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ABSTRACT

A Normalized Robust Mixed–Norm (NRMN) algorithm for sys-
tem identification in the presence of impulsive noise is introduced.
The standard Robust Mixed–Norm (RMN) algorithm, despite its
ability to cope with impulsive noise by virtue of combining the first
and second error norm in the cost function it minimizes, exhibits
slow convergence, requires a stationary operating environment,
and employs a constant step–size which needs to be determined
a–priori. To overcome these limitations, the proposed NRMN al-
gorithm introduces a time varying learning rate which is derived
based upon the dynamics of the input signal, and thus no longer
requires a stationary environment, a major drawback of the RMN
algorithm. The normalized step–size is bounded from above and a
parameter is introduced within its upper–bound, which provides a
trade–off between the convergence rate and the steady–state coef-
ficient error. The analysis and experimental results show that the
proposed NRMN exhibits increased convergence rate and substan-
tially reduces the steady–state coefficient error, as compared to the
Least Absolute Deviation (LAD) and RMN algorithm.

1. INTRODUCTION

Interference noise in the form of sparsely distributed impulses
arises frequently in a variety of practical situations, including
speech, image, biomedical, and communications applications.
Therefore, there is a need for adaptive filtering algorithms that are
robust to impulsive interference. The Median Least Mean Square
(MLMS) adaptive filter [1] [2] provides a solution to this problem
by median filtering the most recent gradient terms and using this
information for the weight adaptation. More recently, the Robust
Mixed–Norm (RMN) algorithm [3] for adaptive Finite Impulse
Response (FIR) filters in the system identification setting shown
in Figure 1, has been proposed. It emerged as a modification of
the mixed–norm adaptive algorithm proposed in [4], by replacing
the fourth order error norm appearing therein with the first order
one. The RMN algorithm minimizes a cost function defined as the
following convex combination of the error norms

J(k) � λ(k)E{e2(k)} + [1 − λ(k)]E{|e(k)|}, (1)

where the mixing parameter λ(k) ∈ [0, 1]. The instantaneous
output error of the algorithm is e(k) = d(k) − xT (k)w(k)

where x(k) denotes the length N tap–input–vector x(k) �
[x(k), . . . , x(k−N +1)]T , w(k) is the vector of adaptive weights
w(k) � [w0(k), . . . , wN−1(k)]T at iteration k and (·)T denotes
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Fig. 1. The system identification setting. The signals n(k) and
u(k) represent the impulsive and additive white Gaussian noise
respectively and wopt the vector of the unknown FIR system coef-
ficients.

the vector transpose. The desired signal d(k) is comprised of the
unknown system output y(k) = xT (k)wopt, of an impulsive noise
component n(k) and possibly of a zero–mean white noise com-
ponent u(k), which is assumed to be drawn from a normal dis-
tribution i.e., u(k) ∼ N (0, σ2

u). The impulsive noise compo-
nent n(k) can be modelled as n(k) = α(k)I(k) [5], with α(k)
a binary process of independent and identically distributed (i.i.d.)
random variables, described by the probability p{α(k) = 1} = c,
p{α(k) = 0} = 1−c, where c represents the probability of the oc-
currence of impulsive interference. For n(k) to be a realistic model
of the impulsive noise, var{I(k)} 	 var{y(k)}. Process I(k)
is assumed to be uncorrelated with α(k) and to have a symmetric
amplitude distribution. This way, var{n(k)} = cvar{I(k)} = σ2

n.
The weight update of RMN then takes the form [3]

w(k + 1) = w(k) + µ{λ(k)2e(k)

+[1 − λ(k)]sign[e(k)]}x(k), (2)

where µ is a constant step–size and λ(k) � Prob{d > |d(k)| ∪
d < −|d(k)|}, with the random variable d modelling the desired
signal d(k) in the absence of impulsive noise. For the case d ∼
N (0, σ2

d)1, the mixing parameter λ(k) is given by

1Due to the Central Limit Theorem [5], this assumption holds approxi-
mately in practice for large filter length N .

VI - 3330-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



λ(k) = 2erfc
{ |d(k)|

σ̂d

}
, (3)

where σ̂d is the estimate of the standard deviation of d(k) in the
absence of impulsive interference.

Although the RMN successfully solved the problem of di-
vergence under impulsive interference due to the inherent sign–
error LMS adaptation2 and the automatic switching mechanism
provided by (3), it suffers from slow and generally non–uniform
convergence due to the use of the constant step–size µ in (2) and
the possibly non–stationary behavior of the input. Furthermore, in
a practical application, the value of µ cannot be known a–priori,
thus rendering the RMN unsuitable for use in practice.

