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1 Introduction

Standard statistical signal processing approaches have been based essentially on second–
order statistical measures, that is, the variance and covariance for random variables,
correlation and crosscorrelation for signals in the time domain and power spectral density
and cross-spectral power density for signals in the frequency domain.

After the pioneering work in the domain of Higher-Order Statistics (HOS) (Shirayev, 1960;
Rosenblatt, 1962; Brillinger, 1981), the potential of these tools has gained considerable
attention, giving a raise to a number of research publications and applications (Giannakis,
1987; Mendel, 1991; Giannakis & Tsatsanis, 1992; Nikias & Petropolu, 1993; Nikias &
Raghuveer, 1987; Lacoume, Gaeta, & Amblard, 1998). This field of research is particu-
larly well suited to the higher-order properties of multidimensional variables and signals:
multicorrelations in the time domain (Brillinger, 1981), and multispectra in the frequency
domain (Shirayev, 1960), where a tensorial approach is a basis for the development of
higher-order moments and cumulants (McCullagh, 1987).

Very few such results are available for complex random variables and signals in general.
The Gaussian complex model is commonly used in the classical theory of complex variables
and in communication applications, and is well documented (Wooding, 1956; Goodman,
1963). In particular, the distinct properties of the statistics of complex variables include
Gaussian complex circularity, which is the basis of the theory of linear systems.

More recently, the lack of a general tool for complex-valued modelling was brought to light
in (?, ?), where the notion of “proper complex random process” (their term for circular
process) was introduced. This particular aspect of complex random variables (especially
in terms of the bispectrum) has been presented in (Jouny & Moses, 1992).

With the increasing use of complex models in practical applications, it is necessary to
develop a general statistical framework for dealing with complex random variables and
signals.

This chapter provides an overview of the recent developments in this area, and suggests
applications for “augmented statistics” in signal processing. It is divided into three main
parts. In the first part, we introduce with complex random variables. Next, we advance
to complex signals and their characterisation by means of augmented statistics. Finally,
we deal with widely linear estimation of complex signals.

2 Complex Random Variables

The definition of a complex random variable (CRV) can be derived from definitions of two
real random variables (RV). Given two real random vectors (RVs) X and Y , a complex
random variable (CRV) Zis defined as

Z = X + jY, j2 = −1 (1)

In order to provide full statistical description (first, second, and higher order moments)
of a CRV, consider the characteristic function1

ΦZ,Z∗(w, w∗) = E

[

exp

(

j
Z∗w + Zw∗

2

)]

(2)

1This is a 2D FFT of a 2D probability density function.
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where E[·] is the ensemble mean and (·)∗ the complex conjugate operator. After applying
Taylor series expansion (TSE) to the characterisation function (2), we have

E

[

exp

(

j
Z∗w + Zw∗

2

)]

=
∞

∑

n=1

1

n!

jn

2n

n
∑

p=0

b(n, p)wn−pw∗pE
[

Z∗n−pZp
]

(3)

where b(n, p) are binomial coefficients. From (3), it is important to note that for a given
order n, there are (n+1) different moments E

[

Z∗n−pZp
]

for complex random variables2.

For a given characteristic function, moments of an arbitrary order n can be derived from

E
[

Z∗n−pZp
]

=
2n

jn

∂nΦZ,Z∗(0, 0)

∂wn−p∂w∗p
. (4)

and similarly, by introducing the so called “second” characteristic function

ΨZ,Z∗(w, w∗) = log [ΦZ,Z∗(w, w∗)] (5)

we can calculate the cumulants as

Cum
[

Z∗n−p, Zp
]

=
2n

jn

∂nΨZ,Z∗(0, 0)

∂wn−p∂w∗p
(6)

Similarly to (3), there are, in general, (n + 1) different cumulants of order n. The theory
of random variables states that

i) In the case of Gaussian random variable, cumulants of order greater than two (n ≥ 2)
vanish;

ii) Joint cumulants of two statistically independent variables are zero.

