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Abstract

Recently, a class of widely linear (augmented) complex valued Kalman filters, which utilise augmented complex statistics,
have been proposed. For the sequential state space estimation of the generality of complex signals in the contex of neural network
training [1]. This has allowed for a unified treatment of both second order circular and noncircular signals, that is, both those with
rotation invariant and dependent distributions. In this paper, we revist the augmented complex Kalman filter (ACKF), augmented
complex extended Kalman filter (ACEKF) and augmented complex unscented Kalman filter (ACUKF), in a more general contex
and analyse their performances for different degrees of state and measurement noise noncircularity. A theoretical bound for the
performance of the class of widely linear (augmented) Kalman filters over their strictly linear counterparts is provided. The analysis
also address the duality with bivariate real valued Kalman filters. Simulationsusing both synthetic and real world proper and
improper signals support the analysis.

Index Terms

Widely linear model, complex circularity, complex Kalman filter, extended Kalman filter, unscented Kalman filter, augmented
complex Kalman filter

I. I NTRODUCTION

Complex valued signals arise in a variety of applications such as in communications systems, radar and AC power systems.
In addition, a complex representation of bivariate real valued signals, such as 2-dimensional wind data [1], might be chosen to
provide a convenient representation for these signals as well as a natural way of preserving the characteristics of the signals
and the transformations they undergo, such as the phase and magnitude distortion.

The second order statistical properties of complex signalsare characterised by their second order moment variance and
pseudocovariance functions. The covariance captures the information concerning the total power of the signal, while the
pseudocovariance encapsulates the information about the power difference and cross-correlation between the real andimaginary
parts of the signal. Conventional complex valued signal processing algorithms have generally been designed, explicitly or
implicitly, to cater for second order circular (proper) complex signals, that is signals with rotation invariant probability
distributions. These are characterised by a vanishing pseudocovariance, which makes them inadequate for most real world
signals which are almost invariably second order noncircular due to the different signal powers in the real and imaginary parts,
correlation of the real and imaginary parts, or due to nonstationarity [1].

The Kalman filter is a state space based estimation techniquethat has many applications in technology, and is an essential part
of space and military technology development. The Kalman filter and its different extensions are commonly used for both real
and complex valued scenarios. Complex valued Kalman filtershave been used extensively in a variety of applications, including
frequency estimation of time-varying signals [2], training of neural networks [3] and wireless localization [4]. However, the
traditional implementation of the complex valued Kalman filter inherently assumes second order circular state and measurement
noises as well as input data, and as such does not fully utilise the full available second order statistics of the complex signals.

The recent introduction of so called ‘augmented complex statistics’ [5] [1] has highlighted that for a general (improper)
complex vectorx, estimation based solely on the covariance matrixRx = E{xxH} is inadequate, and the pseudocovariance
matrix Px = E{xxT } is also required to fully capture the full second order statistics. To introduce an optimal second order
estimator for the generality of complex signals, consider first the mean square error (MSE) estimator of a real valued random
vector y in terms of an observed real vectorx, that is, ŷ = E{y|x}. For zero-mean, jointly normaly and x, the optimal
estimator is linear, that is

ŷ = Hx (1)

c© D. Dini and D. P. Mandic — This is a part of the quarterly technical report for the project C3 entitled “Widely Linear Adaptive Processing for
Noncircular Complex Signals” within the University DefenceResearch Centre (UDRC), Imperial College and DSTL, UK.- Personal use of this material
is permitted. Permission to use this material for any other purposes must be obtained.
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whereH is a coefficient matrix. Standard, ‘strictly linear’ estimation in C assumes the same model but with complex valued
y,x, andH. Based on the fact that both the realyr and imaginaryyi parts of the vectory are real valued, and

ŷr = E{yr|xr,xi} ŷi = E{yi|xr,xi} (2)

Substitutingxr = (x+ x∗)/2 andxi = (x− x∗)/2 yields

ŷr = E{yr|x,x
∗} ŷi = E{yi|x,x

∗} (3)

and using (1), we obtain thewidely linear complex estimator1

y = Hx+Gx∗ = Wxa (4)

where the matrixW comprises the coefficient matricesH andG, andxa = [xT ,xH ]T is the ’augmented’ input vector. The
full second order information is thus contained in the augmented covariance matrix

Ra
x = E{xaxaH} =

[
Rx Px

P∗
x R∗

x

]
(5)

and as such, estimation based onRa
x incorporates both the covariance and the pseudocovariancematrices.

Recently, the widely linear (augmented) complex Kalman filter (ACKF) [3], the augmented complex extended Kalman
filter (ACEKF) [3] and the augmented complex unscented Kalman filter (ACUKF) [1], which are suitable for the generality
of complex signals both second order circular and noncircular, have been introduced, and applied for the training of neural
networks and have been shown to have superior performance, when compared with their corresponding conventional complex
Kalman filters, for second order noncircular signals. However, the performance of these filters were not elaborated for the
general case where the sources of improperness included both the input data and system parameters. Moreover, the effectof
signal noncircularity on the mean square behavior of the conventional complex Kalman filter (CCKF), the complex extended
Kalman filter (CEKF) and the complex unscented Kalman filter (CUKF) still needs further attention.

In this paper, we consolidate our recent work on a class of widely linear Kalman filters [1] and illuminate their performances
under general widely linear state and observation noises, and for nonholomorphic state and observation models. We revisit
the recently introduced class of widely linear Kalman filters, the augmented complex Kalman filter (ACKF), the augmented
complex extended Kalman filter (ACEKF) and the augmented complex unscented Kalman filter (ACUKF), and show that
the ACKF is superior to the CCKF in the mean square error (MSE)sense for the generality of complex signals. We also
illustrate that the computational complexity of the ACKF can be significantly reduced by exploiting the isomorphism between
the bivariate real and complex domains. A more general form of the ACEKF, is then introduced, which is able to cater to both
analytic and nonanalytic state space models, in the Cauchy-Riemann sense. The effect of noncircular state and observation
noises on the MSE behavior of the CEKF and CUKF are also analysed.

II. T HE AUGMENTED COMPLEX KALMAN FILTER (ACKF)

The Kalman filter is an optimal sequential state estimator for linear dynamical systems, in the sense that it achieves the
minimum mean squared error (MMSE). Consider the conventional state space model given by [6]

xn = Fn−1xn−1 +wn (6)

yn = Hnxn + vn (7)

wherexn is the state to be estimated (of dimensionp× 1), yn is the noisy observation (of dimensionq × 1), and the vectors
wn andvn are the state and measurement noises2, with zero means and covariance matricesQn andRn respectively. The
matrix F is the state transition matrix (of dimensionp × p), whereasH is the observation matrix (of dimensionq × p). The
corresponding augmented state space model can be written as

xa
n = Fa

n−1x
a
n−1 +wa

n

ya
n = Ha

nx
a
n + va

n (8)

wherexa
n = [xT

n ,x
H
n ]T , ya

n = [yT
n ,y

H
n ]T ,

Fa
n =

[
Fn An

A∗
n F∗

n

]
andHa =

[
Hn Bn

B∗
n H∗

n

]
.

