Natural gradient algorithm for
cyclostationary sources
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A new approach to blind source separation of cyclostationary sources
is introduced which incorporates a cyclic pre-whitening operation
within the learning rule, and thereby provides a new member of the
family of natural gradient algorithms. The technique improves the
convergence properties of the natural gradient algorithm for complex
valued, cyclostationary signals. Simulations show the improved
convergence speed of the approach.

Introduction: The aim of blind source separation (BSS) is to extract
mutually statistically independent source signals from observations
containing only mixtures of these signals [1]. Apart from the inde-
pendence hypothesis, it is typically assumed that the sources have unit
variance owing to the scale ambiguity inherent to BSS. In this Letter,
we further assume that the source signals are cyclostationary. The
statistical properties of cyclostationary signals vary periodically with
time. This periodicity may arise as a result of amplitude, phase or
frequency modulation in manmade signals, while it may be due to
natural variations in unprocessed data [2]. The complex linear
instantaneous mixing operation at the heart of the BSS problem is
modelled by x(k)=As(k), where s(k) € C™ and x(k) € C" represent,
respectively, the complex source and observed signals, A€ C" ™™ is
an unknown, full column rank, complex mixing matrix, and k denotes
the discrete time index. The sources are then recovered with the
separating system y(k) = W(k)x(k), where y(k) e C™ represents the
complex extracted sources, and W(k) € C™ ™" is the separating matrix.
In the sequel, we assume that m =n.

Cyclostationarity: The source signals are modelled as wide sense
cyclostationary signals, i.e. their mean and autocorrelation function
are periodic in time. Moreover, as in [3], we assume that the cyclic
correlation function 7, (7) = E{e/ﬁrksp(k + ©)s(k)} of the sources has
the following properties:
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where * denotes complex conjugation, and f, is a nonzero cycle
frequency of source p. It follows that the cyclic correlation matrix of
the sources at lag =0, defined as R (0) = E{e’P*s(k)s* (k)} where
() denotes the Hermitian transpose operator, becomes

RP(©) =1 @
where the elements of I, [I'};; are defined by
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In the BSS context, the second-order cyclostationary statistics of the
source signals can be exploited by seeking that the output cyclic
correlation matrix is of the form (4), i.e. the outputs are required to
be decorrelated in the cyclostationary sense. Since BSS effectively
amounts to a two-stage process in which the data are sphered and then
rotated [4], we replace the classic whitening stage by cyclostationary
pre-whitening. This entails finding a vector z(k) = V(k)x(k), such that

Jim Efe/P* (k) =T

()]

or lim (E(P* (k) (k) + JE{PF2(kyz ()337) =1 (6)
— 00
where I is the identity matrix, J is the real permutation matrix with
elements
], = 1, ifre{,2,....,mlg=m—1+1
e — 10, otherwise

and E{e/™* z(k)z" (k)} = R” is the cyclic correlation matrix of the
signals z(k), estimated at sample k. The pre-whitening learning rule

in [4] is then modified to give a cyclic pre-whitening learning rule of
the form

Vik + 1) = V(&) + a1 = R — JRP 37y v (k) %)

where p is a step-size parameter. The inclusion of the term JR%J? in
(7) ensures balance in the algorithm so that convergence is attained for
all possible choices of cycle frequency. Following the approach in [4],
the update (7) corresponds to the adaption of a matrix V(k) such that it
converges to a point where R =T with

R = RD 4 gRlr g ®)
Effectively, (7) minimises the cost function
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which represents the Kullback-Liebler divergence between two
Gaussian distributions with covariance matrices R% and I. Employing
the natural gradient descent method, the gradient of (9) is given by [4]

AKL(RE) = Rl —1 (10)
which, from (8), becomes
AKL(REPY = R + JRE 97 —1 (1

leading to the learning rule (7).

Complex cyclostationary NGA: The natural gradient algorithm
(NGA) update equation

Wk + 1) = W(E) + [l = £y (R)y” ()W (k) (12)

where 7 is the step-size parameter, is readily extended to the complex
case by selecting an appropriate phase preserving complex activation
function [5] f(y(k)), and replacing the transpose operator by the
Hermitian transpose operator. The learning rule (12) is then extended
to include explicitly the cyclostationary whitening operation, which
yields
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where f{f" is the output cyclic correlation matrix estimated at the current
iteration using an exponentially weighted average of the instantaneous
statistics

R+ 1) = (1 — DRE () + 21y (oy™ (0] (4)

A straightforward extension from the real to the complex case
is to employ so-called split-complex nonlinearities, such as
S{ydR) = tanh(yir(k) +/ tanh(y;(k)), where y;r(k) and y;(k) denote,
respectively, the real and imaginary parts of y,(k), when the sources are
super-Gaussian, or as fi( yi(k)) = y{k)ly:|* [4] for the sub-Gaussian case.

