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Abstract

Recently, a class of widely linear (augmented) complex valued Kalmarsfilgnich utilise augmented complex statistics,
have been proposed. For the sequential state space estimation of ¢naligenf complex signals in the contex of neural network
training [1]. This has allowed for a unified treatment of both secondrasideular and noncircular signals, that is, both those with
rotation invariant and dependent distributions. In this paper, we re\@sagigmented complex Kalman filter (ACKF), augmented
complex extended Kalman filter (ACEKF) and augmented complex utestté¢alman filter (ACUKF), in a more general contex
and analyse their performances for different degrees of state aadurement noise noncircularity. A theoretical bound for the
performance of the class of widely linear (augmented) Kalman filterstbeé strictly linear counterparts is provided. The analysis
also address the duality with bivariate real valued Kalman filters. Simulatisimg both synthetic and real world proper and
improper signals support the analysis.

Index Terms

Widely linear model, complex circularity, complex Kalman filter, extendethiéa filter, unscented Kalman filter, augmented
complex Kalman filter

I. INTRODUCTION

Complex valued signals arise in a variety of applicationshsas in communications systems, radar and AC power systems.
In addition, a complex representation of bivariate realigdlsignals, such as 2-dimensional wind data [1], might loseh to
provide a convenient representation for these signals dsawe natural way of preserving the characteristics of ibaas
and the transformations they undergo, such as the phase agwitode distortion.

The second order statistical properties of complex sigaedscharacterised by their second order moment variance and
pseudocovariance functions. The covariance capturesntieenation concerning the total power of the signal, white t
pseudocovariance encapsulates the information aboubthergifference and cross-correlation between the realraadinary
parts of the signal. Conventional complex valued signakcessing algorithms have generally been designed, exyligit
implicitly, to cater for second order circular (proper) colex signals, that is signals with rotation invariant prioitity
distributions. These are characterised by a vanishingdueewariance, which makes them inadequate for most reddwor
signals which are almost invariably second order noncarcdlue to the different signal powers in the real and imagiparts,
correlation of the real and imaginary parts, or due to ndiustarity [1].

The Kalman filter is a state space based estimation techitigi&as many applications in technology, and is an es$gatie
of space and military technology development. The Kalmaerfdnd its different extensions are commonly used for beéh r
and complex valued scenarios. Complex valued Kalman fittave been used extensively in a variety of applicationsudticg
frequency estimation of time-varying signals [2], trapinf neural networks [3] and wireless localization [4]. Heee the
traditional implementation of the complex valued Kalmatefiinherently assumes second order circular state anduneasnt
noises as well as input data, and as such does not fullyauthis full available second order statistics of the compigrads.

The recent introduction of so called ‘augmented complefisties’ [5] [1] has highlighted that for a general (impraope
complex vectorx, estimation based solely on the covariance maRix= E{xx!’} is inadequate, and the pseudocovariance
matrix P, = E{xx”} is also required to fully capture the full second order sts. To introduce an optimal second order
estimator for the generality of complex signals, considett the mean square error (MSE) estimator of a real valuedioran
vectory in terms of an observed real vectgr that is,y = E{y|x}. For zero-mean, jointly norma and x, the optimal
estimator is linear, that is

y =Hx 1)
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whereH is a coefficient matrix. Standard, ‘strictly linear’ estitia in C assumes the same model but with complex valued
y, X, andH. Based on the fact that both the rgal and imaginaryy; parts of the vectoy are real valued, and

Vr=E{yr[x;,x;} Vi = E{yilx,, xi} 2
Substitutingx,, = (x + x*)/2 andx; = (x — x*)/2y yields
yr=E{y-x.x"} ¥ = E{yilx,x"} ®3)
and using (1), we obtain theidely linear complex estimatdr
y = Hx + Gx* = Wx* 4)

where the matrixXW comprises the coefficient matricé$ and G, andx® = [xT,x]T is the 'augmented’ input vector. The
full second order information is thus contained in the augi®eé covariance matrix

Rx P

R = E{x“x“H} = Pt R*

®)

and as such, estimation basedRfj incorporates both the covariance and the pseudocovariaatdces.

Recently, the widely linear (augmented) complex KalmarerfifACKF) [3], the augmented complex extended Kalman
filter (ACEKF) [3] and the augmented complex unscented Kalrfiker (ACUKF) [1], which are suitable for the generality
of complex signals both second order circular and nonargiiave been introduced, and applied for the training ofaleu
networks and have been shown to have superior performare®) wompared with their corresponding conventional cormple
Kalman filters, for second order noncircular signals. Hosvethe performance of these filters were not elaboratedher t
general case where the sources of improperness includédtiminput data and system parameters. Moreover, the effect
signal noncircularity on the mean square behavior of thev@ational complex Kalman filter (CCKF), the complex extethde
Kalman filter (CEKF) and the complex unscented Kalman fil@JKF) still needs further attention.

In this paper, we consolidate our recent work on a class oélyitihear Kalman filters [1] and illuminate their perforntas
under general widely linear state and observation noises,far nonholomorphic state and observation models. Wesitevi
the recently introduced class of widely linear Kalman fétethe augmented complex Kalman filter (ACKF), the augmented
complex extended Kalman filter (ACEKF) and the augmented ptexnunscented Kalman filter (ACUKF), and show that
the ACKF is superior to the CCKF in the mean square error (MSEf)se for the generality of complex signals. We also
illustrate that the computational complexity of the ACKmdae significantly reduced by exploiting the isomorphismnlzen
the bivariate real and complex domains. A more general fdrthe ACEKF, is then introduced, which is able to cater to both
analytic and nonanalytic state space models, in the CaRaélwrann sense. The effect of noncircular state and obsamvat
noises on the MSE behavior of the CEKF and CUKF are also agadlys

Il. THE AUGMENTED COMPLEX KALMAN FILTER (ACKF)
The Kalman filter is an optimal sequential state estimatorlifiear dynamical systems, in the sense that it achieves the
minimum mean squared error (MMSE). Consider the conveatistate space model given by [6]
Xn = anlxnfl +w, (6)
Yn = ann + v, (7)
wherex,, is the state to be estimated (of dimensjor 1), y,, is the noisy observation (of dimensignx 1), and the vectors
w,, andv, are the state and measurement néisesth zero means and covariance matri€@s and R,, respectively. The

matrix F' is the state transition matrix (of dimensignx p), whereasH is the observation matrix (of dimensignx p). The
corresponding augmented state space model can be written as

X

Yy

= F, x5 +w,
= H%x® + v (8)

n

I8 39

wherex? = [xI' xH|T, yo = [y yH]T,
F, A, H, B,

Fo = andH* = .
" |Ar F: B, Hj

The termsA and B in the augmented state transition matrix and augmentednaism matrix, allow for the state and
observation equations to be widely linear. If bathandB are zero, then the state and observation equations aréydliriear.

