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Abstract8

A novel class of stochastic gradient descent algorithms is introduced based on the9

minimisation of convex cost functions with exponential dependence on the adapta-10

tion error, instead of the conventional linear combinations of even moments. The11

derivation is supported by rigourous analysis of the necessary conditions for conver-12

gence, the steady state mean square error is calculated and the optimal solutions13

in the least exponential sense are derived. The normalisation of the associated step14

size is also considered in order to fully exploit the dynamics of the input signal.15

Simulation results support the analysis.16

Key words: Adaptive Filtering, Cost Functions, Stochastic Gradient Descent,17

Online Optimisation18

PACS: 43.60.Mn, 45.10.Db19

1 Introduction20

Gradient descent (GD) algorithms aim at updating the coefficients of an adap-21

tive tap-delay filter in a recursive manner, in order to minimise a chosen cost22

function. This is achieved in the following way23

wn+1 = wn + μ(n)f [e(n)]g[xn]

∗ Corresponding author
Email addresses: cbou@ait.edu.gr (C. Boukis), d.mandic@imperial.ac.uk

(D.P. Mandic), agc@imperial.ac.uk (A.G. Constantinides).

Preprint submitted to Signal Processing 16 June 2008



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

where wn = [w0(n), w1(n), . . . , wN−1(n)]t is the vector of filter coefficients, e(n)24

the adaptation error defined as the difference between the desired response25

and the output of the adaptive filter, xn = [x(n), x(n − 1), . . . , x(n − N + 1)]t26

the input regressor vector, μ(n) the time-varying learning rate and (·)t the27

vector transpose operator [1] . The (possibly nonlinear) functions f [·] and g[·],28

and consequently the performance of GD algorithms, depend critically on the29

choice of the cost function.30

The vast majority of GD algorithms use quadratic cost functions, due to their31

mathematical tractability and convenience of analysis. In this case the func-32

tions f [·] and g[·] are linear. The so derived second order statistics (SOS)33

based algorithms have low computational complexity. Members of this class34

are the least mean square (LMS) [2] and the normalised least mean square35

(NLMS) [3].36

Using high order even powers of the adaptation error as cost functions (non-37

linear f [·] and g[·]) results in higher order statistics (HOS) adaptive algo-38

rithms [4]. These algorithms have potentially faster convergence than SOS39

based algorithms, due to their steeper error surfaces, that is they penalise40

heavier for deviations from the optimal solution. Moreover, unless the prob-41

ability distribution of the measurement noise is Gaussian, HOS algorithms42

exhibit reduced misadjustment as compared to SOS algorithms. Typical rep-43

resentatives of this class are the least mean fourth (LMF) [4] and the least44

mean kurtosis (LMK) [5] algorithm, which have been shown to outperform the45

LMS, especially in the presence of non-Gaussian additive measurement noise.46

Mixed norm GD algorithms, that are robust under several noise conditions,47

can be derived when using finite sums of even error powers as cost functions.48

To that end Chambers, Tanrilulu and Constantinides introduced the Least49

Mean Mixed Norm (LMMN) algorithm [6] where second and fourth order50

moments were linearly combined in a convex manner. Later on, Chambers51

and Avlonitis presented the Robust Mixed Norm (RMN) algorithm [7] which52

is based on a convex mixing of the L1 and L2 norms. A normalised version53

of RMN was introduced in [8]. A generalisation of the mixed norm approach54

was introduced by Barros et al termed the weighted even moments (WEM)55

algorithm [9]. This algorithm is general enough to cater for as many even error56

powers as necessary, however, the weighting coefficients of the error powers57

need to be determined empirically.58

In this paper, we propose stochastic gradient adaptation based on cost func-59

tions that have exponential dependence on the chosen error. Contrary to exist-60

ing approaches, this class of functions takes into account an infinite number of61

even moments of the error, resulting in nonlinear functions f [·] and g[·]. Expo-62

nentiated error cost functions have much steeper surfaces than linear combina-63

tions of even moments, thus penalising heavily for deviation from the optimal64
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solution. Simulations in a system identification setting have shown that the65

proposed least exponentials class of algorithms (LE) outperform least mean66

square (LMS) algorithms in terms of convergence, together with increased67

robustness in the presence of impulsive noise.68

The proposed LE class algorithms differ from the exponentiated gradient (EG)69

algorithms [10–12], since in our approach the coefficient adaptation formula70

is additive while the latter use multiplicative updating formulas. In addition,71