Property ii) implies that for two statistically independent random variables X and Y

Cum [X + Y ] = Cum [X] + Cum [Y ]

that is, cumulants of the sum of two independent random variables are equal to the sum
of the cumulants of those variables.

An extension of the definitions of moments and cumulants to the multidimensional case
using tensorial notation can be found in (Amblard, Gaeta, & Lacoume, 1996b).

2.1 Complex Circular Random Variables

The notion of “circularity” has been used to characterise Gaussian complex random vari-
ables (CCRV) (Goodman, 1963). However, in order to introduce strict statistical de-
scription of circularity, we need to involve general signal distributions and higher order
statistics (HOS).

Circularity is intimately related to rotation in the geometric sense, in the case of a complex
random variable Z, rotation by angle φ is achieved by multiplication of a RV by ejφ,
giving Zφ = Zejφ. Intuitively, a random variable Z is circular if its statistical properties
are “invariant under a rotation”.

A circular complex random variable (CCRV) can be now defined as (Comon, 1993)

2For example, for n = 2, we have three different moments: E
[

Z
2
]

, E [ZZ
∗], and E

[

Z
∗2

]

, for real
random variables, all these moments are equal.
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A single-dimensional complex random variable Z is called circular if for any
angle φ both Z and Zejφ, that is its rotation by angle φ, have the same
probability distribution.

Alternatively, the condition of circularity in terms of the probability density function
(pdf) can be expressed as

A single–dimensional CRV Z is circular if and only if its pdf is a function of
only the product zz∗, that is3

pZ,Z∗(z, z∗) = pZφ,Z∗

φ
(zφ, z∗φ) (7)

In the special case of Gaussian CCRVs, this yields (Goodman, 1963)

pZ,Z∗(z, z∗) =
1

πσ2
e−zz∗/σ2

(8)

where σ2 denotes the variance of the CRV.

The condition of circularity for characteristic functions:

A complex random variable Z is circular if and only if its (first or second)
characteristic function depends only on the product ww∗, that is

ΦZφ,Z∗

φ
(w, w∗) = ΦZ,Z∗(we−jφ, w∗ejφ). (9)

When the statistical moments and cumulants do exist, then the condition of circularity
can be expressed as (Amblard et al., 1996b)

A complex random variable Z is circular if and only if the only non–zero
moments and cumulants are the moments and cumulants that have the same
power in Z and Z∗.

This property follows directly from the fact that the partial derivatives in (6) taken at
(0, 0) are non–zero only when they are of the same order both in w and w∗. Conversely,
when all the statistical moments or cumulants that are not symmetric are equal to zero, the
Taylor series expansion of the characteristic function is a function of ww∗, for example,
Cum[Z2] = 0, Cum[Z4] = 0, . . . , Cum[Z2p] = 0. An extension of these results to the
multidimensional case can be found in (Amblard et al., 1996b).

2.2 Design of Complex Circular Random Variables

For a deeper insight into the notion of CCRV, it is very helpful to be able to create CCRVs
“by design”. For simplicity, consider the single-dimensional case and zero-mean variables
(circularity requires that all the even moments and cumulants vanish).

The Gaussian case is rather unique and is well understood. The Gaussian complex random
variable Z = X + jY is circular if

E[Z2] = E[X2] − E[Y 2] + jE[XY ] = 0 (10)

3This also implies that the pdf of a CCRV is function of only the modulus of Z.

4



In order to construct a CCRV, we therefore have to use two Gaussian RVs X and Y , and
to verify that

E[X2] = E[Y 2], and E[XY ] = 0 (11)

which boils down to having two independent RVs with equal powers.