1The ‘widely linear’ model is associated with the signal getieg system, whereas ‘augmented statistics’ describetitatiproperties of measured signals.
Both the terms ‘widely linear’ and ‘augmented’ are used to naneerésulting algorithms - in our work we mostly use the term faagted'.
2In the derivation of the Kalman filter, the state and measuremeises are assumed to be Gaussian, white and uncorrelated.



Algorithm 1 The augmented complex Kalman filter (ACKF) algorithm

Initialise with:
Xop = E{xg}
6o = B{(x¢— B{x¢}(x§ - E{xz}H"}
Prediction:
§frlL|’rL—1 = F'ral—lﬁ'(rll,—l\n—l (11)
Minimum Prediction MSE Matrix:
n|n 1 Fn 1Mn 1|ln— l(F )H—'—QZ (12)
Kalman Gain Matrix:
Gy =My, (Hp)"HM:,_ (Hy)™" + Ry (13)
Correction:
ifrlL|n = 2?L\n—l + G;ll(y% - frllﬁ'lrlz\n—l) (14)

Minimum MSE Matrix:

n\n - (I -G Ha) (15)

a
n|n—1

The covariance matrices of the augmented state and meamuremisesw? = [x1, w7 andv? = [vI vH]T can be
written as

n Pn

@ = p{woweH Q 9)
P, Q,
R, U,

R = FE{vivi) = [U;‘; RZ] (10)

whereE{-} is the statistical expectation operator, dgandU,, are the pseudocovariance matriceswof andv,, respectively.

The MMSE estimato&%ln = E[x%ys, y], ...,y of x2 based on the observatiofsg,y{,...,y%} can then be computed
sequentially using Algorithm 1 [7].

The ACKF estimatex;, = [ﬁf‘n,?cfln]:r and the CCKF estimatg/;, are both optimal in the MMSE sense, if the state
and observation signals are white and uncorrelated with @s§an distribution [8] [9]. However, the difference beénethe
two filters lies in the fact that the ACKF utilises the augnegzhtovariance matrices, Which cater for the noncirculasftyhe
signals. However, the ACKF and CCKF have identical perforoea namelyx,,,, = xL | for circular state and observation

noises, and strictly linear state and observation equsititivat is

Q“:QLle” 0], RazRLle” 01,

n|n’

0 Q; 0 R
e or_ |Fn e« v |Ho O
F. =F, = and H! =H, = (16)
0 F: 0 H!

The duality between the CCKF and ACKF under these conditioli@vs from the fact that both filters attain the same Kalman
gain at every time instant. To this end, consider the predi®iMSE matrix, which can be expressed as

- Fn an\n 1(FZ I)H
_Fn an|n l(H ) [HaMn|n 1( Z)H"‘Rﬁ]_l
x(Hy)My ,_ (Fr_)™ +Qp 17)

which is a Riccati recursion. Observe that the computatm‘nM“‘n , and M7, are independent of the observation vector
and as such can be calculated before any observations areitak account. By substituting equation (13) into (15) amihg

a
n+1ljn



the matrix inversion lemma, The matridd“, can be expressed as

n|n

ngTL = ?L\n—l - M?L|n—1(Hi)H
x[H My, (H) 7+ Ry]HOMY
a — a a\— a -1
= [(My,_) "+ H)" (R HY] (18)
Substituting (18) into (13) allows the Kalman gain to be tertas
G =[(M5y),_y) "+ (H) P (R H~H(EY) T (R))
=My, (H) (R ™ (19)
Assuming the CCKF and ACKF have the same initialisation MS&rives, that is
ME 0
a  _ 0[0 (20)
i [ 0 Mgg]
where M, is the initial MSE for the CCKF, then substitutir@;, Ry;, F;; and H}; into (19), gives us
G¢ = Gy 0 (21)
" lo Gt

whereG;; = M/, (H,)"(R,)"" is the Kalman gain for the CCKF at time instant From equation (21) it is clear that the

CCKF and ACKF have the same Kalman gain, and by substitu@ig ito (14) we can see that the two filters will yield
identical estimates for the statsg,.

Remark #1: Hence, when the state and observation noises are bothasiramid the augmented state transition and observation
matrices are block-diagonal, the ACKF has the same perfocenas the CCKF.

A. Performance analysis

In this section, we illuminate the mean square error (MSEjopmances of the CCKF and ACKF in order to provide insight
into the behavior of Kalman filters for the generality of cdexpsignals, both second order circular and noncirculaf. [
start from the general state space model for the Kalman §item by (6) and (7). The Kalman filter estimatg,,, of the state
X, IS based on the all observations up to timeand can be written as a linear combination of the sequenobs#drvations,

z, = [y.y3....y1]", thatis
R = Wnn (22)
whereW,, is the minimum MSE weight matrix, which is the solution to thermal equation, that is
W, = sz,n,nR;}l 23)

With Ry nn = E{(x;, — E{xn})(zn — E{z,})"} andR,,, = E{(z, — E{z,})(z, — E{z,}) }. The MSE is then given
by

Mn|n = E{(Xn - §n|n)(xn - §n|n)H}
- Rx,n - sz,n,nR71 RH (24)

Z,n" VXZ,1,n

The Kalman filter is summarised by state estimate (mean) €2#) covariance estimate (24) expressions at each time
instant, however, these expressions are not recursive f@admputational complexity increases with time. Nonetssl
these expressions suffice for analysis of the MSE perforesmant the CCKF and the ACKF.