The termsA and B in the augmented state transition matrix and augmented observation matrix, allow for the state and
observation equations to be widely linear. If bothA andB are zero, then the state and observation equations are strictly linear.

1The ‘widely linear’ model is associated with the signal generating system, whereas ‘augmented statistics’ describe statistical properties of measured signals.
Both the terms ‘widely linear’ and ‘augmented’ are used to name the resulting algorithms - in our work we mostly use the term ‘augmented’.

2In the derivation of the Kalman filter, the state and measurementnoises are assumed to be Gaussian, white and uncorrelated.
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Algorithm 1 The augmented complex Kalman filter (ACKF) algorithm
Initialise with:

x̂a
0|0 = E{xa

0}

Ma
0|0 = E{(xa

0 − E{xa
0})(x

a
0 − E{xa

0})
H}

Prediction:

x̂a
n|n−1 = Fa

n−1x̂
a
n−1|n−1 (11)

Minimum Prediction MSE Matrix:

Ma
n|n−1 = Fa

n−1M
a
n−1|n−1(F

a
n−1)

H +Qa
n (12)

Kalman Gain Matrix:

Ga
n = Ma

n|n−1(H
a
n)

H [Ha
nM

a
n|n−1(H

a
n)

H +Ra
n]

−1 (13)

Correction:

x̂a
n|n = x̂a

n|n−1 +Ga
n(y

a
n −Ha

nx̂
a
n|n−1) (14)

Minimum MSE Matrix:

Ma
n|n = (I−Ga

nH
a
n)M

a
n|n−1 (15)

The covariance matrices of the augmented state and measurement noises,wa
n = [xT

n ,w
H
n ]T and va

n = [vT
n ,v

H
n ]T , can be

written as

Qa
n = E{wa

nw
aH
n } =

[
Qn Pn

P∗
n Q∗

n

]
(9)

Ra
n = E{va

nv
aH
n } =

[
Rn Un

U∗
n R∗

n

]
(10)

whereE{·} is the statistical expectation operator, andPn andUn are the pseudocovariance matrices ofwn andvn respectively.
The MMSE estimator̂xa

n|n = E[xa
n|y

a
0 ,y

a
1 , ...,y

a
n] of xa

n based on the observations{ya
0 ,y

a
1 , ...,y

a
n} can then be computed

sequentially using Algorithm 1 [7].
The ACKF estimatêxa

n|n =
[
x̂T
n|n, x̂

H
n|n

]T
and the CCKF estimatêxL

n|n are both optimal in the MMSE sense, if the state
and observation signals are white and uncorrelated with a Gaussian distribution [8] [9]. However, the difference between the
two filters lies in the fact that the ACKF utilises the augmented covariance matrices, which cater for the noncircularityof the
signals. However, the ACKF and CCKF have identical performance, namelŷxn|n = x̂L

n|n, for circular state and observation
noises, and strictly linear state and observation equations, that is

Qa
n = QL

n =

[
Qn 0

0 Q∗
n

]
, Ra

n = RL
n =

[
Rn 0

0 R∗
n

]
,

Fa
n = FL

n =

[
Fn 0

0 F∗
n

]
and Ha

n = HL
n =

[
Hn 0

0 H∗
n

]
(16)

The duality between the CCKF and ACKF under these conditionsfollows from the fact that both filters attain the same Kalman
gain at every time instant. To this end, consider the predicted MMSE matrix, which can be expressed as

Ma
n+1|n = Fa

n−1M
a
n|n−1(F

a
n−1)

H

−Fa
n−1M

a
n|n−1(H

a
n)

H[Ha
nM

a
n|n−1(H

a
n)

H+Ra
n]

−1

×(Ha
n)M

a
n|n−1(F

a
n−1)

H +Qa
n (17)

which is a Riccati recursion. Observe that the computationsof Ma
n|n−1 andMa

n|n are independent of the observation vector
and as such can be calculated before any observations are taken into account. By substituting equation (13) into (15) andusing
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the matrix inversion lemma, The matrixMa
n|n can be expressed as

Ma
n|n = Ma

n|n−1 −Ma
n|n−1(H

a
n)

H

×
[
Ha

nM
a
n|n−1(H

a
n)

H +Ra
n

]−1
Ha

nM
a
n|n−1

=
[
(Ma

n|n−1)
−1 + (Ha

n)
H(Ra

n)
−1Ha

n

]−1
(18)

Substituting (18) into (13) allows the Kalman gain to be written as

Ga
n=[(Ma

n|n−1)
−1 + (Ha

n)
H(Ra

n)
−1Ha

n]
−1(Ha

n)
H(Ra

n)
−1

=Ma
n|n(H

a
n)

H(Ra
n)

−1 (19)

Assuming the CCKF and ACKF have the same initialisation MSE matrices, that is

Ma
0|0 =

[
ML

0|0 0

0 ML∗
0|0

]
(20)

whereML
0|0 is the initial MSE for the CCKF, then substitutingQL

n , RL
n , FL

n andHL
n into (19), gives us

Ga
n =

[
GL

n 0

0 G∗L
n

]
(21)

whereGL
n = ML

n|n(Hn)
H(Rn)

−1 is the Kalman gain for the CCKF at time instantn. From equation (21) it is clear that the
CCKF and ACKF have the same Kalman gain, and by substituting (21) into (14) we can see that the two filters will yield
identical estimates for the statexn.

Remark #1: Hence, when the state and observation noises are both circular, and the augmented state transition and observation
matrices are block-diagonal, the ACKF has the same performance as the CCKF.

A. Performance analysis

In this section, we illuminate the mean square error (MSE) performances of the CCKF and ACKF in order to provide insight
into the behavior of Kalman filters for the generality of complex signals, both second order circular and noncircular [10]. We
start from the general state space model for the Kalman filtergiven by (6) and (7). The Kalman filter estimatex̂n|n of the state
xn is based on the all observations up to timen, and can be written as a linear combination of the sequence ofobservations,
zn =

[
yT
1 ,y

T
2 , ...,y

T
n

]T
, that is

x̂n|n = Wnzn (22)

whereWn is the minimum MSE weight matrix, which is the solution to thenormal equation, that is

Wn = Rxz,n,nR
−1
z,n (23)

with Rxz,n,n = E
{
(xn −E{xn})(zn −E{zn})

H
}

andRz,n = E
{
(zn −E{zn})(zn −E{zn})

H
}

. The MSE is then given
by

Mn|n = E{(xn − x̂n|n)(xn − x̂n|n)
H}

= Rx,n −Rxz,n,nR
−1
z,nR

H
xz,n,n (24)

The Kalman filter is summarised by state estimate (mean) (22)and covariance estimate (24) expressions at each time
instant, however, these expressions are not recursive and the computational complexity increases with time. Nonetheless,
these expressions suffice for analysis of the MSE performances of the CCKF and the ACKF.