the cost function within EG algorithm attempts to minimise is the square of72

the error, while LE algorithms aim at the minimisation of exponentiated error73

cost functions.74

Section 2 introduces the class of exponentiated error functions and Section75

3 presents the associated least exponential algorithms. The performance of76

these algorithms is then analysed in Section 4 within the energy conservation77

framework [14]. Simulation results are presented in Section 5 and Section 678

concludes the paper.79

2 Exponentiated Error Cost Functions80

In order for GD algorithms to converge to global minima of error surfaces,81

they employ convex and unimodal cost functions. The most general choice of82

such cost functions is based on linear combination of even error powers [6,9],83

that is84

J(n) =
M∑
i=1

αie
2i(n) (1)

where αi is the weighting factor that represents the contribution of of the (2i)-85

th power of the adaptation error e(n). In the case of tap-delay (transversal)86

filters, the output error e(n) is given by87

e(n) = d(n) − wt
nxn (2)

where d(n) is the desired response. Functions of the form (1) are convex with88

a single minimum at e(n) = 0. Choosing M = 1 yields second order statistics89

(SOS) algorithms (e.g. the least mean square [2]), while for k > 1 we have90

higher order statistics (HOS) algorithms [4,6,9] (e.g. for M = 2 the least mean91

mixed norm algorithm is derived [6]). In most of the cases, the coefficients αk92

are chosen empirically.93
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To reduce the dependence on an empirical choice of the parameters and to94

provide a closed form solution, we propose cost functions that have exponential95

dependence on the error. These are convex, unimodal and have steeper error96

surfaces than those given by (1). Moreover, they take into account all the even97

moments of the adaptation error. Two such functions are considered in this98

paper: the exponential of the squared error and the hyperbolic cosine. The99

cost function based on the exponential of the squared error (Fig. 1) is given100

by101

Je2(n) =
1

2
exp[e2(n)] (3)

Evaluation of (3) as a Taylor Series Expansion (TSE) around zero gives102

Je2(n) =
1

2

+∞∑
i=0

1

i!
e2i(n) (4)

indicating that the objective function Je2(n) takes into account all the even103

moments of the adaptation error. Also, as desired, since the weight of the104

(2i)−th error moment is 1/(i!) more emphasis is given to lower order moments.105

The second cost function considered is the hyperbolic cosine (sum of error106

exponentials) given by107

Jse(n) =
1

2

(
exp[e(n)] + exp[−e(n)]

)
(5)

As illustrated in Fig. 1, Jse(n) is less steep than Je2(n) and both are steeper108

than a quadratic function. This can also be observed from the TSE of Jse(n)109

around e(n) = 0110

Jse(n) =
+∞∑
i=0

1

(2i)!
e2i(n) (6)

where the 2i-th power of the adaptation error is weighted by 1/(2i)!. So Jse(n)111

emphasises less than Je2(n) on the high-order error moments. Notice also112

that for small error values, the exponentiated error cost functions become113

quadratic, that is114

Je2(n) ≈ 1

2

(
1 + e2(n)

)
(7)

and115
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Jse(n) = 1 +
1

2
e2(n) (8)

The LE algorithms therefore reduce to LMS for small errors; the term ”1” in116

(8) is irrelevant when taking gradients.117
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se
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e2

(n)=exp(e2(n))

J
2
(n)=e2(n)

Fig. 1. Comparison of the standard and proposed cost functions.

3 The Class of Least Exponential Algorithms118

Based oin the gradient of J(n) from (1) we have a general stochastic gradient119

descent update formula [1]120

wn+1 = wn − μ(n)
∂J(n)

∂wn

(9)

which yields121

wn+1 = wn + μ(n)xn

M∑
i=1

2iαie
2i−1(n) (10)

For M = 1, α1 = 1/2 and a constant step size μ(n) = μ this simplifies122

into the least mean square (LMS) algorithm. For M = 2 the proposed algo-123

rithms become similar to the least mean mixed norm (LMMN) algorithm [6].124

Choosing M > 2 and heuristically finding the most appropriate values of αk125

(k = 1, 2, . . . , M) results in the weighted even moments (WEM) algorithm [9].126
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Fig. 2. The gradients of the square, exponential of the square, and sum of exponen-
tials cost functions.