For non-Gaussian RVs, this construction of a CCRV can be based upon the properties of
pdf, as follows

1. Take a RV ρ with a pdf p(ρ);

2. Take another RV θ uniformly distributed on [0, 2π] and independent of ρ;

3. Construct Z = X + jY as

X = ρ cos(θ), Y = ρ sin(θ). (12)

The above procedure intuitively follows the general idea of circularity; in the polar coor-
dinate system, this yields the following condition

p(ρ, θ) = p(ρ, θ − φ) (13)

where φ is the rotation angle.

3 Complex Signals

A natural extension of the concept of CRVs is to the analysis of higher-order statistical
properties of complex–valued signals. The mathematical tools used are multicorrelations
and multispectra for stationary signals, whereas for non-stationary signals they include
higher–order time–frequency distributions. Applications of such techniques include blind
deconvolution and equalisation, blind separation of sources, modulation recognition, de-
tection of quadratic phase coupling, and Volterra filtering. A comprehensive introduction
to these higher-order tools with numerous examples is provided in (Amblard, Gaeta, &
Lacoume, 1996a).

3.1 Multicorrelations of Complex Signals

For a complex–valued random signal z(t), its multicorrelation of order (p + q) is defined
as

Cz,p+q,p(t) = Cum[z(t0), . . . , z(tp−1), z
∗(tp), . . . , z

∗(tp+q−1)] (14)

where Cum[·] is the cumulant and t = (t0, . . . , tp+q−1). Note that in this definition, the
order of multicorrelation is (p + q) with q referring to the conjugated and p referring
to the nonconjugated components. Statistical properties of multicorrelations are direct
consequences of the corresponding properties of cumulants:

• multicorrelations are multilinear

• they are equal to zero for (p + q) > 2 for Gaussian signals

Furthermore, if the signal is white in the strict sense (the random variables z(t0), . . . , z(tp+q−1)
are statistically independent for all (p + q)), the multicorrelations vanish except for the
same index ti in both z and z∗.
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3.2 Multicorrelations and Multispectra for Stationary Complex Signals

A signal is called stationary if the statistics of all random vectors it induces are invariant
under a time shift operation. More precisely, let z(t) be a complex random signal and
zn = (z(t1), . . . , z(tn)) an n-dimensional induced vector. Then the signal is said to be
stationary of order k if the pdf of zn is invariant under a time shift for all n ≤ k.

For the multicorrelation of order (p + q), the property of stationarity leads to

Cz,p+q,p(t + τ ) = Cz,p+q,p(τ ) (15)

for all p and q such that (p+q) ≤ n and for all time lags τ . This shows that for stationary
complex signals, the multicorrelation is no longer (p + q) dimensional but (p + q − 1)-
dimensional, and is a function of only τ = (τ1, . . . , τp+q−1), as illustrated by

Cz,p+q,p(τ ) = Cum[z(t), z(t + τ1), . . . , z(t + τp−1), z
∗(t − τp), . . . , z

∗(t − τp+q−1)] (16)

In such a case, the multispectrum of order (p + q) is defined as the Fourier transform of
the corresponding multicorrelation, that is

Sz,p+q,p(ν) =

∫

Cz,p+q,p(τ ) exp(−j2πτ
T
ν)dτ (17)

where (·)T denotes the vector transpose operator.

The extension to cross-multicorrelations and cross-multispectra and to various classes of
multidimensional signals is straightforward and can be found in (Amblard et al., 1996a).

3.3 Higher Order Statistics of Complex Circular Stationary Signals

Finally, the notion of circularity can be extended to general complex valued signals in the
following way. We say that a signal is circular of order n if the induced vectors of order
lower or equal to n are circular. Further, if a random vector is circular of order n, then
the statistics of the order lower or equal to n, containing a number of conjugated terms
different from that of nonconjugated terms are zero. Therefore, this characterization of
circularity suffices to prove that, for circular signals of order n

∀p,q Cz,p+q,p(τ ) = 0, such that p + q ≤ n, and p 6= q. (18)

Similar results can be obtained in the frequency domain, and in particular, a complex
Gaussian signal is strictly circular (i.e. circular for all orders) if the only nonzero multi-
spectra are Sz,2,0(ν), Sz,2,1(ν) and Sz,2,2(ν). If this signal is also analytic, only Sz,2,1(ν)
is nonzero.