We can write the state equation (6) non-recursively as

xn = Fn:0x0 +
n∑

i=1

Fn:iwi (25)

wherex0 is the initial state value with the assumption thatE{x0} = 0, while the state transition matrix has the properties

Fn:i = FnFn−1 · · ·Fi, Fi:i = I and F0 = I

Now, the state covariance matrix can be written as

Rx,n = Fn:0Rx,0F
H
n:0 +

n∑

i=1

Fn:iRw,iF
H
n:i (26)
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and the observation covariance becomes

Ry,n,m = E{yny
H
m}

=





HnRx,nH
H
n +Rv,n if n = m

HnRx,nH
H
m if n < m

HnRx,mHH
m if n > m

(27)

where we made the usual assumptions that the measurement noisev[n] is orthogonal to the current and previous states, and
the state noise is white. The cross-correlation between thestate and observation can then be written as

Rxy,n,m = E{xny
H
m} n ≥ m

= E{xn(Hmxm + vm)H}

= Rx,mHH
m (28)

while the cross-correlation between the statexn and the observation sequencezn, and the covariance of the observation
sequence are given by

Rxz[n, n] =
[
Rxy,n,1 Rxy,n,2 · · · Rxy,n,n

]
(29)

and

Rz[n] =




Ry,1 Ry,1,2 · · · Ry,1,n

Ry,2,1 Ry,2 · · · Ry,2,n

...
...

.. .
...

Ry,n,1 Ry,n,2 · · · Ry,n




(30)

From taking the expectations of (22) and (25), it can be seen that the estimatêxn|n is an unbiased estimator ofxn, that is,

E{e[n|n]} = E{(x[n]− x̂[n|n])} = 0

and, as such, the mean characteristics of the conventional complex Kalman filter do not change with noncircular state and
observation signal.

Equation (24) shows that the mean square characteristics ofthe CCKF is dependent on the covariance matrices of the state
and observation noises but not on their pseudocovariances.

Remark #2: The noncircularity of the state and observation noises doesnot affect the performance of the linear conventional
complex Kalman filter.

For the augmented complex Kalman filter (ACKF), the state estimate and the MSE matrix are given by expressions similar
to (22) and (24), that is

x̂a
n|n = Wa

nz
a
n = Ra

xz,n,n(R
a
z,n)

−1zan (31)

Ma
n|n = E{(xa

n − x̂a
n|n)(x

a
n − x̂a

n|n)
H}

= Ra
x,n −Ra

xz,n,n(R
a
z,n)

−1RaH
xz,n,n (32)

where the matrix form of the augmented (widely linear) mean square errorMa
n|n can be written as

[
Mwl,n|n Pwl,n|n

P∗
wl,n|n M∗

wl,n|n

]
=

[
Rx,n Px,n

P∗
x,n R∗

x,n

]
−

[
Rxz,n,n Pxz,n,n

P∗
xz,n,n R∗

xz,n,n

]

×

[
Rz,n Pz,n

P∗
z,n R∗

z,n

]−1[
Rxz,n,n Pxz,n,n

P∗
xz,n,n R∗

xz,n,n

]H

The termsPx,n andPz,n are the pseudo-cross-correlation of the state and observation sequence respectively, whilePxz,n,n =
E{xnz

T
n} is the pseudo-correlation between the state and observation sequence. Notice that the inverse of the augmented

covariance matrix(Ra
z,n)

−1 can be expressed as
[
Rz,n Pz,n

P∗
z,n R∗

z,n

]−1

=

[
C D

D∗ C∗

]
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where

C = (Rz,n −Pz,nR
∗−1
z,n P∗

z,n)
−1

D = −(Rz,n −Pz,nR
∗−1
z,n P∗

z,n)
−1Pz,nR

∗−1

and, the widely linear (augmented) MSE of the ACKF can be expressed as

Mwl,n|n=Rx,n −Rxz,n,nCRH
xz,n,n −Rxz,n,nDPH

xz,n,n

− Pxz,n,nD
∗RH

xz,n,n −Pxz,n,nC
∗PH

xz,n,n (33)

After some tedious algebraic manipulations, the difference between the CCKF and the ACKF is found to be [11]

∆Mn = Mn|n −Mwl,n|n

= (Pxz,n,n −Rxz,n,nR
−1
z,nPz,n)

×(R∗
z,n −P∗

z,nR
−1
z,nPz,n)

−1

×(Pxz,n,n −Rxz,n,nR
−1
z,nPz,n)

H (34)

Remark #3: The expression (34) is always positive semidefinite since the matrix (R∗
z,n −P∗

z,nR
−1
z,nPz,n) is positive definite,

and consequently∆Mn = 0 only when (Pxz,n,n − R−1
xz,n,nRz,nPz,n) = 0. Therefore, the ACKF always has the same or

better MSE performance than the CCKF.

Remark #4: The CCKF and ACKF are equivalent if the observation sequenceis circular, Pz,n = 0, and the state and
observation sequence are jointly circular,Pxz,n,n = 0.

Remark #5: Because∆Mn ≥ 0 for all time instantsn, the ACKF hence has the same or better convergence than the
CCKF.

B. Duality Analysis

Due to the duality between augmented complex vectors and real vectors, the ACKF has a dual real valued Kalman filter
(KF), which can be used to significantly reduce its computational complexity. For any complex vectorz = zr + jzi it holds
that

za =

[
z

z∗

]
=

[
I jI

I −jI

]

︸ ︷︷ ︸
≡J

[
zr

zi

]

︸ ︷︷ ︸
=zr

(35)

whereI is the identity matrix and the invertible mappingJ : C→ R is given byJ−1 = 1
2J

H [12]. Based on this isomorphism,
the real valued state space corresponding to the augmented complex state space is given by

xr
n = Fr

n−1x
r
n−1 +wr

n

yr
n = Hr

nx
r
n + vr

n (36)

wherexr
n = J−1xa

n, yr
n = J−1ya

n, Fr
n−1 = J−1Fa

n−1J, Hr
n = J−1Ha

nJ, wr
n = J−1wa

n andvr
n = J−1va

n. The covariance
matrices of the real valued state and observation noises,wr

n andvr
n, are given by

Qr
n = E{wr

nw
rH
n } = J−1Qa

nJ
−H

Rr
n = E{vr

nv
rH
n } = J−1Ra

nJ
−H

It can be shown that the ACKF and its dual real valued KF have the same performance at each time instant. Assuming that
ACKF is initiated at time(n− 1), with initial statex̂a

n−1|n−1 and MSE matrixMa
n−1|n−1, the corresponding dual real valued

KF initialisation is given by

x̂r
n−1|n−1 = J−1x̂a

n−1|n−1

Mr
n−1|n−1 = J−1Ma

n−1|n−1J
−H (37)

It is now straightforward to show that the state and MSE matrix predictions of the ACKF and its dual real valued KF are
related as

x̂r
n|n−1 = J−1x̂a

n|n−1

Mr
n|n−1 = J−1Ma

n|n−1J
−H (38)
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and that he augmented Kalman gain is related to its corresponding real valued Kalman gain by the following expression

Ga
n = Ma

n|n−1H
aH
n [Ha

nM
a
n|n−1H

aH
n +Ra

n]
−1

= JMr
n|n−1J

HJ−HHrH
n JH

×[JHr
nJ

−1JMr
n|n−1J

HJ−HHrH
n JH + JRr

nJ
H ]−1

= JMr
n|n−1H

rH
n [Hr

nM
r
n|n−1H

rH
n +Rr

n]
−1J−1

= JGr
nJ

−1 (39)

