back into (3), the resulting adap-
tive step-size algorithm is given by

�(k) = �(k − 1) + � tr([I−f(y(k))yT(k)]W(k)

×WT(k − 1)[I−y(k − 1)fT(y(k − 1))]):
(11)
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Thus, the proposed algorithm eJectively introduces
memory in the step-size update, as well as preserving
information regarding the direction of descent, so that
it is capable of reacting in sympathy with the changes
in the mixing environment.

3. Simulations

Two sub-Gaussian sources were mixed by a real
stationary channel, and zero mean, independent white
Gaussian noise was added such that the signal-to-noise
ratio was 20 dB. The mixtures were separated using
conventional NGA with 3xed step-size �=5× 10−4,
Cichocki’s method in (2), with �(0)=5× 10−4, �1 =
�2 = 0:01, and � = 4 × 10−4, and the proposed algo-
rithm with adaptive learning rate (11), where �(0) =
5 × 10−4, and � = 10−7. Notice that the user needs
only to select a single parameter � to control the
dynamics of �(k). The results were evaluated using
the performance index (PI), as conventionally em-
ployed to assess BSS algorithms [3]. Fig. 1 shows the
PI resulting from the application of the three meth-
ods, and averaged over 100 Monte Carlo trials, and
illustrates that the convergence speed of NGA is con-
siderably faster when the proposed adaptive step-size
algorithm is employed. In particular, NGA was found
to require less than 800 samples to converge to a PI
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Fig. 1. Average performance indices obtained for NGA with 3xed
step-size and adaptive learning rates in (2) and (11).
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Fig. 2. Behaviour of NGA with the 3xed and adaptive learning
rates (2) and (11), when the mixing channel is non-stationary.

of 0.01 when the proposed algorithm was employed,
while it required over 1800 samples with Cichocki’s
method, and did not achieve this value within 4000
samples when the 3xed step-size parameter was used.
Fig. 2 depicts the average performance indices for
the three methods when the sources were mixed by a
time-varying mixing channel, whose elements varied
according to independent 3rst-order Gauss–Markov
models, and changed abruptly after 2000 samples.
Additive white Gaussian noise was also present,
resulting in a signal-to-noise ratio of 20 dB. The
convergence curves in Fig. 2 shows that the average
performance of the NGA algorithm improved consid-
erably when separation was carried out using the pro-
posed adaptive step-size method. This was especially
evident during initial convergence, and following the
abrupt change in the mixing channel, where the use
of a 3xed learning rate resulted in slow convergence
speed, while the variable step-size approach presented
here ensured that the algorithm reacted quickly to
the changes in the mixing channel. Fig. 3 shows the
logarithm of the average PI obtained after 2000 iter-
ations (PIc), for various values of the 3xed step-size
�, and with �(0)=�(0)=� in (2) and (11). The pro-
posed NGA-type algorithm was found to consistently
outperform conventional NGA with a 3xed step-size,
and the adaptive learning rate method in (2), over the
set of values considered.
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Fig. 3. Performance of the average PI after 2000 samples when
the 3xed step-size (or initial step-size) is varied.

4. Conclusions

A novel natural gradient-based adaptive step-size
algorithm for the blind separation of sources has
been proposed. The algorithm has been shown to be
robust to the perturbations in the initial value of the
learning rate parameter, and is of the same order of
complexity as the standard algorithm. By varying the
learning rate in response to changes in the dynamics
of the estimated parameters, this technique improves
the performance of the conventional natural gradi-
ent algorithm, and is especially well suited to the

separation of sources mixed by a time-varying envi-
ronments. In particular, simulation results have shown
that improved convergence rate is achieved when the
sources are extracted by the proposed approach.
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