The properties of multispectra for other signal types can be found in (Amblard et al.,
1996a). In particular: for any analytic signal, multispectra of the type Sz,p,p(ν) are
identically zero; for any band-limited signal, the only nonzero multispectra are of the type
Sz,2p,p(ν). To visualize the property of circularity of complex signals, Figure 1 presents
samples of two signals: complex white Gaussian noise (complex circular) and the first
two coordinates of the Lorenz attractor (non-circular signal). Observe the shapes of the
signal distributions, the Gaussian signal clearly exhibits circularity, which is not the case
for the Lorenz signal.
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Figure 1: The real–imaginary part scatter plot of a circular (left) and noncircular signal
(right).

4 Second Order Characterization of Complex Signals

In the preceding section, we have presented a general mathematical framework for higher-
order statistical characterization of complex random variables and signals. In many prac-
tical situations (like MMSE based adaptive filtering) such a description can be restricted
to only Second Order Statistics (SOS), giving a considerable reduction in the complexity
of applied algorithms. In this section, we will consider such statistics for complex-valued
signals (referred also as augmented statistics (Schreier, Scharf, & Hanssen, 2006)), and
in particular, we will focus on their circular properties (Picinbono, 1994) and modelling
capabilities (Picinbono & Chevalier, 1995).

4.1 Augmented Statistics of Complex Signals

For a discrete, zero-mean complex signal z, its second order statistics are described by
the covariance function (CF) defined by

γz(k1, k2) = E[z(k1)z
∗(k2)] (19)

As has already been shown, this function is not sufficient to entirely describe the second-
order statistics of z(k). For this purpose, we have to introduce another relation function
(RF) (Picinbono, 1996) (also called pseudo-covariance (Neeser & Massey, 1993) or com-
plementary covariance (Schreier & Scharf, 2003)), defined as

rz(k1, k2) = E[z(k1)z(k2)]. (20)

In various instances, this RF is equal zero and therefore can be omitted4. Indeed, a
second–order circular signal can be alternatively defined by the property rz(k1, k2) = 0.
As an obvious consequence, real-valued signals cannot be circular.

However, in general, there is no reason for the RF to be equal to zero, and therefore, it
is necessary to describe the second–order statistics of complex signals completely, both in

4This is the case for the analytic signal of any stationary process, and more generally, for any circular
signal (Picinbono, 1994).
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terms of their “proper” and “improper” members. In particular, it has been demonstrated
(Picinbono & Bondon, 1997), that the CF cannot be an arbitrary function, because it
must be non–negative definite. In the same vein, the RF cannot be an arbitrary function,
and the necessary conditions for its existence can be derived as:

• A complex signal z(k) is said to be wide sense stationary (WSS) if its mean is
constant and its CF (19) is only a function of the lag τ = k1 − k2. This definition
does not imply any condition on the RF (20);

• We say that a complex signal is second–order (SO) stationary if it is WSS and if its
RF is only depending on τ .

It is clear that for real signals, the concepts of WSS and SO stationarity are equivalent.
On the other hand, for complex signals, WSS stationary does not imply SO stationarity.

Let Γz(ν) be a Fourier Transform (FT) of CF, or in other words, the power spectrum of
z(k). Since stationarity implies that RF is symmetric, then the same property holds for
its FT, i.e. Rz(ν) = Rz(−ν), where Rz(ν) is a general a complex function.