3.1 The Least Exponentiated Square (LE2) Algorithm127

Taking the gradient of Je2(n) with respect to the vector of the filter coefficients128

yields129

∂Je2(n)

∂wn
= −e(n)x(n) exp[e2(n)] (11)

Substituting (11) into the general SGD update from (9), and assuming a time130

invariant step size results in the least exponentiated square (LE2) algorithm,131

which updates its coefficient estimates according to132

wn+1 = wn + μe(n)xn exp[e2(n)] (12)

Since the cost function Je2(n) is much steeper than the square of the error133

(Fig. 1), the value of the gradient ∂Je2(n)/∂wn is significantly larger than that134

of the gradient of the squared error with respect to the coefficients (Fig. 2).135

Hence, the LE2 converges faster than the least mean square (LMS) algorithm136

for a given constant learning rate, provided stability conditions. The nonlin-137

earity of this algorithm with respect to the adaptation error is obvious from138

fe2[e(n)] = e(n)exp[e2(n)] =
+∞∑
i=0

1

i!
e2i+1(n) (13)

Using (13), the weight update (12) can be re-written as139
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wn+1 = wn + μxn

+∞∑
i=0

1

i!
e2i+1(n) (14)

illustrating that LE2 algorithm comprises the odd moments of the adaptation140

error.141

3.2 The Least Sum of Exponentials (LSE) Algorithm142

The Least Sum of Exponentials (LSE) algorithm is derived by substituting143

∂J(n)/∂wn in the general SGD formula given by (9), with the partial gradient144

of Jse(n) w.r.t. the coefficients vector wn. Its update is given by145

wn+1 = wn +
μ

2
x)n (exp[e(n)] − exp[−e(n)]) (15)

since146

∂Jse(n)

∂wn

= −1

2
xn (exp[e(n)] − exp[−e(n)]) (16)

The error nonlinearity in the recursion of LSE is therefore147

fse[e(n)] =
1

2
[exp[e(n)] − exp[−e(n)]] =

+∞∑
i=0

1

(2i + 1)!
e2i+1(n) (17)

Combining (15) and (17) yields the final weight update in the form148

wn+1 = wn + μxn

+∞∑
i=0

1

(2i + 1)!
e2i+1(n) (18)

The only difference between LSE and LE2 is the fact that the (2i + 1) − th149

power is weighted by 1/(2i + 1)! in the LSE update,whereas in the LE2 the150

coefficient associated with the same error power is 1/i!.151

4 Convergence Analysis152

In this section the performance of the least exponential algorithms is exam-153

ined in terms of the optimal solution, mean-square stability and steady state154
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behaviour. This is achieved mainly based on the energy conservation frame-155

work [14,15], which relies on the observation that [16]156

‖w̃n+1‖2 +
1

‖xn‖2
|ea(n)|2 = ‖w̃n‖2 +

1

‖xn‖2
|ep(n)|2 (19)

where ea(n) is the a priori error given by157

ea(n) = [wo − wn]t xn = w̃nxn (20)

and158

ep(n) = [wo − wn+1]
t xn = w̃n+1xn (21)

is the a posteriori error.159

In this analysis we also make the following standard assumptions [14]160

• The desired response is produced by a linear model given by

d(n) = wt
oxn + v(n) (22)

where wo is a vector containing the optimal coefficient values, and v(n) is161

an additive noise component;162

• The noise sequence {v(n)} is independent, identically distributed and inde-163

pendent of the input sequence {xn};164

• The filter is long enough such that the a priori error is Gaussian. This165

assumption implies that the systematic component of the unknown signal166

is adequately modelled and hence the modelling error is not biased;167

• The random variables ||xn||2 and f 2[e(n)] are asymptotically uncorrelated.
This assumption can be mathematically expressed as

lim
n→∞E

[
||xn||2f 2[e(n)]

]
= E

[
||xn||2

]
lim

n→∞E
[
f 2[e(n)]

]

4.1 Optimal Solution168

In order for the behaviour of the algorithm to be controllable the optimal169

solution should be unique (unimodal error surfaces). This is also the case with170

the exponentiated square and the sum of exponentials cost functions.171

The optimal solution of the LE2 algorithm can be analysed based on172

8
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−1

2

(
E

{
d(n)xn exp[e2(n)]