We can write the state equation (6) non-recursively as

n
Xn = Fn:OXO + Z Fnzwz (25)
i=1
wherex, is the initial state value with the assumption thafx,} = 0, while the state transition matrix has the properties
Fn:i = FnFn—l to Fi7 F77 =1 and FO =1
Now, the state covariance matrix can be written as

Rx,n = Fn:ORx,OFgo + Z Fn:iRw,iFﬁi (26)

i=1



and the observation covariance becomes

Rynm = E{ynyn}
HnRx,an + Rv,n if n=m
= HnRx,an if n<m (27)
HnRx,erHn if n>m

where we made the usual assumptions that the measuremsstviioj is orthogonal to the current and previous states, and
the state noise is white. The cross-correlation betweerstdite and observation can then be written as

ny,n,m = E{Xnyg} n Z m
= E{x,(H,x, + vm)H}
= RenHp (28)

while the cross-correlation between the state and the observation sequengg, and the covariance of the observation
sequence are given by

Ra:z[n7 n} = [ny,n,l ny,n,2 e ny,n,n} (29)
and
RyJ Ry,1,2 t Ry,1,n
Ry,2,1 Ry,2 e Ry,2,n
R.[n]=1| . . (30)
Ry,n,l Ry,n,Q e Ry,n
From taking the expectations of (22) and (25), it can be skanhthe estimat&,,,, is an unbiased estimator af,, that is,
E{elnln]} = E{(x[n] = X[nln])} = 0

and, as such, the mean characteristics of the conventiamaplex Kalman filter do not change with noncircular state and
observation signal.

Equation (24) shows that the mean square characteristite d€CKF is dependent on the covariance matrices of the state
and observation noises but not on their pseudocovariances.

Remark #2: The noncircularity of the state and observation noises do¢sffect the performance of the linear conventional
complex Kalman filter.

For the augmented complex Kalman filter (ACKF), the staterede and the MSE matrix are given by expressions similar
to (22) and (24), that is

Xpn = Wizh =R, .(R;,) 'z (31)
'raL\n = E{(ng _Q?L\n)(xz _iraL\n)H}
= R?c,n - Riz,n,n(Rg,n)_lRign,n (32)

where the matrix form of the augmented (widely linear) meaqmase erroerLln can be written as

Mwl,n\n Pwl,n\n N Rx,n Px,n sz,n,n szm,n
* * - * * - * *
Pwl,n|n Mwl,n|n Px,n Rx,n sz,n,n sz,n,n
—1 H
% Rz,n Pz,n sz,n,n sz,n,n
* * * *
Pz,n Rz,n sz,n,n sz,n,n

The termsPy ,, andP, ,, are the pseudo-cross-correlation of the state and ob&Ensgquence respectively, whi, ,, , =
E{x,z!l} is the pseudo-correlation between the state and obsemvaéiquence. Notice that the inverse of the augmented
covariance matriXRg ,,)~! can be expressed as

~1
R,»n Pun

)

* *
Pz,n Rz,n

C D
D* C*




where

C = (Run—P,.R;,'P; )"
D = —(R,,-P..R;'P; ) 'P,, R
and, the widely linear (augmented) MSE of the ACKF can be esged as
Muinn =Ruxn — RxznnCRE, . — Ruzn.n DPL,
— PuznaD'RL, 0 — PaznnCPL (33)

After some tedious algebraic manipulations, the diffeechetween the CCKF and the ACKF is found to be [11]
AM, = M, — My
(Pxznn — RxznnRy hPa2n)
xRy, — Py Ry Pyn)”!
X (Pxznn — RxznnRy nPan)” (34)
Remark #3: The expression (34) is always positive semidefinite sineentiatrix (R;; ,, — P; R, P, ,) is positive definite,

and consequenthyAM,, = 0 only when (Pxz ., — R;zl,nynRzyanyn) = 0. Therefore, the ACKF always has the same or
better MSE performance than the CCKF.

Remark #4: The CCKF and ACKF are equivalent if the observation sequésceircular, P,, = 0, and the state and
observation sequence are jointly circulRs ,, , = 0.

Remark #5: BecauseAM,, > 0 for all time instantsn, the ACKF hence has the same or better convergence than the
CCKF.

B. Duality Analysis

Due to the duality between augmented complex vectors aridveetors, the ACKF has a dual real valued Kalman filter
(KF), which can be used to significantly reduce its compateti complexity. For any complex vectar= z,. + jz; it holds

that
Z I 41| |z
z¢ = = ] (35)
z* I —jIf |z
—

=J =z"
wherel is the identity matrix and the invertible mappidg C — R is given byJ ! = %JH [12]. Based on this isomorphism,
the real valued state space corresponding to the augmeoieplex state space is given by

x, = Fo x5 1+w,
y, = H.x;+v, (36)

roo=J71F2_J, H =J 'HJ, wh = J 'w? andv” = J-!v%. The covariance
matrices of the real valued state and observation noisgsand v/, are given by

Q, = B{wiw"}=73"'Qus "

R, = E{v,v;'}=J"'R;J"

wherex” = J 1x2, yr = J-lye Fr

It can be shown that the ACKF and its dual real valued KF haeesime performance at each time instant. Assuming that
ACKF is initiated at time(n — 1), with initial statex? , ~, and MSE mat”XMqunfp the corresponding dual real valued

1|n
KF initialisation is given by

or _ —1ga

Xp—1|n—1 J Xp—1n—1
r = J'Mme J- (37)
n—1ln—1 n—1ln—1

It is now straightforward to show that the state and MSE matredictions of the ACKF and its dual real valued KF are
related as

§:‘1\n71 = J_1§2|n71
:lz\nfl = J_lerLﬂnflJ_H (38)



and that he augmented Kalman gain is related to its correlpgmeal valued Kalman gain by the following expression