Let us introduce a 2 × 1 complex random vector

z(k) = [z(k), z∗(k)]T (21)

Its CF is the 2×2 matrix E[z(k)zH(k−τ)], where the symbol (·)H denotes a simultaneous
transposition and complex conjugation (Hermitian transpose). The FT of this matrix is
called the spectral matrix of z(k), denoted Γ

z
(ν), and is known to be nonnegative definite

(NND) (Picinbono, 1993). Simple calculation gives

Γ
z
(ν) =

[

Γz(ν) Rz(ν)
R∗

z(ν) Γz(−ν)

]

(22)

This matrix is non–negative definite if and only if one of its diagonal elements and its
determinant are nonnegative. This property is obvious for the diagonal elements. By
making use of the symmetry of Rz(ν), the non–negativity condition on the determinant
of (22) yields the bound

|Rz(ν)|2 ≤ Γz(ν)Γz(−ν) (23)

This is a necessary condition that the function Rz(ν) must satisfy in order to be FT of
an RF of a signal with power spectrum Γz(ν). This condition is also sufficient (Picinbono
& Bondon, 1997). A direct transposition of this condition to the case of nonstationary
random signals yields

|Rz(ν1, ν2)|
2 ≤ Γz(ν1,−ν1)Γz(ν2,−ν2). (24)

These conditions can be equally derived in the time domain, using the properties of CF
and RF. For a zero-mean, complex vector z = x+ jy of Cn, the corresponding covariance
γ and relation r matrices are given by

γ = E[zzH], and r = E[zzT]. (25)

If we define an augmented covariance matrix A (Schreier & Scharf, 2003) as

A =

[

γ r

r∗ γ
∗

]

(26)
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this allows us to redefine the condition (23) in the time domain; this is equivalent to the
condition that the expression (Schur complement)

γ
∗ − rH

γ
−1r (27)

is non–negative definite (Picinbono, 1996). If r = 0, then the complex vector z is called
circular (or proper (Neeser & Massey, 1993)), otherwise it is called noncircular (or im-
proper).

A detailed account of these results for a generalized single-sideband modulator is given in
(Schreier & Scharf, 2003), whereas applications in the areas of telecommunications and
information theory are outlined in (Neeser & Massey, 1993). A low-rank approximation
of improper complex random vectors is provided in (Schreier & Scharf, 2001), and its
applications in Wiener filtering are given in (Schreier & L.L., 2002). Finally, in (Schreier et
al., 2006) a generalized likelihood ratio test for impropriety of complex signals is proposed.

4.2 Widely Linear Estimation of Complex Signals

Mean square estimation is one of the most fundamental principles of statistical signal
processing. The basic problem can be stated as follows: let y be a scalar random variable
to be estimated in terms of an observation random vector z. The estimate that minimizes
the mean square error (MSE) is then regression or the conditional expectation E[y|z].
This result is usually given when both y and z are real, however, it also remains valid
when these quantities are complex-valued.

If y and z are real jointly normal and with zero mean, then the regression is linear. This
is no longer true for normal complex-valued data, where the regression is linear in both z

and z∗ and is called widely linear (WL). Without the normality assumption, this problem
can be solved in terms of least mean square estimation (LMSE), given by (Picinbono &
Chevalier, 1995)

ŷ = hHz + gHz∗ (28)

where both h and g are complex vectors of filter coefficients.

Since the moments of order k of y are completely defined from the corresponding moments
of order k of z and z∗, expression (28) characterizes a form of linearity, and (28) is very
often called a wide sense linear filter or system. In practical applications, estimators
based on (28) are not widely used due to the fact that in almost all calculations using
complex Gaussian distributions, circularity is explicitly (or implicitly) assumed. Indeed,
this assumption holds in many practical applications, causing the second term in (28) to
vanish. However, there is no reason for this assumption to be generally accepted.

In general, the MMSE estimation problem in C can be formulated as:

Given (28), find the vectors h and g that minimize MSE E[|y − ŷ|2].

Using the principle of orthogonality (Picinbono & Chevalier, 1995), the solution is given
in terms of expectations

E[ŷ∗z] = E[y∗z], and E[ŷ∗z∗] = E[y∗z∗]. (29)

Replacing ŷ with (28), gives

γh + rg = u (30)

r∗h + γ
∗g = v∗ (31)
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where γ and r are defined by (25), u = E[y∗z], and v = E[yz].