}
− E

{
xnx

t
n exp[e2(n)]

}
wo,e2

)
= 0 (23)

where wo is the optimal solution in the least exponentiated square sense.173

Substituting the TSE of exp[e(n)] into (23) results in174

E

{
d(n)xn

[
+∞∑
i=0

1

i!
e2i(n)

]}
= E

{
xnxt

n

[
+∞∑
i=0

1

i!
e2i(n)

]}
wo,e2 (24)

Consequently, the optimal solution in the least exponential squares sense is175

given by176

wo,e2 =

[
R +

+∞∑
i=1

1

i!
E

{
xnx

t
ne2i(n)

}]−1

·
[
p +

+∞∑
i=1

1

i!
E

{
d(n)xne

2i(n)
}]

(25)

where R = E {xnxt
n} is the autocorrelation matrix of the input signal and177

p = E {d(n)xn} the cross-correlation between the input xn and the desired178

signal d(n). Moreover, assuming that {xn} and {e(n)} are asymptotically179

uncorrelated yields180

wo,e2 =

[
R

+∞∑
i=0

1

i!
E

{
e2i(n)

}]−1

·
[
p

+∞∑
i=0

1

i!
E

{
e2i(n)

}]
(26)

Unless the measurements of the desired signal d(n) are extremely noisy, the181

adaptation error e(n) is small at the steady state and the terms that include182

high powers of e(n) can be neglected resulting in183

wo,e2 = R−1p

hence conforming with the Wiener solution. This is due to the fact that when184

e(n) is very small, which is the case in the steady state, Je2(n) becomes ap-185

proximately quadratic. Eqn. (25) can be further analysed by expressing the186

desired response d(n) and the adaptation error e(n) as functions of the a priori187

error ea(n) as dictated by eqn. (22) and by188

e(n) = ea(n) + v(n) = w̃t
nxn + v(n) (27)
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Similarly to (25) the optimal coefficient vector in the least sum of exponentials189

sense wo,se is derived by minimising the expectation of Jse(n) as190

wo,se =

[
R

+∞∑
i=0

1

(2i + 1)!
E

{
e2i(n)

}]−1

·
[
p

+∞∑
i=0

1

(2i + 1)!
E

{
e2i(n)

}]
(28)

The least sum of exponentials solution from (28) differs from the least expo-191

nentiated square solution (eqn (26)) only in the weighting of the terms that192

contain high order powers of e(n). Assuming that the measurement noise is193

negligible, the terms containing high order powers of the adaptation error can194

be ignored, resulting in195

wo,se = R−1p

that is the Wiener solution.196

4.2 Step-size bounds for stability197

Similar to all gradient descent algorithms, the choice of the step size in least198

exponential algorithms is crucial. To guarantee stability, the step size should199

satisfy200

E
{
‖w̃n+1‖2

}
≤ E

{
‖w̃n‖2

}
(29)

Embarking upon (29), and using (19) in order to preserve stability the bound201

on the step size can be calculated as202

μ ≤ 2

[‖xn‖4]1/2

⎛
⎝ inf

E{e2
a}∈Ω”

E {e2
a}hG [E {e2

a}]√
hC [E {e2

a}]

⎞
⎠ (30)

where203

hG

[
E

{
e2

a

}]
� E {ea(i)f [e(i)]}

E {e2
a}

, (31)

hC

[
E

{
e2

a

}]
� E

{
f 4[e(i)]

}
(32)

10
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and the set Ω” is defined as204

Ω” =
{
E

{
e2

a

}
: λ ≤ E

{
e2

a

}
≤ 1

4
Tr(R)E

{
‖w̃o‖2

}}
(33)

with λ the Cramer-Rao bound [17]. Using (30) the set of values of the step205

size that guarantee stability can be computed by finding the values of the206

functions hG[E {e2
a}] and hC [E {e2

a}] for the LE2 and the LSE algorithms.207

Indeed, substituting the nonlinearity of the LE2 algorithm fe2[e(n)] from (13)208

into (31) yields209

hG[E{e2
a(n)}] =

E {ea(n)e(n) exp[e2(n)]}
E {e2

a(n)} . (34)

Replacing exp[e2(n)] with its TSE, expressing e(n) as a function of the a210

priori error according to (27), and assuming that ea(n) and v(n) are mutually211

independent, results in212

hG[E{e2
a(n)}] =

+∞∑
i=0

1

i!

