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ABSTRACT
A novel online algorithm for Blind Source Extraction (BSE)
of instantaneous signal mixtures is proposed. The algorithm
is derived for a structure comprising of a demixing stage and
an adjacent adaptive predictor, whereby signal extraction is
based upon the predictability of an unknown source signal.
This way, the coefficients of the demixing matrix and adap-
tive predictor are estimated simultaneously. To improve the
convergence and to be able to cope with the dynamics of the
mixture, the algorithm is further normalised based upon the
minimisation of the a posteriori prediction error. This makes
it also suitable for environments where the mixing process
is time varying. No assumptions or constraints on the norm
of the coefficients or signals are required. Simulations on
mixtures of real world physiological data for both the fixed
and time varying mixing matrix support the analysis.

1. INTRODUCTION

Problems related to separating mixed or convolved signals
have been a major research topic during the last decade.
The recent progress in the area has made it possible to gain
insights into very complex problems, such as the ones in
biomedical signal processing, where the signals are typi-
cally weak and noisy, the channels are heavily correlated
and the signal generating mechanism is not known. There
are many established Blind Source Separation (BSS) and
Blind Source Extraction (BSE) algorithms, for an overview
see [1, 2]. In the real world, especially in brain research
and medicine, we deal with signals coming from a number
of sensors, for instance the number of sensors in electroen-
cephalography (EEG) varies from 56 to 256. If the indepen-
dent input signals are denoted by s(k) = [s1(k), . . . , sM (k)]T ,
and the linear instantaneous mixing process is governed by
the mixing matrix AM×M , then the set of signals obtained
from the sensors can be described by

x(k) = A(k)s(k) (1)

where both the measured signals x(k) = [x1(k), . . . , xM (k)]T

and sources s(k) are column vectors and (·)T denotes the

vector transpose. The signal separation process aims at find-
ing an optimisation procedure for the inverse of the matrix
A(k) from (1), that is W(k) = A−1(k) such that

y(k) = W(k)x(k) (2)

where y(k) = [y1(k), . . . , yM (k)]T denotes the separated
or extracted signals. This procedure is very computationally
demanding, and often leads to ill–conditioned problems [1].
In fact, instead of estimating A−1, the set of estimated pa-
rameters is such that the product AW equals a product of a
permutation and delay matrix.
In many practical situations we are interested only in a sub-
set of the sensor signals, often in only very few of them,
for instance we might want to extract only music from a
cocktail party. In such a case there is a need to devise
an algorithm that would extract the desired signal(s) from
the mixture x based upon some prescribed criterion. Such
algorithms exist and have found practical implementations
[3]. A suitable criterion for an online gradient descent al-
gorithm for blind extraction of sources from their linear
mixtures might be some fundamental property of a signal,
such as smoothness, predictability, or temporal correlation.
Such criteria become even more important in noisy mea-
surements, which is typical for practical applications. Re-
cently, one such algorithm, based upon combining linear
prediction and BSE was proposed in [4]. The algorithm
proposed there, although efficient, was a batch algorithm,
which is not suitable for on–line processing, and also pos-
sesses considerable computational complexity, since the pa-
rameter updates require estimation of the autocorrelation
and crosscorrelation matrix. In addition, such an algorithm
is not suitable for environments with a time–varying mixing
matrix A(k).
Following the approach from [4, 1] we therefore propose a
novel direct gradient online algorithm for blind extraction
of linearly mixed sources. The algorithm is based upon
the fundamental property of predictability of source sig-
nals (for an overview of linear and nonlinear predictabil-
ity see [5, 6]), and is aimed at minimising the instantaneous
squared prediction error of the extracted source. To improve



the convergence, the coefficient update is further normalised
by a measure of energy of the mixed input and extracted sig-
nal. The proposed set of algorithms is shown to be robust to
time variations of the mixing matrix. No constraints on the
values or norms of the signals and coefficients are required.

2. THE ALGORITHM FOR BSE USING
PREDICTABILITY OF SIGNALS

A somewhat simplified BSE scheme, based upon predictabil-
ity of a source signal as a criterion for extraction, is shown
in Figure 1. The Figure illustrates the model for extraction
of only one channel (denoted by y1) from the mixture x(k).
The structure consists of a standard demixing matrix (rep-
resented by an appropriate column in Figure 1), followed
by an adaptive linear predictor. The output of the adaptive
predictor is ỹ1 whereas the associated prediction error

e1(k) = y1(k) − ỹ1(k)

is a measure upon which the adaptation is based. For the
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Fig. 1. A BSE structure for extraction of one source com-
ponent, using a linear predictor