From (30) and (31), the solution becomes

h = [γ − r(γ−1)∗r∗]−1[u − r(γ−1)∗v∗] (32)

g = [γ∗ − r∗γ−1r]−1[v∗ − r∗γ−1u] (33)

and the corresponding MSE is then given by

e2 = E[|y|2] − (hHu + gHv∗) (34)

and is smaller than e2
L, which is the error that is obtained with a strictly LMSE-like

procedure
e2

L = E[|y|2] − uH
γ
−1u. (35)

The advantage of the widely linear MSE (WLMSE) over LMSE is characterized by the
quantity δe2 = e2

L − e2, and can be expressed as

δe2 = [v∗ − r∗γ−1u]H[γ∗ − r∗γ−1r]−1[v∗ − r∗γ−1u]. (36)

This quantity is always nonnegative because the matrix [γ∗ − r∗γ−1r] is positive definite,
and consequently, δe2 = 0 only when [v∗ − r∗γ−1u] = 0.

The consequences of applying the WLMSE procedure instead of LMSE, can be straight-
forwardly determined for some common scenarios (Picinbono & Chevalier, 1995). In the
jointly circular case (well known in the normal case), characterised by

r = 0, and v = 0 (37)

it immediately results from (33) that (37) implies g = 0. Similarly, (32) gives h = γ
−1u,

thus WLMSE becomes strictly linear, δe2 = 0, and there is no advantage over standard
LMSE procedure.

If the second assumption in (37) is neglected (circular observation), then (32), (33), and
(36) can be respectively greatly simplified into

h = γ
−1u, g∗ = γ

−1v, and δe2 = vH
γ
−1v (38)

which leads to the fact that a non–zero vector v necessarily implies an increase in the
performance of WLMSE.

The general conclusion is that when the complex data are not jointly circular, the LMSE
is not the best estimation technique in the domain of second-order statistics of the signals.

5 Prediction of Complex Signals

Recent progress in biomedicine, wireless and mobile communications, seismic, sonar and
radar signal processing has brought to the light new problems where data models are often
complex-valued or have a higher-dimensional compact representation (eg. wind speed and
direction). To process such signals, much effort has been applied toward extending the
results from real-valued adaptive filters to their complex counterparts.

One such algorithm is the complex least mean square (CLMS) for finite impulse response
(FIR) adaptive filters (Widrow, McCool, & Ball, 1975). Other authors have considered
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complex-valued learning algorithms for training neural networks (Kim & Adali, 2001;
Leung & Haykin, 1991; Goh & Mandic, 2004a, 2004b).

Recently, an extended Kalman filter (EKF) training of neural networks has been extended
to the complex domain (Huang & Chen, 2000). This work has given rise to the first (to our
knowledge) application of augmented statistics used for learning EKF in the framework
of complex-valued recurrent neural networks (Goh & Mandic, 2007).

5.1 Augmented LMS Algorithm

Given the widespread use of LMS algorithms in practice, it is natural to consider the
extent to which WLMSE has advantages over LMSE in adaptive filtering applications.
To answer this question, consider a widely linear prediction model with the input z(k) at
the time instant k composed of N successive samples, represented by a delay vector given
by

z(k) = [z(k − 1), z(k − 2), . . . , z(k − N)]T. (39)

This vector is widely linearly combined with the adaptable weights hi(k) and gi(k) to
form the output y(k)

y(k) =

N
∑

i=1

[hi(k)z(k − i) + gi(k)z∗(k − i)], ⇐⇒ y(k) = hT(k)z(k)+gT(k)z∗(k) (40)

where h(k) and g(k) are the length N column vectors comprising the filter weights at
time instant k, and y(k) is the estimate of a desired signal d(k).