E {e2i+2
a (n)}

E {e2
a(n)} (35)

In a similar manner the value of the function hC [e2
a(n)] can be found for the213

LE2 algorithm by combining (13) and (32) that is214

hC [E{e2
a(n)}] =

+∞∑
i=0

22i 1

i!

[
E

{
e2i+4

a (n)
}

+ E
{
v2i+4(n)

}]
(36)

Hence, in order to guarantee stability, the step size of the LE2 algorithm215

should be upper bounded by216

0 ≤ μ ≤ 2

[‖xn‖4]1/2

⎛
⎜⎝ inf

E{e2
a}∈Ω”

∑+∞
i=0

1
i!

E{e2i+2
a (n)}

E{e2
a(n)}√∑+∞

i=0 22i 1
i!

[E {e2i+4
a (n)} + E {v2i+4(n)}]

⎞
⎟⎠
(37)

From (37), it is apparent that the step size depends strongly on the even
moments of the measurement noise. It appears that the larger the amount of
the injected noise the smaller the maximum step size is. Similar conditions for

11
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the LSE algorithm can be derived as

hG[E{e2
a(n)}] =

+∞∑
i=1

1

(2i + 1)!

E {e2i+2
a (n)}

E {e2
a(n)} (38)

and

hC [E{e2
a(n)}] = 2

+∞∑
i=1

(42i − 4i+1)
1

2i!

[
E

{
e2i+4

a (n)
}

+ E
{
v2i+4(n)

}]
(39)

Therefore the step size of the LSE algorithm should satisfy217

0 ≤ μ ≤ 2

[‖xn‖4]1/2

⎛
⎜⎝ inf

E{e2
a}∈Ω”

∑+∞
i=1

1
(2i+1)!

E{e2i+2
a (n)}

E{e2
a(n)}√∑+∞

i=1 (42i − 4i+1) 1
(2i)!

[E {e2i
a (n)} + E {v2i(n)}]

⎞
⎟⎠

(40)

4.3 Step size normalisation218

Using a constant step size in LE gradient descent algorithms is very restrictive;219

it should be very small in order for the algorithm to converge – especially in220

the presence of large modelling or measurement error v(n) – according to (37)221

and (40). This does not allow for the full exploitation of the benefits of the222

exponential cost function.223

To circumvent this problem, recall that minimisation of the a posteriori error224

during every iteration results in time varying normalised step sizes [18], given225

by (Appendix A)226

μe2(n) =
μ

xt
nxn exp[e2(n)]

(41)

and227

μse(n) =
μe(n)

xt
nxn (exp[e(n)] − exp[−e(n)])

(42)

These normalised step sizes completely remove the exponential factor in the228

update of the LE algorithms, resulting in the standard normalised least mean229

12
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square (NLMS) algorithm. In order to control the steepness of the error sur-230

face, we shall introduce a positive multiplicative factor α in the exponential231

terms (41) and (42), which results in partially normalised step sizes given by232

μe2(n) =
μ

xt
nxn exp[αe2(n)]

(43)

and233

μse(n) =
μe(n)

xt
nxn (exp[αe(n)] − exp[−αe(n)])

(44)

The closer α to unity, the less pronounced the effect of the exponential term234

and the greater the similarity with the NLMS algorithm is. For α < 1, algo-235

rithms that are faster, but less robust than the standard NLMS algorithm are236

derived. Having values of α greater than unity results in algorithms with slow237

response but increased robustness to impulsive noise.238

4.4 Excess Mean Squared Error239

The excess mean square error (EMSE) is defined as the expectation of the240

square value of the a priori error in the steady state, that is241

S � lim
n→∞E

{
|ea(n)|2

}
(45)

This quantity measures the ability of the algorithm to model the desired signal;242

the lower the value of S the more accurate the modelling is. According to the243

energy preservation framework [13], EMSE is the fixed point of the equation244

S = Tr(R)
hU [S]

hG[S]
(46)

where function hG[·] is given by eqn (31) and hU [·] is defined as the expectation245

of the square of the nonlinear error function,246

hU [E{e2
a(n)}] = E

{
f 4[e(i)]