It can be shown that the state estimatesx̂a
n|n and x̂r

n|n have the following relationship

x̂r
n|n = x̂r

n|n−1 +Gr
n(y

r
n −Hr

nx̂
r
n|n−1)

= J−1x̂a
n|n−1 + J−1Ga

nJ(y
r
n −Hr

nJ
−1x̂a

n|n−1)

= J−1x̂a
n|n (40)

and the MSE matrices are related as

Mr
n|n = J−1Ma

n|nJ
−H (41)

From (40) it is clear that the state estimatesx̂a
n|n and x̂r

n|n are equivalent and separated by an invertible linear mapping. The
ACKF and ERKF can also be shown to achieve the same mean squareerror. Let mean square error for the ERKF be given by

ǫrn = tr{Mr
n|n} (42)

wheretr{·} is the matrix trace operator. The mean square error corresponding to the augmented MSE matrixMa
n|n is given

by taking the trace of (41), that is

tr{Ma
n|n} = tr{JMr

n|nJ
H}

= tr{Mr
n|nJ

HJ}

= 2 · tr{Mr
n|n} (43)

In (43), we used the fact thatJH = 2J−1. Equation (43) is misleading in that it suggests that ACKF has twice the error of
its dual real valued KF. However, the error is counted twice by take the trace ofMa

n|n, due to the block diagonal structure of
augmented MSE covariance matrix, and hence needs to be halved to find the true augmented mean square error, that is

ǫan =
1

2
tr{Ma

n|n} = ǫrn

Therefore the ACKF and the its dual real valued KF are equivalent forms of the same state space models. They achieve the
same state estimates and MSE at every time instant, regardless of the circularity of the signals. However, by using the dual
real valued KF, the computational complexity of the ACKF is reduced, whereby the number of additions and multiplications
required are approximately halved and quartered, respectively.

III. T HE AUGMENTED COMPLEX EXTENDED KALMAN FILTER (ACEKF)

The extended Kalman filter (EKF) uses linear models to approximate nonlinear functions, and as such, the state and
observation functions need not be linear but differentiable. Consider the state space model given by

xn = f [xn−1] +wn (44a)

yn = h[xn] + vn (44b)

wheref [·] andh[·] are the nonlinear process and observations vector valued models respectively and the remaining variables
are as defined above. The extended Kalman filter approximatesthese nonlinear functions by their first order Taylor series
expansions (TSE) about certain desired points. However, calculating the complex derivative of a function requires thefunction
to be analytic (differentiable) within the rigorous conditions set by the Cauchy-Riemann equations, though in practice, the
functionsf [·] andh[·] can be analytic or nonanalytic depending on the underlying physical model. Moreover, there is a large
class of functions, such as real functions of complex variables, which do not satisfy the Cauchy-Riemann conditions thus
severely restricting the set of allowable functions for nonlinear process and observations models.

By utilising the so calledCR calculus framework [13], which exploits the isomorphism between the complex domainC and
the real domainR, the Taylor series expansions of both analytic and nonanalytic functions are still possible within the same
framework. For instance, inCR calculus, the first order TSE of a functionf [z] is given by

f [z+∆z] = f [z] +
∂f

∂z
∆z+

∂f

∂z∗
∆z∗ (45)
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whereby for analytic functions (in the the Cauchy-Riemann sense), the term∂f
∂z∗∆z∗ vanishes.

Consider the first order approximations of the state and observation equations, (44a) and (44b), about the estimatesx̂n−1|n−1

and x̂n|n−1, that is

xn = Fn−1xn−1 +An−1x
∗
n−1 +wn + rn−1 (46)

yn = Hnxn +Bnx
∗
n + vn + zn (47)

where the vectorsrn = f [x̂n−1|n−1]−Fn−1x̂n−1|n−1 −An−1x̂
∗
n−1|n−1 andzn = h[x̂n|n−1]−Hnx̂n|n−1 −Bnx̂

∗
n|n−1, and

the matricesFn−1, An−1, Hn andBn are the Jacobians defined as

Fn−1=
∂f

∂xn−1

∣∣∣
xn−1=x̂n−1|n−1

, An−1=
∂f

∂x∗
n−1

∣∣∣
x∗
n−1

=x̂∗
n−1|n−1

,

Hn=
∂h

∂xn

∣∣∣
xn=x̂n|n−1

andBn=
∂h

∂x∗
n

∣∣∣
x∗
n
=x̂∗

n|n−1

From (46) and (47), we observe that iff [·] andh[·] are nonanalytic, the linearised state and observation equations are widely
linear (see (4)), and thus cannot be implemented using the standard complex extended Kalman filter (CEKF). However, the
state space equations become strictly linear if these functions are analytic, since the derivatives with respect to thecomplex
conjugates vanish, that isAn−1 = 0 andBn = 0.

In order to provide deeper insight into the widely linear state and observation models, an ‘augmented’ state space represen-
tation is thus required; this will also cater for the full second order statistics of the process and measurement noises.To this
end, consider the nonlinear augmented state space model given by

xa
n = fa[xa

n−1] +wa
n (48a)

ya
n = ha[xa

n] + va
n (48b)

with fa[xa
n−1] =

[
fT [xa

n−1], f
H [xa

n−1]
]T

and ha[xa
n] =

[
hT [xa

n],h
H [xa

n]
]T

. The linearised augmented state space can be
expressed as

xa
n = Fa

n−1x
a
n−1 +wa

n + ran−1 (49a)

ya
n = Ha

nx
a
n + va

n + zan (49b)

whereran =
[
rTn , r

H
n

]T
, zan =

[
zTn , z

H
n

]T
,

Fa
n =

[
Fn An

A∗
n F∗

n

]
andHa =

[
Hn Bn

B∗
n H∗

n

]
.

Note thatFa
n = ∂fa

∂xa
n

andHa
n = ∂ha

∂xa
n

.
Therefore, in contrast to the conventional CEKF, the ACEKF allows the state and observation models to be widely linear,

and thus naturally caters for the noncircularity of the state and measurement noises. The derivation of the ACEKF follows
from the derivation of the CEKF [1, Ch. 15.4], and utilises the augmented state space, and is summarised in Algorithm 2 [14].

The novelty of the ACEKF algorithm presented in this work is that it does not assume a specific state or observation models,
that isf [·] andh[·], which makes it a more general form of the ACEKF presented in [3]. Moreover, by utilising theCR calculus
framework, we have shown how the ACEKF can be used for the generality of complex state space models, both holomorphic
and nonholomorphic.