structure shown in Figure 1, we propose a global online
learning algorithm for adapting both the adaptive predic-
tor weights b1(k) = [b11(k), . . . , b1N(k)]T and the cor-
responding row w1(k) = [w11(k), . . . , w1M (k)]T of the
demixing matrix W(k) = [w1(k); · · · ;wM (k)], where the
adaptive filter (predictor) is of length N and the demixing
matrix W is of size M ×M . There exist online approaches
where the cost function consists of both the error term and
the term constraining the norm of the extracted signal [1].
However, to devise an algorithm that is robust to pertur-
bations in the mixing matrix and time–varying statistics of
source signals, we provide methodology based upon a sim-
ple cost function in the form of the squared instantaneous
prediction error, with no constraints required on the parame-
ters of the system. Therefore we start from the cost function
most frequently used in adaptive filtering, given by

J(w1(k),b1(k)) =
1
2
e2
1(k) (3)

where e1(k) is the instantaneous output error of the struc-
ture (Figure 1) at time instant k. Notice, from Figure 1

y1(k) = [y1(k − 1), . . . , y1(k − N)]T (4)

The output signal and its predicted version are given by

y1(k) =
M∑

i=1

xi(k)w1i(k) = xT (k)w1(k)

ỹ1(k) =
N∑

j=1

b1j(k)y1(k − j)

=
N∑

j=1

b1j(k)
M∑

i=1

xi(k − j)w1i(k − j) (5)

We next derive gradient descent learning rules for the sys-
tem based upon minimisation of cost function (3). For every
element b1j(k), j = 1, . . . , N of the parameter vector b1

and every element w1i(k), i = 1, . . . , M of w1, we have

b1j(k + 1) = b1j(k) − µb∇b1j J(w1(k),b1(k)) (6)

w1i(k + 1) = w1i(k) − µw∇w1iJ(w1(k),b1(k))(7)

The error term can be evaluated as

e1(k) = y1(k) − ỹ1(k) =
M∑

i=1

w1i(k)xi(k) −

−
N∑

j=1

b1j(k)
M∑

i=1

xi(k − j)w1i(k − j) (8)

which gives

∇b1j J(w1(k),b1(k)) = e1(k)
∂e1(k)
∂b1j(k)

= −e1(k)y1(k − j) (9)

and

∇w1iJ(w1(k),b1(k)) = e1(k)xi(k) (10)

The updates for the adaptive filter and demixing coefficients
now become

b1j(k + 1) = b1j(k) + µbe1(k)y1(k − j)
w1i(k + 1) = w1i(k) − µwe1(k)xi(k) (11)

or in the vector form

b1(k + 1) = b1(k) + µbe1(k)y1(k)
w1(k + 1) = w1(k) − µwe1(k)x(k) (12)

Notice the different learning rates µb and µw which respec-
tively correspond to the adaption of the coefficients of the



adaptive predictor and those of the demixing matrix. They
need to be chosen by the user, which is critical to the perfor-
mance of a gradient descent based learning algorithm. Al-
gorithms with fixed learning rates have difficulties to cope
with nonlinear and nonstationary signals and with signals
with high variance. Let us therefore next investigate the ef-
fect of normalising the learning rates in order to make the
convergence faster and make the algorithm better suited for
variations in the statistical properties of source signals and
perturbations in the mixing matrix.

3. A NORMALISED ONLINE ALGORITHM FOR
BLIND EXTRACTION OF SOURCES BASED UPON

PREDICTABILITY OF A SIGNAL

Following the approach from [6] let us represent the a pos-
teriori output error of the structure as

e(k + 1)= e(k) +
N∑

j=1

∂e(k)
∂b1j(k)

∆b1j(k) +
M∑

i=1

∂e(k)
∂w1i(k)

×

×∆w1i(k) +
N∑

j=1

M∑

i=1

∂2e1(k)
∂b1j(k)∂w1i(k)

+ · · · (13)

Assuming, for simplicity, that the second and higher order
derivatives in the Taylor series expansion (13) are negligi-
ble (which is reasonable for online gradient descent algo-
rithms), and noticing that the terms ∆b1j(k) and ∆w1i(k)
are readily obtained from (11), we have [7]

∂e(k)
∂b1j(k)

= −y1(k − j)

∂e(k)
∂w1i(k)

= xi(k) (14)

From (13) and (14), we have

e(k + 1) = e(k) +
N∑

j=1

(−1)y1(k − j)µbe1(k)y1(k − j)+

+
M∑

i=1

(−1)xi(k)µwe1(k)xi(k)