}
(47)

Taking into account the nonlinearity within the LE2 algorithm (13), and using247

the standard assumptions of the energy conservation framework yields248
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hU [E{e2
a(n)}] =

+∞∑
i=0

1

i!
2i

[
E

{
e2i+2

a (n)
}

+ E
{
v2i+2(n)

}]
(48)

Similarly, for the LSE algorithm, we have249

hU [E{e2
a(n)}] = 2

+∞∑
i=1

1

(2i)!
22i

[
E

{
e2i

a (n)
}

+ E
{
v2i(n)

}]
(49)

Hence, the EMSE of the LE2 algorithm is the positive root of the nonlinear250

equation251

S =
μ

2
Tr(R)

S + σ2
U +

∑+∞
i=1

2i

i!
[E {e2i+2

a } + E {v2i+2}]
1 +

∑+∞
i=1

1
i!

E{e2i+2
a }
S

(50)

Solving (50) for S yields252

S =
βσ2

U +
∑+∞

i=1

[
2iβ
i!

E {v2i+2} + 2iβ−1
i!

E {e2i+2
a }

]
1 − β

(51)

where β = μ
2
Tr(R). The EMSE of the LSE algorithm is the positive root of253

the nonlinear equation254

S = μTr(R)
S + σ2

U +
∑+∞

i=2
2i

(2i)!
[E {e2i

a } + E {v2i}]
1 +

∑+∞
i=1

1
(2i+1)!

E{e2i+2
a }
S

(52)

As a consequence the steady state error of the LSE algorithm is found to be255

S =
2βσ2

U +
∑+∞

i=1

[
2i+1β
(2i)!

E {v2i+2} + 2i+1(2i+1)β−1
(2i+1)!

E {e2i+2
a }

]
1 − 2β

(53)

This completes the analysis of the proposed class of algorithms. Obviously, the256

study of the steady state behaviour of the proposed LE algorithms through257

eqn. (51) and (53) is a demanding task that requires a thorough analysis.258

However, the following straightforward conclusions can be drawn259

• The steady state MSE of LE algorithms depends on the even high order260

moments of the a priori error ea(n)261

• The EMSE is a function of the even high order moments of the additive262

noise v(n)263
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Fig. 3. Misalignment of the normalised LMS, the LE2 and the LSE algorithms for
additive white measurement noise in a system identification context.

• The steady state MSE of the LSE is slightly lower than that of the LE2.264

5 Simulation Results265

The performance of the proposed LSE and LE2 algorithms was evaluated in a266

system identification setting. Both the unknown channel and the identifying267

filter were FIR filters of the same order. The input signal was coloured noise,268

that was produced by passing a white noise signal with Gaussian distribution269

N ∼ (0, 1) though an autoregressive model with transfer function270

A(z) =
1

1 − 1.79z−1 + 1.85z−2 − 1.27z−3 + 0.41z−4
(54)

The quantitative performance measure was the misalignment defined as271

‖w̃n‖2 = (wo − wn)t (wo − wn) (55)

where wn = [w0(n), w1(n), . . . , wN−1(n)]t the values of the digital filter co-272

efficients at time instant n and wo = [w0o, w1o, . . . , w(N−1)o]
t the samples of273

the impulse response of the linear time invariant (LTI) unknown channel. The274

performance of the NLMS algorithm whose step size is given by275
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Fig. 4. The time varying step sizes for the normalised LMS and the normalised least
exponential squared error algorithms, for the misalignment curves from Fig. 3

μNLMS(n) =
μ

‖xn‖2
(56)

was used as benchmark. A set of simulations for partially normalised learning276

rates within the LE2 and the LSE algorithms is also provided.277

In Fig. 3 the misalignment curves of the LE2, the LSE and the NLMS algo-278

rithms are shown when the system output is contaminated with additive white279

Gaussian noise v(n) with 80dB SNR. The step size of the LE2 was varying280

according to (43) with μ = 1 and α = 0.97, while that of the LSE was calcu-281

lated from (44) with μ = 1 and α = 0.8. Both LE algorithms outperformed282

the NLMS, since they reached the same steady state error level within fewer283

iterations.284

Assuming that the error is the steady state is negligible (limn→∞ e(n) = 0)285

results in286

exp[αe2(n)] ≈ 1 (57)

and287

(exp[αe(n)] − exp[−αe(n)]) ≈ α. (58)

Substituting (57) and (58) into (43) and (44) respectively yields288
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Fig. 5. Misalignment curves of the normalised LMS and the normalised LSE algo-
rithms for impulsive noise disturbances.