Simulations: Two sinusoids of normalised frequency (207)™' and
(4m)~! are mixed by a real stationary channel and separated using
NGA and the cyclostationary NGA approach. Since the sources and
mixing are real, the exponential function in (14) simplifies to a cosine
function, and f3,  and 2 are chosen, respectively, as 2(4m)~", 0.005,
and 0.05. The performance index (PI), as conventionally used to
assess BSS algorithms [6], resulting from the application of the two
methods, and averaged over 50 trials, is shown in Fig. 1, while the
sources extracted with a single realisation of both techniques, together
with the original signals, are plotted in Fig. 2. The results illustrate
that exploitation of the cyclostationary nature of the signals leads to
faster convergence rate. In particular, the cyclostationary NGA algo-
rithm converges to a PI of 0.01 within approximately 200 samples,
whereas NGA requires 400 samples. Finally, a first-order autoregres-
sive Gaussian process with coefficient a =0.95 exp (j/4n), amplitude
modulated by cos(1/207), and a complex exponential of normalised
frequency 0.175/27 are mixed by a real, instantaneous, time-invariant
mixing channel. Separation, carried out with complex NGA and the
complex cyclostationary NGA method, with f, # and A equal to
0.35/2m, 0.005, and 0.05, results in the PI shown in Fig. 3. It is
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evident that the NGA algorithm converges to a PI of 0.01 after 3000
samples, while the cyclostationary NGA approach needs only 1500
samples for convergence. It is noteworthy that convergence is
smoother in the complex case owing to the interaction between
terms within the algorithm.
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Fig. 1 Average performance indices obtained with NGA and cyclosta-
tionary NGA approach, when source signals and mixing matrix are real
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Fig. 2 Sources extracted with single realisation of both techniques,
together with original signals
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Fig. 3 Average performance indices obtained with complex NGA and
complex cyclostationary NGA approach, when source signals are complex
valued, and mixing channel is real

Conclusions: An NGA-type algorithm for the separation of complex
valued cyclostationary data is proposed. By exploiting the cyclosta-
tionary nature of the source signals, the technique improves the
performance of the natural gradient algorithm. In particular, simula-
tion results show that improved convergence rate is achieved when the
sources are extracted by the proposed approach. Exploitation of a
number of cyclic autocorrelation matrices with various lags and more
comprehensive analysis are the subject of ongoing work.
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Wavelet domain natural gradient algorithm
for blind source separation of
non-stationary sources

M.G. Jafari and J.A. Chambers

A wavelet domain approach to blind source separation which avoids
the permutation problem in transfer domain operation, and yields
improved convergence rate for certain non-stationary signals, is
introduced. The wavelet transform also facilitates noise reduction,
further improving performance of the natural gradient algorithm.

Introduction: The instantaneous blind source separation (BSS)
problem entails extracting a number of mutually statistically indepen-
dent source signals s(k) from observations x(k) which contain
mixtures of these signals, represented by x(k) = As(k), where A is
an unknown, full column rank, mixing matrix. Sources are then
recovered with separating system y(k) = W(k)x(k), where W(k) is
the separating matrix. The natural gradient algorithm (NGA) is a BSS
technique with update equation

W(k + 1) = W(k) +n(0lI ~ £y (0)y" (BIW (k) M

where f(y(k)) is the activation function. In general, performance of
NGA degrades as probability density functions (PDFs) of the sources
become more Gaussian. However, mapping certain non-stationary signals
from the time to the wavelet domain results in their sample PDFs being
further from a normal distribution. Hence, we address the BSS problem
in the wavelet domain, and show the proposed method results in faster
convergence speed than conventional NGA.

Wavelet domain NGA: The wavelet transform (WT)-NGA approach
uses NGA to separate sources in the wavelet domain. The mixtures are
divided into blocks of length N. When the measurement length is M
samples, assumed to be a multiple of N, the ith block includes samples
X(iN+1), ..., x((i + 1)N), where i=0, ..., (M/N)—1. The wavelet
transform of each data block is then evaluated, and we use concate-
nated coefficients resulting from a single block, thus avoiding the
permutation problem in transform domain BSS. The noise level is
reduced by applying thresholding, and sources are separated on-line
with NGA, giving a vector of estimated signals, the inverse WT of
which represents the recovered sources.

Convergence: Working in the time-scale domain has the advantage
that certain signals are less Gaussian than in the time domain [1].
Moreover, the statistics of the wavelet coefficients can be modelled by
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