G, = ’I(’LL|7L 1HGH[HaMn|n 1H2H+RZ]_1

= My, JHITH I
X[JH.J~ 1JMn‘n JEITHHIEIA 4 Ry 3

= JM,,  HAEM,,  HT 4RI

= JGrJ! (39)

It can be shown that the state estima/:?ﬁ? and:?r| have the following relationship
§:L|71, = \n 1+ Gy, —Hj Xn|n 1)

= IRy, + TGy, —HLITIRE, )
= J'x7, (40)

and the MSE matrices are related as

n \

From (40) it is clear that the state estimafs, andx Xn\n are equivalent and separated by an invertible linear mapgihe
ACKF and ERKF can also be shown to achieve the same mean sguarelLet mean square error for the ERKF be given by

- tr{Mnm} (42)

wheretr{-} is the matrix trace operator. The mean square error comelspg to the augmented MSE matrM“ is given
by taking the trace of (41), that is

tr{Mg,} = tr{IM],, I}
= tr{Mn‘nJHJ}

In (43), we used the fact that” = 2J—!. Equation (43) is misleading in that it suggests that ACKE twice the error of
its dual real valued KF. However, the error is counted twigddke the trace oMfm, due to the block diagonal structure of
augmented MSE covariance matrix, and hence needs to bednah\fend the true augmented mean square error, that is

n n

& = tr{Mn‘n}—

Therefore the ACKF and the its dual real valued KF are eqgeivaforms of the same state space models. They achieve the
same state estimates and MSE at every time instant, regardfethe circularity of the signals. However, by using thaldu
real valued KF, the computational complexity of the ACKF ésluced, whereby the number of additions and multiplication
required are approximately halved and quartered, resgcti

I1l. THE AUGMENTED COMPLEX EXTENDED KALMAN FILTER (ACEKF)

The extended Kalman filter (EKF) uses linear models to apprate nonlinear functions, and as such, the state and
observation functions need not be linear but differendallonsider the state space model given by

Xn = f[Xn—l] + Wy, (443)
vn = h[x,]+v, (44b)

wheref[-] andh[-] are the nonlinear process and observations vector valuelmeespectively and the remaining variables
are as defined above. The extended Kalman filter approxinthése nonlinear functions by their first order Taylor series
expansions (TSE) about certain desired points. Howevéleging the complex derivative of a function requires thection
to be analytic (differentiable) within the rigorous conalits set by the Cauchy-Riemann equations, though in peactie
functionsf|-] andh[-] can be analytic or nonanalytic depending on the underlyimgsigal model. Moreover, there is a large
class of functions, such as real functions of complex véegbwhich do not satisfy the Cauchy-Riemann conditionss thu
severely restricting the set of allowable functions for liveear process and observations models.

By utilising the so calledCR calculus framework [13], which exploits the isomorphisnivieen the complex domai@i and
the real domairR, the Taylor series expansions of both analytic and nonéndiynctions are still possible within the same
framework. For instance, itR calculus, the first order TSE of a functigfiz] is given by

8fA+8f

fla+ Ad) = flz] + oDz + 52

(45)



whereby for analytic functions (in the the Cauchy-Riemaeansg), the terrﬁfz—iAz* vanishes.
Consider the first order approximations of the state andreatien equations, (44a) and (44b), about the estin@tes,,_,
andx,,,—1, that is

Xn = Fn—lxn—l + An—lxrl_l + Wip + rp—1 (46)
Yn = ann + anjl + v, + 2, (47)
where the vectors,, = f[§n71|n71] - Fn—1§n71|n71 - An—lﬁz_l‘n_l and Zp = h[ﬁn\nfl] - Hnﬁn\nfl - B”Qj:ﬂn—l’ and
the matriceF,,_1, A,,_1, H,, andB,, are the Jacobians defined as
of of
F 1= y A e ]
e 6X7L—1 Xn—1=Xn_1jn—1 e ax;—l x:;—lzi':,fl\nfl
oh oh
H,= andB,,=—
" axn Xn=Xn|n—1 " ax;’; X=X

njn—1

From (46) and (47), we observe thatfif] andh[-] are nonanalytic, the linearised state and observationtieggaare widely
linear (see (4)), and thus cannot be implemented using Hredatd complex extended Kalman filter (CEKF). However, the
state space equations become strictly linear if these iumtare analytic, since the derivatives with respect tocihmplex
conjugates vanish, that i&,, ; =0andB,, = 0.

In order to provide deeper insight into the widely lineartstand observation models, an ‘augmented’ state spacesezpre
tation is thus required; this will also cater for the full sed order statistics of the process and measurement ndisehis
end, consider the nonlinear augmented state space moael

x, = ' ]+w; (48a)
yn = hxp[+vy (48b)
with f2[x¢_,] = [fT[x;ll_l],fH[xg_l]]T and h*[x¢] = [hT[x;g],hH[fo]]T. The linearised augmented state space can be
expressed as
x, = FL_ x5 +w,+r5 (49a)
yo = HIxI +v+z (49b)
wherer? = [rZ,r#]", 70 = [zT 7H]",
Fn An Hn Bn
F¢ = andH® = .
LI B, H;
Note thatF¢ = 9 andH? = 9.

Therefore, in contrast to the conventional CEKF, the ACEKIBwas the state and observation models to be widely linear,
and thus naturally caters for the noncircularity of the estahd measurement noises. The derivation of the ACEKF fsllow
from the derivation of the CEKF [1, Ch. 15.4], and utilisese tugmented state space, and is summarised in Algorithm]2 [14

The novelty of the ACEKF algorithm presented in this workhattit does not assume a specific state or observation models,
that isf[-] andh[-], which makes it a more general form of the ACEKF presente@]nNloreover, by utilising theCR calculus
framework, we have shown how the ACEKF can be used for thergktyeof complex state space models, both holomorphic
and nonholomorphic.