To find an optimal estimate of d(k), it is necessary to minimize a performance criterion
E(k), typically the square of the norm of the instantaneous error e(k), given by

E(k) = 1

2
|e(k)|2 = 1

2

[

e2

R(k) + e2

I(k)
]

, with e(k) = d(k) − y(k) (41)

where eR(k) and eI(k) are the real and imaginary part of the complex instantaneous error
e(k).

Using gradient-based learning, the aim is to update iteratively the filter weights so that
E(k) is minimized. In such a case, a “general weight update” ∆wi(k) can be derived from

∆wi(k) = −µ
∂E(k)

∂wi(k)
= −µ

(

∂E(k)

∂wR
i (k)

+ j
∂E(k)

∂wI
i (k)

)

(42)

where wi(k) = wR
i (k) + jwI

i (k), µ is the learning rate, a small positive constant; and the
partial updates over the real and imaginary part are expressed by

∂E(k)

∂wR
i (k)

= eR(k)
∂eR(k)

∂wR
i (k)

+ eI(k)
∂eI(k)

∂wR
i (k)

= −eR(k)
∂yR(k)

∂wR
i (k)

− eI(k)
∂yI(k)

∂wR
i (k)

(43)

∂E(k)

∂wI
i (k)

= eR(k)
∂eR(k)

∂wI
i (k)

+ eI(k)
∂eI(k)

∂wI
i (k)

= −eR(k)
∂yR(k)

∂wI
i (k)

− eI(k)
∂yI(k)

∂wI
i (k)

. (44)

For the considered widely linear scenario (40), the corresponding partial derivatives can
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be calculated as

∂E(k)

∂hR
i (k)

= −eR(k)
∂yR(k)

∂hR
i (k)

− eI(k)
∂yI(k)

∂hR
i (k)

= −eR(k)zR(k − i) − eI(k)zI(k − i) (45)

∂E(k)

∂hI
i (k)

= −eR(k)
∂yR(k)

∂hI
i (k)

− eI(k)
∂yI(k)

∂hI
i (k)

= eR(k)zI(k − i) − eI(k)zR(k − i) (46)

∂E(k)

∂gR
i (k)

= −eR(k)
∂yR(k)

∂gR
i (k)

− eI(k)
∂yI(k)

∂gR
i (k)

= −eR(k)zR(k − i) + eI(k)zI(k − i) (47)

∂E(k)

∂gI
i (k)

= −eR(k)
∂yR(k)

∂gI
i (k)

− eI(k)
∂yI(k)

∂gI
i (k)

= −eR(k)zI(k − i) − eI(k)zR(k − i) (48)

and the corresponding weight updates can be expressed as

∆hi(k) = −µ
∂E(k)

∂hi(k)
= −µ

(

∂E(k)

∂hR
i (k)

+ j
∂E(k)

∂hI
i (k)

)

= µ [(eR(k)zR(k − i) + eI(k)zI(k − i)) + j(eI(k)zR(k − i) − eR(k)zI(k − i))]

= µe(k)z∗(k)

(49)

∆gi(k) = −µ
∂E(k)

∂gi(k)
= −µ

(

∂E(k)

∂gR
i (k)

+ j
∂E(k)

∂gI
i (k)

)

= µ [(eR(k)zR(k − i) − eI(k)zI(k − i)) + j(eR(k)zI(k − i) + eI(k)zR(k − i))]

= µe(k)z(k)

(50)

In the matrix formulation, the filter weights are updated as follows

h(k + 1) = h(k) + µe(k)z∗(k) (51)

g(k + 1) = g(k) + µe(k)z(k) (52)

which completes the derivation of the augmented CLMS (ACLMS) algorithm, which is a
widely linear extension of the CLMS algorithm proposed in (Widrow et al., 1975).

5.2 Experiments

To assess the performances of the ACLMS algorithm, simulations were performed for a
4-tap (4 taps of h and 4 taps of g) widely linear model (ACLMS) and for a standard
LMS-like FIR adaptive filter. The main objective of these experiments was to provide an
insight into the performance gains of the WL estimation compared to the strictly linear
one for both circular and noncircular complex-valued signals.