To this cause, an extension of the RMN, the Normalized Ro-
bust Mixed–Norm (NRMN) algorithm is proposed. It employs
a time varying step–size µ(k) in (2) which takes into account
the dynamics of the tap–input–vector, the current value of λ(k)
from (3), and the instantaneous output error value e(k). For
λ(k) = 1 the proposed NRMN degenerates into the Normal-
ized Least Mean Square (NLMS) algorithm and thus inherits its
fast convergence, during the periods where the impulsive noise
is not present, whereas for λ(k) ∈ (0, 1) it essentially repre-
sents an NLMS followed by a normalized sign–error LMS up-
date. A user–defined constant value parameter is incorporated in
the upper–bound imposed on µ(k) so as to provide a trade–off be-
tween the steady–state coefficient error and the convergence rate.
The theoretical analysis and experimental results demonstrate that
the proposed NRMN exhibits superior performance as compared
to that of RMN. For the same steady–state error it exhibits higher
convergence rate, whereas for the the same convergence rate it of-
fers substantially lower steady–state error. This improvement in
the performance is achieved at practically no increase in computa-
tional complexity.

2. ANALYSIS OF THE NRMN ALGORITHM

The proposed Normalized Robust Mixed Norm (NRMN) algo-
rithm is derived by replacing the constant step–size µ in (2) with
a variable step–size µ(k) which takes into account the instanta-
neous tap–input–vector power ‖ x(k) ‖2

2 and the current values
of the mixing parameter λ(k) and output error e(k). To derive
µ(k), the methodology applied in [6] for the NLMS algorithm is
followed and the error signal e(k,w(k +1)) is expressed in terms
of e(k,w(k)) using the Taylor series expansion

e(k,w(k + 1)) = e(k,w(k)) +

N−1∑
j=0

∂e(k,w(k))

∂wj(k)
�wj(k) +

N−1∑
j=0

N−1∑
i=0

∂2e(k,w(k))

∂wj(k)∂wi(k)
�wj(k)�wi(k) + · · · , (4)

where both e(k,w(k +1)) and e(k,w(k)) are conditioned on the
tap–input–vector x(k) and the desired signal d(k). From the error

e(k) = d(k) − xT (k)w(k) (5)

2The sign–error LMS applies the update term µsign[e(k)]x(k) instead
of 2µe(k)x(k), which under impulsive interference has a lesser impact on
the weight vector w(k).

and the update equation (2), all but the first order derivatives in (4)
are zero, which yields

e(k,w(k + 1)) = e(k,w(k))

{
1 −

µ(k) ‖ x(k) ‖2
2

[
2λ(k) +

1 − λ(k)

|e(k)|
]}

. (6)

To minimize the a–posteriori error e(k,w(k +1)), the term inside
the large brackets in (6) is set to zero, hence yielding the normal-
ization formula for µ(k), given by

µ(k) =
|e(k)|{

2λ(k)|e(k)| + [1 − λ(k)]
} ‖ x(k) ‖2

2

. (7)

Denoting by wopt the vector of the optimal weights, the dynamical
behavior of the coefficient error vector

v(k) � wopt − w(k), (8)

is governed by

v(k + 1) =
{
I − 2µ(k)λ(k)x(k)xT (k)

}
v(k) −

µ(k)
{
[1 − λ(k)]sign[e(k)] + 2λ(k)n(k)

}
x(k). (9)

According to the analysis in [7], for a constant step–size µ and
mixing parameter λ, the approximation E{sign[e(k)]x(k)} ≈√

2/π[1/σe(k)]E{e(k)x(k)} holds for small µ, where σe(k) is
the standard deviation of the error signal. From (9), the sufficient
condition for convergence in the mean is given by

µ(k) ≤ µUB � 2A[
2λ(k) + [1 − λ(k)]

√
2

π(σ2
n+σ2

u)

]
Nσ2

x

. (10)

In (10), A = 1, µ and λ are replaced by their time varying coun-
terparts and the variance σ2

e(k) of the error signal by (σ2
n + σ2

u),
thus yielding a lower value for the upper–bound. The significance
of the constant value parameter A introduced in (10) will be ex-
plained in the sequel.