A. Duality Analysis of ACEKF and real valued EKF

Similar to the ACKF, the ACEKF has a real valued EKF countetrpahich gives the same estimate at every time
instant. Based on the isomorphism between augmented coraptereal valued vectors, the nonlinear real valued staeesp
corresponding to the augmented complex state space (48)eis by

x, = f[x) ] +w, (55a)
Yo = hpgl+vy, (55b)
wherex! = J7!x¢, yr = J7ly? v = J- v w' = J-lw?, f'[x"] = J7f[x¢] and h"[x"] = J~'h®[x?]. The
covariance matrices of the real valued state and obsenvatises,w; andv, are given by
Q= B{ww}=1"Qi "

R' = E{v/viT}=J'ReJH



Algorithm 2 The augmented complex extended Kalman filter (AEKF) albanit

Initialise with:
Xoo = E{xg}
6o = B{(x¢— B{x¢}(x§ - E{xz}H"}
Prediction:
rb\n 1 — =f* [ n—1|n— 1} (50)
Prediction Covariance Matrix:
n|n 1 Fn 1Mn 1ln— 1(F271)H+QZ (51)
Kalman Gain Matrix:
Gy =My, (Hp)"HiMy,  (Hi)" +Re) (52)
Correction:
Xpln = Xnjn—1 T Golyyn —h*[x5,1]) (53)

Covariance Matrix:

n\n - (I -G Ha) (54)

a
n|n—1

The relationship between the augmented complex and reabizasF¢ and F’ is established by usinf’[x”] = J~1f¢[x%]
and by comparing the first order TSE of both sides, that is
] = I
~ J 1f0«[x v [n— 1] +J71FZ(XZ, - 2?L\n—l)
~ Jilfa[ Z,|n 1] + JilFa‘](X; - ﬁ;|n—1)

fr[/\nm 1]+Fn 1( " A:L\’n,—l) (56)

This shows thaF? — J~1FaJ — o' , and similarlyH;, = J7'HGJ = b

oxT =
b —xT x;, =X

The correspondence between the ACEKF and its dual realvaidended Kalman filter can be established [15] by showing
that at every time instant the following relationships hold:

’\r _ —1ga

n\n 1 J Xn|n 1

r _ 1 —H

nln—1 J- Mn|n 1‘]

r _ —1Ma

Gr = Jlges

or _ —1ga

Xn|n = J Xn|n

r . H

- M, (57)

n|n

The ACEKF and its dual real valued extended Kalman filter m$zslly implement the same state space model, but operate
in different domains. If the state space is naturally defimedhe complex domain, it is generally desirable to keep &ll o
the computations in the original complex domain in order doilitate the understanding of the transformations theaig
goes through, and to benefit from the notions of phase andlaiity. However, the real valued equivalent extended Kalm
filter provides means for reducing the computational comipleof the ACEKF, whereby similar to the ACKF, the number of
additions and multiplications required are approximateyved and quartered, respectively.

IV. THE AUGMENTED COMPLEX KALMAN FILTER UNSCENTED(ACUKF)

The unscented Kalman filter (UKF) [16] has been proposed doesd the problems arising from the first order approximatio
of nonlinearities withing EKFs, and approximates the stathl posterior distribution rather than approximatihg honlinearity
[17]. The UKF uses a deterministic sampling technique td @icset of sample points (known as sigma points) around the
mean. These points are then propagated through the nantiteta space models, from which the mean and covariance=of th
estimate are then recovered. This results in a filter whi@ble to more accurately capture the true state mean andiaovar
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To illustrate the complex unscented transform (UT) and thgneented complex UT, consider the mapping
y = f[x] = f[X + %] x € CP*l y e c1*! (58)

where f[-] is a nonlinear vector valued functiog, = [y1,...,y,]* the outputx = [zi,...,z,]7 is the input whose mean
% = F{x}, covarianceR, = E{(x — %)(x — %)}, pseudocovariancP, = F{(x —%)(x — x)T} = 0, andéx = x — %. The
Taylor series expansion (TSE) gfaboutx is given by

1 1
y = £IR] + Vo + 5 Viuf + 5 Vo + - (59)

where theith order term in the TSE fof|-] aboutx is

1, 1 /< 9 \i

with 6z, being thekth component ofx. The term above is aith order polynomial indx whose coefficients are given by
the derivatives of[-]. The mean ofy can be expressed as

y = E{f[x+ox]}
— f®) BVt + SVLE 4 Vs
= f18)+ B{ Vot + 5 Vi + 5 Vinf + - }

where theith term is given by

1_, 1 P NG
E{* ! f}sz ( 5" 7) f

il ox 7! { ];1 ”Lkaa:k [X]|x:>_c

L (m Lk - of )

’L' 1,1,---,1,18x§ 1,1,-~,1,28xi_18$2

The symbolsng, as,,....a; 1.a; = E{0%a, 024, - - 04, x4, } denote theth order central moments of the componextwith
ar € [1,2,...,p]. Observe that théth order term in the series fgg is a function of theith order central moment ok
multiplied by theith derivative off[-]. Hence if the moments can be correctly evaluated up tattherder, the measg will
also be correct up to thih order. The covariance matrR, = E{(y — ¥)(y — ¥)} now becomes

L Of OfNH[1 s o H 1 o iy
Ry = () F P Tt (V) g gy Viur (V30
H

1 1 1
+3!V§xf(vgxf)H} _ E{mvgxf}E{mvgxf} e

and is correct if theth central moment ok is correct. Within the complex unscented transform framéwiie p—dimensional

random variablex is approximated by a sexf+ 1) weighted (sigma) point§WV;, Xi}fﬁfgl, chosen so that their sample mean

and covariance are equal to the true m&and covarianc® . The nonlinear functiorf|-] is then applied to each of these
points to generate transformed poinis,= f[X;], with a sample mean and covariance

2p 2p
F=Y W Ry=3 W(@i-9)i-9)"
i=0 1=0

which are correct up to the second order. For a second ordeimalary, the true output pseudocovarianPg = E{(y —
y)(y —§)"} is given by

f f
0 P){(@f

Py:& ox

T 1 T 1 T
) +E{3!V5xf(V§’xf) + 531 Vind (Vi)