= e1(k)
[
1 − µb ‖ y1(k) ‖2

2 −µw ‖ x(k) ‖2
2

]

(15)

Let us assume, for convenience that µb = µw = µ0. Then,
from (15) to achieve e(k +1) = 0, the optimal learning rate
is obtained by minimizing the term in the square brackets as

µ =
µ0

‖ y1(k) ‖2
2 + ‖ x(k) ‖2

2

(16)

The constant learning rate µ0 from (16) is therefore nor-
malised by both the norm of the instantaneous mixed signal

‖ x(k) ‖2
2 and the norm ‖ y1(k) ‖2

2 of the extracted version
of the signal of interest. From (15) µ0 = 1, whereas in prac-
tice, due to the unknown dynamics and coupling between
the adaptation of w1 and b1, as well as the approximation
in the derivation of the algorithm, the parameter µ0 needs to
be considerably smaller.

3.1. Individual Normalisation of Learning Rates

Intuitively, and from the experience with the normalised
LMS (NLMS) algorithm [8], it would be natural to nor-
malise each of the learning rates µb and µw by an esti-
mate of the tap input power of their respective input sig-
nals. There are many combinations of µb and µw which
minimise (15). For convenience, we opt for their convex
combination, achieved by introducing a mixing parameter
λ into (15), such that 0 ≤ λ ≤ 1 [9], which gives

µb =
λ

‖ y1(k) ‖2
2

µw =
1 − λ

‖ x(k) ‖2
2

(17)

The individual learning rates corresponding to b1 and w1

are now normalised by the tap input power of their corre-
sponding inputs. By choosing the value of λ we introduce
weighting into the adaptation of b and w. The algorithms
based upon (16) and (17) are expected to exhibit increased
convergence and signal extraction ability, as compared to
algorithms with a fixed learning rate, as well as to be better
suited for processing of signals with large dynamics and in
time varying mixing environments.

4. SIMULATION RESULTS

In the simulations, the mixing matrix A was chosen from
the set of random matrices so as to have its condition num-
ber less or equal to ten. The source signals were a mixture
of physiological recordings, including heart rate, EEG, ex-
perimental noise, and respiratory signal, whose mixture is
shown in Figure 2. Three of the signals were with long time
correlation, one of them decaying in time. The task was to
extract only one of the source signals from their mixture,
based upon their predictability. For this setting we investi-
gated the performances of the proposed online direct gradi-
ent descent algorithm given in Section 2 and its normalised
versions described in Sections 3 and 3.1. The demixing ma-
trix W was randomly initialised, whereas the coefficients
of an adaptive predictor were initialised either randomly or
with zero values. In most cases, the random initialisation
provided better results. The simultaneous adaptation of co-
efficient vectors b1 and w1 is a complex task, since the
coefficient vectors are, strictly speaking, not independent.
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Fig. 2. Linear instantaneous mixture of independent source
signals

Therefore the learning rate in the global gradient descent al-
gorithm for the structure had to be chosen fairly small, and
varied between 10−3 to 10−6. Consequently, the learning
rates of the normalised algorithms were also chosen to be
small, but typically one to two orders of magnitude larger
than those of the algorithm with fixed learning rates. The
length of the adaptive filter was varied between N = 1 and
N = 400.
Figure 3 illustrates source extraction using a fixed learn-
ing rate parameter. The signal extracted changed with the
length of the adaptive predictor, as highlighted in the Figure
caption. The smoother sources S3 and S4 required longer
adaptive predictors than the sources with faster transitions
S1 and S2. Single source extraction was not sufficiently
good for large stepsizes, whereas for relatively small step-
sizes, the extraction was possible, albeit with a significant
noise.
Figure 4 illustrates the extraction using the algorithm with

joint normalisation of stepsizes, given in (16). Source S4,
which is the smoothest, was best extracted using an adap-
tive predictor of length N = 200, whereas source S1 (the
most rapidly varying heart rate variability signal) was best
extracted using a predictor of N = 2. Generally speak-
ing, smoother sources required longer predictors. There was
much less noise in extracted sources than in the case of the
algorithm with the constant learning rate.
Figure 5 illustrates extraction of a single source using in-
dividual normalisation for µb and µw (17). The extraction
results were better than those using joint normalisation, and
the sources were again able to be extracted based upon the
length of the predictor required. The quality of extraction
was better than in the previous two cases.
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Fig. 3. Signals extracted using fixed learning rates with re-
spectively N = 1, N = 40, N = 50, and N = 400