μe2(n) ≈ μ

‖xn‖2
= μNLMS(n) (59)

and289

μse(n) ≈ μ

α‖xn‖2
=

μNLMS(n)

α
(60)

This is also observed from the step size trajectories, depicted in Fig. 4, where290

all the evaluated SGD algorithms have the same step size at the steady state.291

The performance of the LSE algorithm when the output of the unknown sys-292

tem is contaminated with impulsive noise along with 80 dB SNR of white293

Gaussian noise, is presented in Fig. 5. The step size was varied according to294

(44), with α = 1.2 and μ = 1. The misalignment curve for the NLMS algo-295

rithm with μ = 0.42, is also provided. Observe that the LSE algorithm is more296

immune to impulsive noise than the NLMS, since it has faster convergence,297

lower steady state error, and less pronounced overshoot every time an impulse298

occurs. The learning rates of the LSE and the NLMS algorithms were chosen299

so as to have similar values at the steady state. This is presented in Fig. 6,300

where it is shown that both the LSE and the NLMS algorithms, have similar301

learning rate values. As desired, when an impulse occurs, the learning rate of302

the LSE algorithm becomes very small, preventing erroneous updating of the303

values of the filter coefficients.304
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Fig. 6. The corresponding step sizes for the misalignment curves of Fig. 5.

Notice that the parameter α of the partially normalised learning rate is very305

important, since it greatly affects the performance of the LSE (or the LE2)306

algorithm for the same μ. For α ∈ (0, 1) algorithms that converge faster than307

the conventional NLMS are obtained, but are very sensitive. Having α > 1,308

on the other hand, results in algorithms that are more robust under impulsive309

noise than the NLMS but have slower convergence.310

6 Conclusions311

A novel class of least exponential (LE) algorithms has been presented . These312

have been derived by minimising cost functions that have exponential depen-313

dence on the adaptation error. It has been shown that LE algorithms can be314

considered as a generalisation of the mixed norm stochastic gradient descent315

algorithms since they take into account an infinite number of error norms. A316

rigourous mathematical analysis has been provided resulting in closed form317

expressions for the optimal solutions and an upper bounds for the learning318

rate. For robustness, normalisation of the step size of the proposed algorithms319

has been addressed. Simulation results in a system identification setting and320

under various noise conditions support the analysis.321
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A Normalisation of the step size322

Normalisation of the step size can be achieved through the minimisation of323

the magnitude of the a posteriori error given by324

ep(n) = d(n) − wt
n+1xn (A.1)

as was presented in [18] for the case of the LMS algorithm. Applying similar325

considerations, normalised step sizes for the LE algorithms can be derived.326

Indeed, substituting (12) in (A.1), yields327

ep(n) = d(n) −
[
wn + μe2e(n)xn exp[e2(n)]

]t

xn (A.2)

Using (22), (A.2) can be re-written as328

εp(n) =
[
1 − μe2x

t
nxn exp[e2(n)]

]
e(n) (A.3)

The magnitude of the a posteriori error is minimised when a time varying step329

size is employed, that is330

μe2(n) =
1

xt
nxn exp[e2(n)]

(A.4)

Thus an the optimal learning rate of the LE2 algorithm becomes331

μe2(n) =
μe2

xt
nxn exp[e2(n)]

(A.5)

where 0 ≤ μe2 ≤ 2. Similarly, an appropriate choice for the step size for the332

LSE algorithm is333

μse(n) =
μsee(n)

xt
nxn (exp[e(n)] − exp[−e(n)])

(A.6)

These normalised step sizes completely remove the exponential terms from334

the recursive equations of the LE2 and the LSE algorithms, given by (12)335

and (15) respectively, and reduce the derived LE algorithms to the standard336

NLMS algorithm. Introducing a positive factor α such that337
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μe2(n) =
μe2

xt
nxn exp[αe2(n)]

(A.7)

and338

μse(n) =
μsee(n)

xt
nxn (exp[αe(n)] − exp[−αe(n)])

(A.8)

the effect of these exponential term can be controlled.339
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