A. Duality Analysis of ACEKF and real valued EKF

Similar to the ACKF, the ACEKF has a real valued EKF counterpart, which gives the same estimate at every time
instant. Based on the isomorphism between augmented complex and real valued vectors, the nonlinear real valued state space
corresponding to the augmented complex state space (48) is given by

xr
n = fr[xr

n−1] +wr
n (55a)

yr
n = hr[xr

n] + vr
n (55b)

where xr
n = J−1xa

n, yr
n = J−1ya

n, vr
n = J−1va

n, wr
n = J−1wa

n, fr[xr
n] = J−1fa[xa

n] and hr[xr
n] = J−1ha[xa

n]. The
covariance matrices of the real valued state and observation noises,wr

n andvr
n, are given by

Qr
n = E{wr

nw
rT
n } = J−1Qa

nJ
−H

Rr
n = E{vr

nv
rT
n } = J−1Ra

nJ
−H
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Algorithm 2 The augmented complex extended Kalman filter (AEKF) algorithm
Initialise with:

x̂a
0|0 = E{xa

0}

Ma
0|0 = E{(xa

0 − E{xa
0})(x

a
0 − E{xa

0})
H}

Prediction:

x̂a
n|n−1 = fa[x̂a

n−1|n−1] (50)

Prediction Covariance Matrix:

Ma
n|n−1 = Fa

n−1M
a
n−1|n−1(F

a
n−1)

H +Qa
n (51)

Kalman Gain Matrix:

Ga
n = Ma

n|n−1(H
a
n)

H [Ha
nM

a
n|n−1(H

a
n)

H +Ra
n]

−1 (52)

Correction:

x̂a
n|n = x̂a

n|n−1 +Ga
n(y

a
n − ha[x̂a

n|n−1]) (53)

Covariance Matrix:

Ma
n|n = (I−Ga

nH
a
n)M

a
n|n−1 (54)

The relationship between the augmented complex and real JacobiansFa
n andFr

n is established by usingfr[xr
n] = J−1fa[xa

n]
and by comparing the first order TSE of both sides, that is

fr[xr
n] = J−1fa[xa

n]

≈ J−1fa[x̂a
n|n−1] + J−1Fa

n(x
a
n − x̂a

n|n−1)

≈ J−1fa[x̂a
n|n−1] + J−1Fa

nJ(x
r
n − x̂r

n|n−1)

≈ fr[x̂r
n|n−1] + Fr

n−1(x
r
n − x̂r

n|n−1) (56)

This shows thatFr
n = J−1Fa

nJ = ∂fr

∂xr
n

∣∣∣
xr
n
=x̂r

n|n

, and similarlyHr
n = J−1Ha

nJ = ∂hr

∂xr
n

∣∣∣
xr
n
=x̂r

n|n

.

The correspondence between the ACEKF and its dual real valued extended Kalman filter can be established [15] by showing
that at every time instantn the following relationships hold:

x̂r
n|n−1 = J−1x̂a

n|n−1

Mr
n|n−1 = J−1Ma

n|n−1J
−H

Gr
n = J−1Ga

nJ

x̂r
n|n = J−1x̂a

n|n

Mr
n|n = J−1Ma

n|nJ
−H (57)

The ACEKF and its dual real valued extended Kalman filter essentially implement the same state space model, but operate
in different domains. If the state space is naturally definedin the complex domain, it is generally desirable to keep all of
the computations in the original complex domain in order to facilitate the understanding of the transformations the signal
goes through, and to benefit from the notions of phase and circularity. However, the real valued equivalent extended Kalman
filter provides means for reducing the computational complexity of the ACEKF, whereby similar to the ACKF, the number of
additions and multiplications required are approximatelyhalved and quartered, respectively.

IV. T HE AUGMENTED COMPLEX KALMAN FILTER UNSCENTED(ACUKF)

The unscented Kalman filter (UKF) [16] has been proposed to address the problems arising from the first order approximation
of nonlinearities withing EKFs, and approximates the statistical posterior distribution rather than approximating the nonlinearity
[17]. The UKF uses a deterministic sampling technique to pick a set of sample points (known as sigma points) around the
mean. These points are then propagated through the nonlinear state space models, from which the mean and covariance of the
estimate are then recovered. This results in a filter which isable to more accurately capture the true state mean and covariance.
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To illustrate the complex unscented transform (UT) and the augmented complex UT, consider the mapping

y = f [x] = f [x̄+ δx] x ∈ C
p×1,y ∈ C

q×1 (58)

where f [·] is a nonlinear vector valued function,y = [y1, . . . , yq]
T the output,x = [x1, . . . , xp]

T is the input whose mean
x̄ = E{x}, covarianceRx = E{(x− x̄)(x− x̄)H}, pseudocovariancePx = E{(x− x̄)(x− x̄)T } = 0, andδx = x− x̄. The
Taylor series expansion (TSE) ofy aboutx̄ is given by

y = f [x̄] +∇δxf +
1

2!
∇2

δxf +
1

3!
∇3

δxf + · · · (59)

where theith order term in the TSE forf [·] aboutx̄ is

1

i!
∇i

δxf =
1

i!

( p∑

k=1

δxk

∂

∂xk

)i

f [x]∣∣x=x̄
(60)

with δxk being thekth component ofδx. The term above is anith order polynomial inδx whose coefficients are given by
the derivatives off [·]. The mean ofy can be expressed as

ȳ = E{f [x̄+ δx]}

= f [x̄] + E
{
∇δxf +

1

2!
∇2

δxf +
1

3!
∇3

δxf + · · ·
}

where theith term is given by

E
{ 1

i!
∇i

δxf
}
=

1

i!
E

{( p∑

k=1

δxk

∂

∂xk

)i

}
f [x]∣∣x=x̄

=
1

i!

(
m1,1,··· ,1,1

∂if

∂xi
1

+m1,1,··· ,1,2
∂if

∂xi−1
1 ∂x2

+ · · ·
)

The symbolsma1,a2,...,ai−1,ai
= E{δxa1

δxa2
· · · δxai−1

δxai
} denote theith order central moments of the componentsx with

ak ∈ [1, 2, . . . , p]. Observe that theith order term in the series for̄y is a function of theith order central moment ofx
multiplied by theith derivative off [·]. Hence if the moments can be correctly evaluated up to theith order, the mean̄y will
also be correct up to theith order. The covariance matrixRy = E{(y − ȳ)(y − ȳ)H} now becomes

Ry=
∂f

∂x
Rx

( ∂f

∂x

)H

+E

{
1

3!
∇δxf

(
∇3

δxf
)H
+

1

2!×2!
∇2

δxf
(
∇2

δxf
)H

+
1

3!
∇3

δxf
(
∇δxf

)H
}
− E

{
1

2!
∇2

δxf

}
E

{
1

2!
∇2

δxf

}H

+· · ·

and is correct if theith central moment ofx is correct. Within the complex unscented transform framework, thep−dimensional
random variablex is approximated by a set (2p+1) weighted (sigma) points{Wi,Xi}

2p+1
i=0 , chosen so that their sample mean

and covariance are equal to the true meanx̄ and covarianceRx. The nonlinear functionf [·] is then applied to each of these
points to generate transformed points,Yi = f [Xi], with a sample mean and covariance

ˆ̄y =

2p∑

i=0

WiYi R̂y =

2p∑

i=0

Wi

(
Yi − ȳ

)(
Yi − ȳ

)H

which are correct up to the second order. For a second order noncirculary, the true output pseudocovariancePy = E{(y −
ȳ)(y − ȳ)T } is given by

Py=
∂f

∂x
Px

( ∂f

∂x

)T

+E

{
1

3!
∇δxf

(
∇3

δxf
)T
+

1

2!×2!
∇2

δxf
(
∇2

δxf
)T

+
1

3!
∇3

δxf
(
∇δxf

)T
}
−E

{
1

2!
∇2

δxf

}
E

{
1

2!
∇2

δxf

}T

+· · ·

The standard complex unscented transform is does not cater for the input pseudocovariance and consequently the output
pseudocovariance, due to the method used for generating thesigma points, which are calculated as

X0 = x̄ Xi = x̄±
(√

(p+ λ)Rx

)
i
, i = 1, . . . , 2p (61)

where
(√

(p+ λ)Rx

)
i

is the ith column of the matrix square root andλ = α2(2p + κ) − 2p is a scaling parameter, while

α determines the spread of the sigma points around the mean andis usually set to a small positive value ( e.g.,10−3), κ is
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Fig. 1. Performance of the complex UT and augmented complex UT

a secondary scaling parameter which is usually set to0, andβ is used to incorporate prior knowledge of the distribution (for
Gaussian distributions,β = 2 is optimal). From (61) it is clear that the sigma points do notincorporate the pseudocovariance.