T
1 1 1
+3!V§xf(véxf)T}E{Q!Vﬁxf}E{mV%xf} T

The standard complex unscented transform is does not cateihé input pseudocovariance and consequently the output
pseudocovariance, due to the method used for generatingigh® points, which are calculated as

Xy =% Xi:i{j:(\/(p+)\)Rx>_,i:1,...,2p (61)

Where( (p+ /\)Rx) is theith column of the matrix square root and= o?(2p + k) — 2p is a scaling parameter, while
1 q .
a determines the spread of the sigma points around the meais arstially set to a small positive value ( e.40,73), « is
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Fig. 1. Performance of the complex UT and augmented complex UT

a secondary scaling parameter which is usually séX, tand 5 is used to incorporate prior knowledge of the distributiéor (
Gaussian distributionsi = 2 is optimal). From (61) it is clear that the sigma points do imebrporate the pseudocovariance.
To incorporate the pseudocovariance into estimates of titygub moments, consider the ‘augmented’ function

y¢ = fx?] = £x* + ox“] (62)

wherex® = [xT,x], y* = [y?, yf] anddx® = [6x”, 6x™]. The sigma points corresponding to this model are given by

Xl =%  XC=%+ (s/(er)\)R;l()_,i: 1,...,4p

and are functions of the mean of the augmented input and timented covariance matrix and can fully propagate the secon
order statistics of improper inputs.

To illustrate the benefits of the augmented complex UT overstandard UT, consider the system defined;by= cos[z,]
where the inputz,, is a Gaussian doubly white circular random variable. Figl@eshows that for a circular input, ~
N(z, ¢y, pr) = N(0.5,0.01,0) (¢, is the variance angd, the pseudocovariance) the complex UT and the augmentedieomp
UT had similar performance in capturing the distributiontioé outputy,,. Figure 1b illustrates that for a noncircular input
z, ~ N(0.5,0.01,0.008) the augmented complex UT captures the pseudocovariande afutput distribution closely, while
the complex UT maintains a circular posterior distribution

Based on (4) and (62), consider the ‘augmented’” model

xp = g4+ wy (63)
Yn h*[x7] + vy (64)
The weights associated with thi¢p + 1) augmented sigma points are then given by
m o _ A e A |- o
Wo 2p+ A Wo 2p+)\+( o+ )
(m) ©) A :
W, = . = ——]T" - 1 .« e 4 65
(3 7 2(2p+ /\)’ ? 9 , &P ( )

and the augmented complex unscented Kalman filter (ACUKB)imsmarised in Algorithm 3 [18]. The novelty of the ACUKF
algorithm presented in this work is that it does not assumeeziic state or observation models which makes it a more
general form of the ACUKF presented in [1].

A. Performance analysis

In this section we analyse the mean-square behavior of #eCthKF [16] for analytic state and observation functions.
Consider the complex valued scalar state space given by

Yn = hlza]+o, (70)

where f[-] and h[-] are the analytic nonlinear process and observation modsfzectivelyz,, andy, are the state and noisy
observation, whilev,, andv,, are uncorrelated zero-mean white complex-valued stateégs) and observation (measurement)
noises respectively. The process noise has variance = E{w,w} } and pseudocovariance, , = E{w,w,}, while the
measurement noise has a variaegcg, = E{v,v;;} and pseudocovariangs, ,, = E{v,v,}.
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Algorithm 3 The augmented unscented Kalman filter (AUKF) algorithm

Initialise with:
Xgo = E{xg}
o = E{(xt — BE{xg))(x§ — E{x¢})"}
Calculate sigma points far=1,...,4p
X&n—lziz—l\n—l
Xi?n—1:§Z—1|n—1 + <\/(p +A)M¢ 1fn— 1)1 (66)
Compute predictions:
Xi(,l'n\n 1 =f¢ [X'Lan 1]
4p
ﬁ?’z\n—lzzw(nl) (] n|n 1
i=0
N (e) a
My, 1= Z*’Z 4% (Xi(jnm—l_xgz\n—l)(Xil,lnm—l_xgﬂn—l)
i=0
yznm_lzha[)(i,n\n—l]a 1= 1a~~~74p
4p
1= W Vs (67)
i=0

Measurement update:

a Sa A
Ry nin—1"" +ZW (zn|n 1 yn\n 1>(yi,n|n—1_yn|n—1)

H
( /\ a a
aya nln—1—" E :W zn\n 1 n|n—1 yi,n\n—l_ymn—l

1
Ga Ra aya nln—1 (R;“,nm—l)
ﬁn\n :Xﬁ|n71 + G, (y;ll - ygL\nfl)
@ =M | —GIRZ, G (68)

n|n n|n—1 ye,nln—1

The unscented and extended Kalman filters use the same bapdede formula, given by (68) and (53), to compute the
estimate of the state, that is

/x\n|n = /x\n|n71 + gn(yn - @\n|n71) (71)

whereg, is the Kalman gain. This equation shows that the estimatepdesas of a prediction tern,,,_;, and a weighted
innovation term,(y, — Ynjn—1)-
Substituting the state equation (69) in to the observatouaton (70) gives

Let z = f[zn—1] + wy, then the TSE of the functioh[f|x, 1] + w,] = h[z] about f[x,, 1] can be written as
oh 1
h[f[xn—l]+wn}:h[f[xn—1“+$wn+iﬂzzwi‘i’h-o-t- (73)

with the Jacobia%’ and HessiarH,, = % (%) evaluated at = f[x,,_1]. Now subtract the true state,,, from the estimate

given in (71) to find the state estimation error

Cp =Tn — aj\n|n
= (f[xnfl] + wn) - EE\n\nfl - gn(yn - /y\n\nfl) (74)
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Substituting (72) and (73) into (74) yields

en=(fl2n-1] +wn) = Fajn—1 = g (hF[rn-1]]
oh 1

+—wp+ 77-[2211)721 =+ h0t+ Un — gn\n—l>
0z 2

(75)

Based on (75), the MSE, that B{e, ¢}, consists of a large number of terms, however, since we dseiaterested in the
effect of circularity on the MSE, we shall only analyse tenmkated to the process and measurement noise pseudocoesria
and these terms are

E{epel} = —E{%gnszwa (f[an] - f”'"_ly}
— B (]~ g )i (07)?)