The proposed structure and algorithm were able to extract
sources based upon their predictability and clearly distin-
guish between the sources by varying the length of the adap-
tive predictor from Figure 1. In all the cases, the source
extracted and the order of the predictor followed the same
pattern, requiring typically N = 1 − 4 for source S1, N =
10 − 20 for source S2, N = 30 − 80 for source S3, and
N > 100 for source S4. The algorithm performed better
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Fig. 4. Signals extracted using joint learning rate normali-
sation (equation (16)) with respectively N = 1, N = 12,
N = 40, and N = 200

on signals with structure (underlying nonlinear dynamics),
than on signals without much structure and with sharp tran-



sition, such as the HRV signal.
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Fig. 5. Signals extracted using individual learning rate
normalisation (equation (17)) with respectively N = 2,
N = 20, N = 30, and N = 400

4.1. Experiments with a Time–Varying Mixing Matrix

In the next set of experiments, behaviour of the proposed
algorithms was investigated for a time–varying mixing ma-
trix. For that purpose, the mixing matrix A was modelled
as random walk, given by (using the MATLAB notation)

A(k) = A + rand(size(A))/A0 (18)

where factor A0 was used to scale the additive white noise.
Matrix A was first scaled so that the sum of the absolute
values of every row was equal to unity. For the experiment,
A0 was chosen such that the noise matrix had its norm ap-
proximately equal to that of A, which provided significant
perturbation of A in time.
The extraction results for the case of the algorithm with the
fixed learning rate are shown in Figure 6. Due to time varia-
tion of A, the standard algorithm showed poor performance.
The results for joint normalisation of µw and µb for the time
varying mixing matrix A are shown in Figure 7. The results
were much better than for the standard algorithm and the
sources could be clearly distinguished. For the algorithm
with individual normalisation of µw and µb the results of
simulations are shown in Figure 8, and are of better quality
than the former two.
In comparison with the results with fixed A, shown in Fig-

ures 3, 4 and 5, the respective extracted waveforms for time
varying mixing environment were markedly noisier. In ad-
dition, for the time varying case, the magnitudes of the ex-
tracted signals tend to be considerably smaller. As for the
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Fig. 6. Signals extracted using fixed learning rates with
time–varying mixing matrix A
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Fig. 7. Signals extracted using jointly normalised learning
rates (equation (16)) with time–varying mixing matrix A

lengths of the adaptive filter which provide best extraction
of individual signals, similar conclusions as for the case of
the fixed mixing matrix hold.

5. DISCUSSION AND CONCLUSIONS

An online learning algorithm for blind extraction of single
sources, which combines the concepts of blind extraction
and adaptive prediction, has been proposed. It has been
initially shown that by varying the length of the adaptive
predictor it has been possible to extract particular single
sources from their mixture. To improve the convergence and
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Fig. 8. Signals extracted using individual learning rate nor-
malisation (equation (17)) with time varying mixing matrix
A

quality of extraction, two normalised algorithms have been
derived for the update of the demixing matrix and adaptive
predictor coefficients, one with the single normalised learn-
ing rate and the other with individually normalised learning
rates. The normalised algorithms comprehensively outper-
formed the standard one, exhibiting faster convergence and
less noise in the extracted signals, and showed excellent per-
formance for both the fixed and time varying mixing envi-
ronment. The waveforms of extracted signals in the case
of a time varying mixing environment were noisier and had
smaller amplitudes.
To build a single signal extractor based upon predictability
of source is a challenging task. The length of the predictor
plays a crucial role here, especially for signals that exhibit
some kind of structure in the phase space, as is the case with
many physiological signals. If the tap input delay line of an
adaptive predictor is too short then the tap input is domi-
nated by noise. On the other hand, if the tap input delay line
is too long, so as to be longer than the embedding dimen-
sion of the signal augmented by the prediction horizon of a
signal, then the beginning and end of the tap delay line are
not correlated, which results in poor prediction. Therefore
the length of the tap delay input line can indeed serve to
select which signal to extract provided the signal has some
kind of structure and is predictable. This, in turn, means
that the algorithm is not very well suited for extraction of
noise signals. However, most of the physiological signals
of interest possess structure in the phase space, making the
architecture and proposed algorithms well suited for such a
task. The set of algorithms proposed here has been there-
fore derived with the aim to cater for the time variation of
the mixing matrix and the varying dynamics of the source

signals.
Extracting sources based upon their predictability fully com-
plies with the results from psychology (where the cock-
tail party effect was actually first introduced in 1953 [10]),
where it has been shown that humans are able to better sepa-
rate sounds if the predictability of the messages was higher.
In addition, the performance of listeners varied with the
amount of information in messages, rather than with the
amount of physical stimulation [11], which is very much
the case with the results presented here.
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