To incorporate the pseudocovariance into estimates of the output moments, consider the ‘augmented’ function

ya = fa[xa] = fa[x̄a + δxa] (62)

wherexa = [xT ,xH ], ya = [yT ,yH ] andδxa = [δxT , δxH ]. The sigma points corresponding to this model are given by

X a
0 = x̄a X a

i = x̄a ±
(√

(p+ λ)Ra
x

)
i
, i = 1, . . . , 4p

and are functions of the mean of the augmented input and the augmented covariance matrix and can fully propagate the second
order statistics of improper inputs.

To illustrate the benefits of the augmented complex UT over the standard UT, consider the system defined byyn = cos[xn]
where the inputxn is a Gaussian doubly white circular random variable. Figure1a shows that for a circular inputxn ∼
N (x̄, cx, ρx) = N (0.5, 0.01, 0) (cx is the variance andρx the pseudocovariance) the complex UT and the augmented complex
UT had similar performance in capturing the distribution ofthe outputyn. Figure 1b illustrates that for a noncircular input
xn ∼ N (0.5, 0.01, 0.008) the augmented complex UT captures the pseudocovariance of the output distribution closely, while
the complex UT maintains a circular posterior distribution.

Based on (4) and (62), consider the ‘augmented’ model

xa
n = fa[xa

n−1] +wa
n (63)

ya
n = ha[xa

n] + va
n (64)

The weights associated with the(4p+ 1) augmented sigma points are then given by

W
(m)
0 =

λ

2p+ λ
W

(c)
0 =

λ

2p+ λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

λ

2(2p+ λ)
, i = 1, . . . , 4p (65)

and the augmented complex unscented Kalman filter (ACUKF) issummarised in Algorithm 3 [18]. The novelty of the ACUKF
algorithm presented in this work is that it does not assume a specific state or observation models which makes it a more
general form of the ACUKF presented in [1].

A. Performance analysis

In this section we analyse the mean-square behavior of the the CUKF [16] for analytic state and observation functions.
Consider the complex valued scalar state space given by

xn = f [xn−1] + wn (69)

yn = h[xn] + vn (70)

wheref [·] andh[·] are the analytic nonlinear process and observation models respectively,xn andyn are the state and noisy
observation, whilewn andvn are uncorrelated zero-mean white complex-valued state (process) and observation (measurement)
noises respectively. The process noise has variancecw,n = E{wnw

∗
n} and pseudocovarianceρw,n = E{wnwn}, while the

measurement noise has a variancecv,n = E{vnv
∗
n} and pseudocovarianceρv,n = E{vnvn}.
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Algorithm 3 The augmented unscented Kalman filter (AUKF) algorithm
Initialise with:

x̂a
0|0 = E{xa

0}

Ma
0|0 = E{(xa

0 − E{xa
0})(x

a
0 − E{xa

0})
H}

Calculate sigma points fori = 1, . . . , 4p

X a
0,n−1=x̂a

n−1|n−1

X a
i,n−1=x̂a

n−1|n−1 ±
(√

(p+ λ)Ma
n−1|n−1

)
i

(66)

Compute predictions:

X a
i,n|n−1=fa[X a

i,n−1]

x̂a
n|n−1=

4p∑

i=0

W
(m)
i X a

i,n|n−1

Ma
n|n−1=Qa

n+

4p∑

i=0

W
(c)
i

(
X a

i,n|n−1−x̂
a
n|n−1

)(
X a

i,n|n−1−x̂
a
n|n−1

)H

Ya
i,n|n−1=ha[Xi,n|n−1], i = 1, . . . , 4p

ŷa
n|n−1=

4p∑

i=0

W
(m)
i Ya

i,n|n−1 (67)

Measurement update:

Ra
ỹa,n|n−1=Ra

n+

4p∑

i=0

W
(c)
i

(
Ya
i,n|n−1−ŷ

a
n|n−1

)(
Ya
i,n|n−1−ŷ

a
n|n−1

)H

Ra
xaya,n|n−1=

4p∑

i=0

W
(c)
i

(
X a

i,n|n−1−x̂
a
n|n−1

)(
Ya
i,n|n−1−ŷ

a
n|n−1

)H

Ga
n=Ra

xaya,n|n−1

(
Ra

ỹa,n|n−1

)−1

x̂a
n|n= x̂a

n|n−1 +Ga
n(y

a
n − ŷa

n|n−1)

Ma
n|n=Ma

n|n−1 −Ga
nR

a
ỹa,n|n−1G

aH
n (68)

The unscented and extended Kalman filters use the same general update formula, given by (68) and (53), to compute the
estimate of the state, that is

x̂n|n = x̂n|n−1 + gn(yn − ŷn|n−1) (71)

wheregn is the Kalman gain. This equation shows that the estimate comprises of a prediction term,̂xn|n−1, and a weighted
innovation term,(yn − ŷn|n−1).

Substituting the state equation (69) in to the observation equation (70) gives

yn = h
[
f [xn−1] + wn

]
+ vn (72)

Let z = f [xn−1] + wn, then the TSE of the functionh[f [xn−1] + wn] = h[z] aboutf [xn−1] can be written as

h[f [xn−1]+wn]=h[f [xn−1]]+
∂h

∂z
wn+

1

2
Hzzw

2
n+h.o.t. (73)

with the Jacobian∂h
∂z

and HessianHzz = ∂
∂z

(
∂h
∂z

)
evaluated atz = f [xn−1]. Now subtract the true state,xn, from the estimate

given in (71) to find the state estimation error

en=xn − x̂n|n

=(f [xn−1] + wn)− x̂n|n−1 − gn(yn − ŷn|n−1) (74)
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Substituting (72) and (73) into (74) yields

en=(f [xn−1] + wn)− x̂n|n−1 − gn

(
h[f [xn−1]]

+
∂h

∂z
wn+

1

2
Hzzw

2
n + h.o.t.+ vn − ŷn|n−1

)

(75)

Based on (75), the MSE, that isE{ene∗n}, consists of a large number of terms, however, since we are only interested in the
effect of circularity on the MSE, we shall only analyse termsrelated to the process and measurement noise pseudocovariances
and these terms are

E{ene
∗
n}=−E

{1

2
gnHzzw

2
n

(
f [xn−1]− x̂n|n−1

)∗}

− E
{1

2

(
f [xn−1]− x̂n|n−1

)
g∗nH

∗
zz(w

∗
n)

2
}

+ E
{1

2
gnHzzw

2
n

(
gn

(
h[f [xn−1]− ŷn|n−1)

)∗}

+ E
{1

2

(
gn

(
h[f [xn−1]− ŷn|n−1)

)
g∗nH

∗
zz(w

∗
n)

2
}

+ (otherterms & h.o.t.)