Assuming that the impulsive noise component occurs at time
instant k0, it yields a value d(k0) such that |d(k0)| 	 σ̂d as a
result of var{I(k)} 	 var{y(k)}. For a large value of |d(k0)|

σ̂d
, the

mixing parameter value λ(k0) of (3) used by NRMN will be very
close to zero. If at the time instant k0 a convergence state very
close to wopt had been attained, the value of the coefficient error
vector v(k0 + 1) after performing the weight update at time k0 in
the presence of impulsive noise is readily obtained. This can be
found from (9) by setting v(k0) ≈ 0 and λ(k0) ≈ 0, which yields
v(k0 + 1) = −µ(k0)sign[e(k0)]x(k0) and effectively

‖ v(k0 + 1) ‖2
2= µ2(k0) ‖ x(k0) ‖2

2 . (11)

By combining (7), (10), (11), and taking into account that for

λ(k) = 0, the upper–bound µUB in (10) is simply
A
√

2π(σ2
n+σ2

u)

Nσ2
x

,
the value of the weight error vector norm right after the occurrence
of impulsive interference is obtained as
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‖ v(k0 + 1) ‖2
2=

min

{
e2(k0)

‖ x(k0) ‖2
2

,
2π(σ2

n + σ2
u)A2

Nσ4
x

‖ x(k0) ‖2
2

N

}
. (12)

If the length N of the adaptive filter is large, the second term in

(12) can be approximated by 2π(σ2
n+σ2

u)A2

Nσ2
x

. This term is indepen-
dent of the instantaneous values of the signals, is inversely pro-
portional to the SNR and the filter length N , and proportional to

A2. On the other hand, the first term in (12), namely e2(k0)

‖x(k0)‖2
2

,

can take a large and unpredictable value under impulsive interfer-
ence. Thus, according to the above analysis, the introduction of
µUB guarantees that whenever the impulsive noise occurs after a
state of convergence, the maximum value ‖ v(k0 +1) ‖2

2 can take

is known a–priori and equals 2π(σ2
n+σ2

u)A2

Nσ2
x

. If a smaller value of

‖ v(k0+1) ‖2
2 is observed, this is e2(k0)

‖x(k0)‖2
2

. Therefore, the benefit

of the constraint µ(k) ≤ µUB is that whenever impulsive noise oc-
curs during a state of convergence, a well–defined, a–priori known
and controllable by the constant value parameter A upper–bound
is imposed on the coefficient error norm ‖ v(k0 +1) ‖2

2. Allowing
for values A < 1, reduces this upper–bound and provides a means
of controlling ‖ v(k0 + 1) ‖2

2 and effectively the steady–state per-
formance of the algorithm, since the steady–state coefficient error
reduces with ‖ v(k0 + 1) ‖2

2. This is better illustrated in the next

section. It should be noted that the upper–bound 2π(σ2
n+σ2

u)A2

Nσ2
x

,
which can be considered as the worst case scenario for the system,
decreases with an increase in the value of the filter length N , a
clear merit of the proposed NRMN algorithm, since in practical
situations the length N is usually large.

The value of the mixing parameter λ(k) is given by (3), where
the standard deviation estimate σ̂d is obtained from

σ̂d(k) =

√
1

Nw − K − 1
oT To, (13)

where T � Diag[1, . . . , 1, 0, . . . , 0] and the vector o(k) �
O([d(k), . . . , d(k − Nw + 1)]T ) contains the Nw most recent
samples of d(k), ordered from the smallest to the largest abso-
lute value (the symbol O(·) denotes the ordering operation). In
(13), matrix T sets the last K elements of o to zero and forms an
unbiased estimate σ̂d(k) [5] using the remaining (Nw − K) ele-
ments. The idea behind this is that if some of the Nw elements
of d(k) � [d(k), . . . , d(k − Nw + 1)]T are affected by impul-
sive noise, these will be the ones with the highest absolute values3.
Thus, by setting the last K elements of O(k) to zero, an estimate
σ̂d(k) is obtained which is unaffected by the impulsive noise, pro-
vided that no more than K samples were affected by n(k). In [3],
the estimate σ̂d(k) was proposed using T � Diag[0, 1, . . . , 1, 0]
and ordering of the most recent Nw samples of d(k) from the
smallest algebraical value to the largest. A more robust estimate
can be obtained by using T � Diag[1, . . . , 1, 0, 0] and ordering as
in (13). This estimate can further be improved by allowing values
of K grater than two, as we do in (13).

3This is a realistic assumption since the variance of I(k) is substantially
larger than that of y(k).