As the learning sets, we used:

Linear AR(4) model (’ar4’). This linear model is proposed in (Mandic, 2004) (first exper-
iment, page 116) and described by

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + z(k) (53)

where z(k) is a complex, white Gaussian noise with variance σ2 = 1.

Wind (’wind’). The samples used in the experiments were obtained from the Iowa Depart-
ment of Transportation5 and contain data acquired every minute from AWOS (Automated

5Publicly available from http://mesonet.agron.iastate.edu/request/awos/1min.php.
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Weather Observing System) sensors. We have chosen the Washington (AWG) station, and
the gathered data corresponds to the wind speed and direction observed in January 2004.

Lorenz Attractor (’lorenz’). Lorenz attractor is a chaotic map which shows how the state of
a dynamical system evolves over time in a complex, non-repeating pattern. This system is
nonlinear, three-dimensional, deterministic and is described by coupled equations (Lorenz,
1963)

dx

dt
= σ(y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz (54)

with (usually) σ = 10, β = 8/3, ρ = 28. For simulations we have used the first two
coordinates of the Lorenz attractor.

Ikeda Map (’ikeda’). This is another complex chaotic map, described by the following
nonlinear system (Hammel, Jones, & Moloney, 1985)

x(n + 1) = 1 + u (x(n) cos[t(n)] − y(n) sin[t(n)]) (55)

y(n + 1) = u (x(n) sin[t(n)] + y(n) cos[t(n)]) (56)

where u is a parameter (typically u = 0.8) and

t(n) = 0.4 −
6

1 + x2(n) + y2(n)
. (57)

For simulations we have used the first two coordinates of this chaotic map.

For all experiments, the following two learning scenarios were considered:

• Batch training for 1000 epochs (µ = 0.001) where each signal was composed of 1000
samples. This scenario applies to the case where the number of available samples
is relatively large and the objective is to find the best (in terms of the prediction
gain) data model;

• On-line adaptation (µ = 0.01) for each signal composed of 1000 samples. This on-
line scenario corresponds to situations where the number of samples is relatively
large, the required processing time is small, and at the same time, prediction gain
should be close to that obtained by batch training.

As a quantitative measure of performance we used a prediction gain Rp given by (Haykin
& Li, 1995)

Rp ,
σ2

ŷ

σ2
e

(58)

where σ2
ŷ denotes the variance of the predicted signal ŷ(k), and σ2

e the variance of the
instantaneous prediction error e(k).

In the first experiment, the performances of the considered algorithms are compared in
the left hand part of Figure 2. The dotted lines correspond to the CLMS algorithm,
whereas the solid lines correspond to the ACLMS algorithm. Observe that for ’ar4’ signal
(which is strictly circular) and ’wind’ signal (which is almost circular for the given sample
rate and data length), there is almost no difference in performances between CLMS and
ACLMS algorithms. A totally different situation was observed for the ’lorenz’ and ’ikeda’
signals (purely noncircular, see also Figure 1) – at the end of training, the prediction
gain of the ALMS algorithm was about 3.36 (for ’lorenz’) and 2.24 (for ’ikeda’) times
bigger than that corresponding to the CLMS algorithm. These results are perfectly in
line with the background theory introduced in Section 4.2: when the complex data are
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Figure 2: Advantages of the ACLMS algorithm over standard CLMS

not circular, the optimal solution, in the mean square sense, for signal estimation is based
on the augmented statistics (full second-order statistical description). Similar results
were obtained in the second experiment, where on-line learning was applied for signal
prediction. The solid curve in Figure 2 (right) corresponds to the real part of the ’lorenz’
signal, the dotted curve to the prediction based on the CLMS, and the dashed curve to
the prediction based on the ACLMS algorithm. It is clearly visible that, for the same
learning rate, the ACLMS algorithm converges faster to the desired signal than the CLMS
algorithm.
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