=−ℜ
{
E
{
gnHzz

(
f [xn−1]− x̂n|n−1

)∗}
ρw,n

}

+ ℜ
{
E
{
|gn|

2Hzz

(
h[f [xn−1]−ŷn|n−1)

∗
}
ρ∗w,n

}

+ (other terms & h.o.t.) (76)

whereℜ{·} is the real part of a complex quantity.

Remark #6: From (76) it can be seen that the MSE for the CUKF and CEKF are dependent on the pseudocovariance of
the state noise, namely it is a function ofρw,n andρ∗w,n, hence there mean square behavior are affected by the circularity of
the state noise, if the observation equation is nonlinear.

Remark #7: If the state space model is a linear, then the Hessian termHzz in (76) vanishes, as the second derivatives of
h is zero, and as a consequence the four terms in the MSE (76) which are dependent on the pseudocovariances also vanish.
Therefore, the mean square characteristic of the conventional linear complex Kalman filter does not depend on the circularity
of the state or observation noises.

V. A PPLICATION EXAMPLES

To illustrate the benefits of widely linear complex Kalman filters over conventional complex Kalman filters, we shall consider
two case studies: (1) filtering for a noisy complex valued autoregressive process and (2) multistep ahead prediction forreal-world
noncircular and nonstationary wind data and the second order noncircular Lorenz attractor.

A. Complex autoregressive process

The performances of all the standard and widely linear Kalman filters discussed above were used to filter the first order
complex autoregressive process, AR(1), given by [1] [19]

xn = 0.9xn−1 + un

where the driving noise wasun was a doubly white, Gaussian, zero-mean noise with varianceand pseudocovariance defined
as

E{un−iu
∗
n−l} = cuδi−l

E{un−iun−l} = ρuδi−l

whereδ is the discrete Dirac delta function. The observation equation for the linear filters, namely the CCKF and ACKF, were
such thatxn was observed in the presence of an additive complex noncircular white noise,vn, that is (see [9] for the Kalman
filter implementation of an autoregressive process)

yn = xn + vn
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Fig. 2. A geometric view of circularity via a real-imaginary scatter plot of the AR(1) process driven by (a) a circular (K = 0) and (b) a noncircular
(K = 0.9) Gaussian distributions.
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(b) Noncircular observation noise

Fig. 3. Performance of CKF and ACKF for the AR(1) process with varying degrees of state and observation noises noncircularity

while, the observation equation corresponding to the nonlinear CEKF, CUKF and their corresponding augmented versions, was
given by

yn = arctan[xn] + vn

The ratio of pseudocovariance magnitude to covariance, that is

K =
|ρ|

c

was used as a measure for the degree of noncircularity of the complex state and measurement noises [20], where a complex
random variable is circular ifK = 0 and maximally noncircular ifK = 1. Figure 2 shows a real-imaginary scatter plot for
two different realisations of the AR(1) process driven by Gaussian complex white variable with different levels of circularity.
Note the circular symmetry for the circular signal and the non-circular shape forK = 0.9. For a quantitative assessment of
the performance, the standard prediction gainRp = 10 log(σ2

y/σ
2
e) was used, whereσ2

y andσ2
e are the powers of the input

signal and the output error.
Figure 3 shows the performances of the standard CCKF and its corresponding widely linear (augmented) version, the ACKF.

Figure 3a illustrates the results for a circular observation noise and a state noise with various degrees of noncircularity, while
Figure 3b shows the results for a noncircular observation noise with a circular state noise. For both sets of simulations, when
the noises were circular the ACKF had the same performance asthe CCKF, while for noncircular noises the ACKF had superior
performance as the degree of noise noncircularity (K) increased.

Figure 4 shows the corresponding results for the nonlinear CEKF, CUKF and their corresponding augmented versions,
ACEKF and ACUKF. Similar to the ACKF, the general behavior isthat ACEKF and ACUKF outperform the CEKF and
CUKF, respectively, if the either of the state or observation noises are noncircular, while for circular noises they have similar
performances. However, when the state noise is noncircular, as illustrated in Figure 4a, the MSE behavior of CEKF and CUKF
change with the circularity of the state noise.

B. Multistep ahead prediction of different signals

The performances of the CCKF and ACKF were next assessed for the multistep ahead prediction of the noncircularLorenz
attractor and some real world noncircular and nonstationary Wind data using linear and widely linear autoregressive models.
Simulations for the complex least mean square (CLMS) and itsaugmented version, the ACLMS, were also carried out to
provide a performance comparison [21].
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(a) Noncircular state noise
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(b) Noncircular observation noise

Fig. 4. Performance comparison between CEKF, CUKF and their corresponding augmented versions for the AR(1) process with varying degrees of state
and observation noises noncircularity
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(a) CCKF and ACKF
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(b) CLMS and ACLMS

Fig. 5. Multistep ahead prediction of real-world Wind data and the Lorenz attractor

Figure 5a summarises the prediction performances for theLorenz and theWind data. The ACKF was able to capture the
underlying dynamics of the signals better than CCKF, which is indicated by its superior prediction performance. This can be
attributed to the use of the widely linear ‘augmented’ model, which is better able to capture the second order statisticsof the
noncircular signals. Similarly, the prediction performances for the ACEKF and ACUKF were also superior to the CEKF and
CUKF, but were not shown here in order to avoid repetition. Figure 5b shows the corresponding simulations for the CLMS
and ACLMS, where the ACLMS is shown to have superior performance compared to the CLMS, but is worse off compared
to the ACKF.

VI. CONCLUSION

The second order statistics of zero-mean complex signals are described by their covariance function and a second moment
function known as the pseudocovariance. With the aim of fully utilising both these statistical moments, we have readdressed
the augmented complex Kalman filter (ACKF) algorithm and have examined its performance in relation to the conventional
complex Kalman filter (CCKF). The analysis has shown that theACKF has the potential to offer significant performance
gains over the CCKF for noncircular state or observation noises and the same performance as the CCKF for circular signals.
Moreover, we have analysed a more general form of the augmented complex extended Kalman filter (ACEKF), by using
the so calledCR calculus framework, allowing us to deal with both analytic and nonanalytic state space models. We have
also analysed the mean square characteristics of CCKF, the extended complex Kalman filter (CEKF), the unscented complex
Kalman filter (CUKF), and have shown that the mean square behavior of the CCKF is unaffected by the noncircularity of the
state and observation noises. The analysis shows that the mean square characteristics of the CEKF and CUKF are effected by
state noise noncircularity, if the observation equation isnonlinear.