3. EXPERIMENTAL RESULTS

Two sets of experiments were performed to test the proposed Nor-
malized Robust Mixed–Norm (NRMN) algorithm. Both were
conducted in the System Identification setting, depicted in Fig-
ure 1 and the performance of the algorithm was evaluated with
respect to the normalized coefficient error quantified as 10log10(‖
v(k) ‖2

2 / ‖ wopt ‖2
2). For n(k), the parameters c = 10−2 and

var{I(k)} = 104

12
were used [3]. Expression (13) was used to

provide the σ̂d(k) estimates for RMN and NRMN for the values
K = 2 and Nw = N . Zero–mean unit–variance white Gaussian
noise was used as input i.e., x(k) ∼ N (0, 1). All the results were
obtained by averaging 1000 outcomes of independent trials for the
first and 100 outcomes of independent trials for the second exper-
iment. For the Least Absolute Deviation4 (LAD) and RMN, the
parameters µLAD = 0.06 and µRMN = 0.0324 were used [3].

In the first experiment, the performance of NRMN was eval-
uated and compared to that of NLMS, LAD and RMN. The
unknown system was a nine–tap filter described by wopt =
[1, 2, 3, 4, 5, 4, 3, 2, 1]T , which was also used for the simulations
in [3], normalized so as to have unit power wT

optwopt = 1. Figure 2
provides the results obtained for impulsive noise, while for Figure
3 white Gaussian noise for SNR = 20dB was also present. As
seen from Figures 2 and 3, for the same steady–state coefficient
error the proposed NRMN algorithm exhibits higher convergence
rate, compared to RMN, whereas for the same convergence rate
it exhibits a lower steady–state coefficient error. Its performance
is also superior to that of LAD. The NLMS algorithm, which is
not shown in the Figures, was also simulated. In both cases it
failed to converge in the presence of impulsive interference, pro-
viding a steady–state coefficient error at a level of +10 dB. The
Figures also demonstrate the effect of the variation of the param-
eter A in (10) on the performance of NRMN. When reducing the
value of A, both the steady–state coefficient error and convergence
rate decrease. On the other hand, by increasing the value of A, the
steady–state coefficient error increases and so too does the conver-
gence rate, which cannot however increase further than a certain
value. This dependence of the steady–state error on the value of A
is expected since the second term at the right hand side of (12) is
proportional to A.

In the second experiment, the performance of NRMN was
again compared to that of RMN, this time for an unknown sys-
tem of length N = 100. For each trial, the coefficients of this
system were drawn as samples of 100 i.i.d. random variables uni-
formly distributed between [− 1

2
, 1

2
] and normalized so as to have

unit power i.e., wT
optwopt = 1. Additive white Gaussian noise of

SNR = 20dB was also present. As seen from Figure 4, NRMN
exhibits superior performance as compared to RMN. Similar con-
clusions as before for the effect of varying the parameter A on the
performance of NRMN can also be drawn from Figure 4. Again,
NLMS was tested and failed to converge.

4. CONCLUSIONS

A Normalized Robust Mixed–Norm (NRMN) algorithm for Finite
Impulse Response (FIR) adaptive filters, which is robust to im-
pulsive interference and exhibits fast convergence rate, has been
presented. The cost function to minimize is a convex mixture

4The sign–error LMS algorithm.
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Fig. 2. Performance comparison of LAD, RMN and NRMN for
varying A, under impulsive noise interference n(k), for u(k) = 0
and a filter of length N = 9.
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Fig. 3. Performance comparison of LAD, RMN and NRMN for
varying A, under impulsive noise interference n(k), for u(k) of
SNR = 20dB and a filter of length N = 9.

of the first and second error norm, controlled by a time varying
mixing parameter. This parameter has been derived based upon
an estimate of the variance of the desired signal –in the absence
of impulsive interference and its current for each time instant
value. The normalization scheme has been next introduced and
an upper–bound has been imposed on the step–size employing a
user–defined constant value parameter, which makes it possible to
trade–off between the convergence rate and the steady–state coeffi-
cient error. The proposed NRMN has been shown to exhibit higher
convergence rate than the Robust Mixed–Norm (RMN) algorithm
for the same steady–state error, whereas by properly choosing the
constant value parameter it employs within the upper–bound, it
is possible to attain the same convergence rate for a substantially
lower steady–state error. This significant improvement in the per-
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Fig. 4. Performance comparison of RMN and NRMN for varying
A, under impulsive noise interference n(k), for u(k) of SNR =
20dB and a filter of length N = 100 of random coefficients.

formance the proposed NRMN offers comes at practically no ex-
pense in computational complexity.
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