+ E{%gnszw <9n<h[f[xn 1 y"‘” 1) }
B3 (90 (0] = )97 (1))
+ (otherterms & h.o.}.

= *%{E{gn}[zz (f[xn—l] - f’n\n—l) *}pw,n}
+ ER{E{ ‘gn|2 sz(h[f[xn—l] _Z/J\n\n—l)*}p:)m}
+ (other terms & h.o.. (76)

whereR{-} is the real part of a complex quantity.

Remark #6: From (76) it can be seen that the MSE for the CUKF and CEKF apem#gent on the pseudocovariance of
the state noise, namely it is a function @f ,, and p;, ,,, hence there mean square behavior are affected by theasitgubf
the state noise, if the observation equation is nonlinear.

Remark #7: If the state space model is a linear, then the Hessian fégmin (76) vanishes, as the second derivatives of
h is zero, and as a consequence the four terms in the MSE (7@hveine dependent on the pseudocovariances also vanish.
Therefore, the mean square characteristic of the conveaitimear complex Kalman filter does not depend on the carityl

of the state or observation noises.

V. APPLICATION EXAMPLES

To illustrate the benefits of widely linear complex Kalmatefis over conventional complex Kalman filters, we shall abers
two case studies: (1) filtering for a noisy complex valuederdressive process and (2) multistep ahead predictiaeébworld
noncircular and nonstationary wind data and the second omigcircular Lorenz attractor.

A. Complex autoregressive process

The performances of all the standard and widely linear Kalriléers discussed above were used to filter the first order
complex autoregressive process, AR(given by [1] [19]

T, = 0.92,_1 + uy,

where the driving noise was, was a doubly white, Gaussian, zero-mean noise with variandepseudocovariance defined
as

Ef{up—_sul,_;} = cubig
E{unfiunfl} = pué‘ifl

whereo is the discrete Dirac delta function. The observation déqodor the linear filters, namely the CCKF and ACKF, were
such thatz,, was observed in the presence of an additive complex nonairethite noisep,,, that is (see [9] for the Kalman
filter implementation of an autoregressive process)

Yn = Tn + U
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while, the observation equation corresponding to the neali CEKF, CUKF and their corresponding augmented versieas
given by

Yn = arctan[a:n} + v

The ratio of pseudocovariance magnitude to covariance,isha

r=ld
c

was used as a measure for the degree of noncircularity ofdhmplex state and measurement noises [20], where a complex
random variable is circular if{ = 0 and maximally noncircular ik = 1. Figure 2 shows a real-imaginary scatter plot for
two different realisations of the AR) process driven by Gaussian complex white variable witfedéht levels of circularity.
Note the circular symmetry for the circular signal and the@-eocular shape for = 0.9. For a quantitative assessment of
the performance, the standard prediction gRin= 10log(c7/07) was used, where? ando? are the powers of the input
signal and the output error.

Figure 3 shows the performances of the standard CCKF andritesponding widely linear (augmented) version, the ACKF.
Figure 3a illustrates the results for a circular observatioise and a state noise with various degrees of noncirglathile
Figure 3b shows the results for a noncircular observatiasenwith a circular state noise. For both sets of simulatiovigen
the noises were circular the ACKF had the same performantteeaSCKF, while for noncircular noises the ACKF had superior
performance as the degree of noise noncirculaiy {hcreased.

Figure 4 shows the corresponding results for the nonlindakKk; CUKF and their corresponding augmented versions,
ACEKF and ACUKF. Similar to the ACKF, the general behaviortlimt ACEKF and ACUKF outperform the CEKF and
CUKEF, respectively, if the either of the state or obsenmatimises are noncircular, while for circular noises theyehsinilar
performances. However, when the state noise is noncit@gatlustrated in Figure 4a, the MSE behavior of CEKF and EUK
change with the circularity of the state noise.

B. Multistep ahead prediction of different signals

The performances of the CCKF and ACKF were next assessetidantiltistep ahead prediction of the noncircularenz
attractor and some real world noncircular and nonstatioldnd data using linear and widely linear autoregressive models.
Simulations for the complex least mean square (CLMS) andumented version, the ACLMS, were also carried out to
provide a performance comparison [21].
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Figure 5a summarises the prediction performances folLtienz and theWind data. The ACKF was able to capture the
underlying dynamics of the signals better than CCKF, whginilicated by its superior prediction performance. This ba
attributed to the use of the widely linear ‘augmented’ moediich is better able to capture the second order statisfitise
noncircular signals. Similarly, the prediction performas for the ACEKF and ACUKF were also superior to the CEKF and
CUKF, but were not shown here in order to avoid repetitiomguFé 5b shows the corresponding simulations for the CLMS

and ACLMS, where the ACLMS is shown to have superior perfaroeacompared to the CLMS, but is worse off compared
to the ACKF.

VI. CONCLUSION

The second order statistics of zero-mean complex signalsiescribed by their covariance function and a second moment
function known as the pseudocovariance. With the aim of/futilising both these statistical moments, we have reaxide
the augmented complex Kalman filter (ACKF) algorithm andehaxamined its performance in relation to the conventional
complex Kalman filter (CCKF). The analysis has shown that AGKF has the potential to offer significant performance
gains over the CCKF for noncircular state or observatiorsemiand the same performance as the CCKF for circular signals
Moreover, we have analysed a more general form of the augmiesimplex extended Kalman filter (ACEKF), by using
the so calledCR calculus framework, allowing us to deal with both analytitdanonanalytic state space models. We have
also analysed the mean square characteristics of CCKFxthaded complex Kalman filter (CEKF), the unscented complex
Kalman filter (CUKF), and have shown that the mean squarevii@haf the CCKF is unaffected by the noncircularity of the
state and observation noises. The analysis shows that tae sggiare characteristics of the CEKF and CUKF are effegted b
state noise noncircularity, if the observation equationaslinear.