APPENDIX A
A CONSICE SUMMARY OFCR CALCULUS

In what follows, theCR calculus framework, which was originally introduced by Wirtinger and is known as Wirtinger
calculus within the German speaking engineering community, is briefly introduced. More recently Kreutz-Delgado [13] provided
a comprehensive overview of the topic and came with the nameCR calculus due to the dual real and complex perspective of
complex functions within this framework.

In order for the complex derivative of a function ofz = zr + jzi

f [z] = u[zr, zi] + jv[zr, zi] (A-1)
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to exist in the standard sense, the real partial derivativesof u[zr, zi] andv[zr, zi] must satisfy the Cauchy-Riemann equations
given by

∂u

∂zr
=

∂v

∂zi

∂v

∂zr
= −

∂u

∂zi
(A-2)

For example the functionf1[z] = z2 is complex differentiable, where∂f
∂z

= ∂u
∂zr

+ j ∂v
∂zi

, while f2[z] = zz∗ does not satisfy the
Cauchy-Riemann equations and is not complex differentiable in this light. However by usingCR calculus, which establishes
a duality between the real- and complex-valued derivatives, allows for the Taylor series expansion (TSE) inR andC.

The functionf [z] can be seen as a function of bothz and its complex conjugatez∗, that isf [z, z∗]. Althoughz andz∗ are
not truly independent, the introduced methodology can be considered as a formalism wherebyf is analytic inz for fixed z∗

and vice versa wheref is analytic inz∗ for fixed z. The variablesz andz∗ are called conjugate coordinates and the function
f [z] can be expressed as

f [z] = f [z, z∗] = g[zr, zi] = u[zr, zi] + jv[zr, zi] (A-3)

The relations between the partial derivatives∂f
∂z

and ∂f
∂z∗ , and the partial derivatives∂f

∂zr

and ∂f
∂zi

was proven by Brandwood
in [12], and an alternative approach based on the total differential of f is shown below [1].

The total differential of the functiong[zr, zi] can be expressed as

dg[zr, zi] =
∂g

∂zr
dzr +

∂g

∂zi
dzi (A-4)

and after some algebraic manipulations, it can be expressedas

dg[zr, zi] =
1

2

( ∂g

∂zr
− j

∂g

∂zi

)
dz+

1

2

( ∂g

∂zr
+ j

∂g

∂zi

)
dz∗ (A-5)

or in a more compact form

df [z] =
∂f

∂z
dz+

∂f

∂z∗
dz∗ (A-6)

This leads us to one on the important results ofCR calculus, given by

R-derivative:
∂f

∂z

∣∣∣
z∗=constant

=
1

2

( ∂f

∂zr
− j

∂f

∂zi

)

R
∗-derivative:

∂f

∂z∗

∣∣∣
z=constant

=
1

2

( ∂f

∂zr
+ j

∂f

∂zi

)
(A-7)

For these generalised derivatives it is assumed thatz and z∗ are mutually independent, namely∂z
∂z

= ∂z∗

∂z∗ = 1 and ∂z
∂z∗ =

∂z∗

∂z
= 0. Hence it is possible to consider the derivatives of both analytic and non-analytic functions , where the functions can

be either complex- or real-valued. TheR-derivative andR∗-derivative for analytic functions satisfying the Cauchy-Riemann
equations simplify to

R-derivative:
∂f

∂z

∣∣∣
z∗=constant

=
1

2

(
2
∂f

∂zr
+ j2

∂f

∂zi

)
= f

′

[z]

R
∗-derivative:

∂f

∂z∗

∣∣∣
z=constant

= 0 (A-8)

that is, for analytic functions theR-derivative is equivalent to the standard complex derivative and theR∗-derivative vanishes,
namely the function is independent ofz∗. The Cauchy-Riemann condition can then be expressed as

∂f

∂z∗
= 0 (A-9)

Therein lies the beauty of theCR calculus framework: for when applied to an analytic function it is equal to the standard
complex derivative and when applied to a non-analytic function it is equal to the pseudo-gradient (R

∗-derivative).
Next, the Taylor series expansion off [z] up to the 2nd order is considered. This is facilitated by considering the equivalent

forms of the functionf , that is

f [z]←→ f [z, z∗] ≡ f [za]←→ f [zr, zi] ≡ f [r] (A-10)

and establishing the duality between the derivatives of thefunctions in R
2N and C

2N . In (A-10) the augmented vector
za =

[
zT zH

]
∈ C

2N and r =
[
zTr zTi

]
∈ R

2N . By establishing the isomorphism between vectors inR
2N andC

2N and
identifying the Jacobian of the transformation, the first and second order derivatives for the terms in the TSE can be readily
computed [13].
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From the fact thatz = zr + jzi andz∗ = zr − jzi it can be shown that

za =

[
z

z∗

]
=

[
I jI

I −jI

][
zr

zi

]
(A-11)

whereI is the identity matrix. Now define

J ≡

[
I jI

I −jI

]
(A-12)

then it is easy to show thatJ−1 = 1
2J

H and we have the following mappings

za = Jr and r = J−1za =
1

2
JHza (A-13)

Because the mapping betweenR2N andC
2N is linear and one to one, then these two spaces can be considered isomorphic.

The mappings in (A-13) therefore correspond to an admissible coordinate transformation between theza andr representations
of z. Using the chain rule and the mappings in (A-13) , the partialderivatives between the two space can now be written as

∂

∂za
=

1

2

∂

∂r
JH

∂

∂r
=

∂

∂za
J (A-14)

The TSE forR2N up to the second order term can be expressed as

f [r+∆r] = f [r] +
∂f

∂r
∆r+

1

2
∆rTHrr∆r (A-15)

whereHrr =
∂
∂r

(
∂f
∂r

)T

is the real-valued Hessian matrix. The corresponding first order term in the augmented complex space
is given by

∂f

∂r
∆r = J · J−1∆za =

∂f

∂za
∆za (A-16)

The augmented complex Hessian matrix is given by

Ha
zz =

∂

∂za

( ∂f

∂za

)H

=

[
Hzz Hz∗z

Hzz∗ Hz∗z∗

]
, (A-17)

whereHab = ∂
∂a

(
∂f
∂b

)H

with a,b ∈ [z, z∗]. The relationship betweenHrr andHa
zz can be expressed as

Hrr = JHHa
zzJ. (A-18)

Hence, the second-order term in the augmented complex TSE iscomputed as

1

2
∆rTHrr∆r =

1

2
∆zaHHa

zz∆za. (A-19)

Combining the results so far allows the TSE in theC
2N up to the second-order term to be written as

f [za +∆za] = f [za] +
∂f

∂za
∆za +

1

2
∆zaHHa

zz∆za (A-20)

By expanding the complex augmented vectorza in terms of the conjugate coordinatesz andz∗ and using that ∂
∂za = [ ∂

∂z
, ∂
∂z∗ ],

the complex TSE can be expressed in terms ofz andz∗ as

f [z+∆z] = f [z] +
∂f

∂z
∆z+

∂f

∂z∗
∆z∗ +

1

2

(
∆zHHzz∆z+∆zHHz∗z∆z∗ +∆z∗HHzz∗∆z

+∆z∗HHz∗z∗∆z∗
)

(A-21)
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