APPENDIXA
A CONSICE SUMMARY OFCRR CALCULUS

In what follows, theCR calculus framework, which was originally introduced by Wiger and is known as Wirtinger
calculus within the German speaking engineering commulisityriefly introduced. More recently Kreutz-Delgado [18pyided

a comprehensive overview of the topic and came with the n@Recalculus due to the dual real and complex perspective of
complex functions within this framework.

In order for the complex derivative of a function of= z, + jz;

fl2] = ulzr, 2] + jolz,, 2] (A1)
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to exist in the standard sense, the real partial derivatfedz,, z;] andv|z,,z,;] must satisfy the Cauchy-Riemann equations
given by

ou v v ou
0z, 0z oz, 0z (A-2)
For example the functiorf; [2] = 22 is complex differentiable, wher% a“ +Ja while f>[z] = zz* does not satisfy the

Cauchy-Riemann equations and is not complex differergiablthis light. However by usin@R calculus, which establishes
a duality between the real- and complex-valued derivatigews for the Taylor series expansion (TSE)Rnand C.

The functionf[z] can be seen as a function of bettand its complex conjugate®, that is f[z, z*]. Althoughz andz* are
not truly independent, the introduced methodology can bsidered as a formalism wherelfyis analytic inz for fixed z*
and vice versa wherg is analytic inz* for fixed z. The variablez andz* are called conjugate coordinates and the function
f|z] can be expressed as

flz] = flz,z"] = g[zr,zi] = ulz,, z;] —|—jv[zT,zi] (A-3)
5L was proven by Brandwood

The relations between the partial derlvatl\%fs an

in [12], and an alternative approach based on the totalrdrﬁltml of f is shown below [1]

The total differential of the functiog|z,, z;] can be expressed as

Z 89

8zr " 8zi
and after some algebraic manipulations, it can be expressed

1,09g g 1,09 . 0g

dg[z”"z"'}zﬁ(am 92, )dz+5(3, z, ' Oz

dz; (A-4)

dg[z7'7 Zi] =

)dz* (A-5)

or in a more compact form

of ., Of .
df[z] = 8—d z + P —dz (A-6)
This leads us to one on the important resultsCé#t calculus, given by
Lo of _1,0f of
R-derivative: 0z z*:constam‘ (8Z aZZ)
. S af _1.9f  .Of
R'-derivative: 0z* lz=constant B 2 (8ZT + 821) (A 7)

For these generalised derivatives it is assumed zhamnd z* are mutually independent, name& = gzi =1and aazz* =
%—Zz* = 0. Hence it is possible to consider the derivatives of botHyadicaand non-analytic functions , where the functions can
be either complex- or real-valued. Thiederivative andR*-derivative for analytic functions satisfying the CaudRiemann

equations simplify to

S of B 8f af /
R-derivative: o= ( . T 8Z1) flz]
*_dorivafi of
R*-derivative: — = 0 (A-8)
0Z* |z=constant

that is, for analytic functions th-derivative is equivalent to the standard complex dereatind theR*-derivative vanishes,
namely the function is independent &f. The Cauchy-Riemann condition can then be expressed as

of
i 0 (A-9)
Therein lies the beauty of th€R calculus framework: for when applied to an analytic funetio is equal to the standard
complex derivative and when applied to a non-analytic fiamctt is equal to the pseudo-gradier®*tderivative).

Next, the Taylor series expansion ffz] up to the 2nd order is considered. This is facilitated by merig the equivalent
forms of the functionf, that is

fla) «— [flz,2"] = f[2°] «— [z, 2] = f[r] (A-10)

and establishing the duality between the derivatives of ftheetions in RN and C2V. In (A-10) the augmented vector
z% = [z7 2] € C*N andr = [z] z!] € R?N. By establishing the isomorphism between vector®#’ and C*" and

identifying the Jacobian of the transformation, the firstl @econd order derivatives for the terms in the TSE can bélyead
computed [13].
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From the fact thak = z, + jz; andz* = z, — jz; it can be shown that

a_z_IjI Zy A1l
Z_Z*_I—jI VAT (-)

wherel is the identity matrix. Now define

I JI
J= [ 7 ] (A-12)
I —j1
then it is easy to show that~! = 3J* and we have the following mappings
1
z® = Jr and r=J 1z = iJHz“ (A-13)

Because the mapping betweBd"Y and C2V is linear and one to one, then these two spaces can be casigemorphic.
The mappings in (A-13) therefore correspond to an admisgibbrdinate transformation between #feandr representations
of z. Using the chain rule and the mappings in (A-13) , the pad@&ivatives between the two space can now be written as

0 10 g4
98— 2010
0 0
- = A-14
Or 8z“J ( )
The TSE forR2"Y up to the second order term can be expressed as
flr 4+ Ar] = f[r] + %Ar + %ArTH,rAr (A-15)
T
whereH,, = % (%) is the real-valued Hessian matrix. The corresponding fidémoterm in the augmented complex space
is given by
gAr =J-J 1Az = ﬁAza (A-16)
or 0z
The augmented complex Hessian matrix is given by
0 8f H sz Hz*z
9 = —(= = A-17
ez 0z (az“) [sz* ’HZ*Z*] ’ ( )

H
whereH,p, = %(g—lf)) with a, b € [z,z*]. The relationship betweeH,, and HZ, can be expressed as

Her = JIHLT. (A-18)
Hence, the second-order term in the augmented complex T8&mputed as
%ArTH”Ar = %AZGHH;ZAZG. (A-19)
Combining the results so far allows the TSE in iV up to the second-order term to be written as
flz* + Az] = fz°] + aa Zfa Az + %AZGHH;'ZAZ& (A-20)

By expanding the complex augmented veatbiin terms of the conjugate coordinatesindz* and using thatai—a = [6@ o],
the complex TSE can be expressed in termg ahdz* as

-~ of of
flz + Az] = f[z] + EAZ + g

Az + %(AZHHZZAZ + Az T, Az + Az HH,,. Az

—i—Az*H’Hz*z*Az*)
(A-21)
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