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a b s t r a c t

The modulated oscillation model provides physically meaningful representations of time-
varying harmonic processes, and has been instrumental in the development of modern
time-frequency algorithms, such as the synchrosqueezing transform. We here extend this
concept to multivariate signals, in order to identify oscillations common to multiple data
channels. This is achieved by introducing a multivariate extension of the synchrosqueez-
ing transform, and using the concept of joint instantaneous frequency multivariate data.
For rigor, an error bound which assesses the accuracy of the multivariate instantaneous
frequency estimate is also provided. Simulations on both synthetic and real world data
illustrate the advantages of the proposed algorithm.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Numerous observations in science and engineering
exhibit time-varying oscillatory behavior that is not possible
to characterize adequately by conventional Fourier analysis.
This limitation was first addressed by the modulated oscilla-
tion model [1], which characterizes time-varying signals as
amplitude and frequency modulated oscillations, thereby
capturing the changing oscillatory dynamics of the signal.
The univariate modulated oscillation model has since
become a standard in analyzing time-varying signals, in
fields ranging from communication theory [2] to biome-
dical engineering [3].

The notion of the univariate modulated oscillation has
been recently extended to both bivariate and trivariate time-
varying signals [4–6]; in the bivariate case the modulated
oscillations are modeled as tracing an ellipse with the joint
instantaneous frequency capturing the combined frequencies
of the individual channels. This elliptic (ellipsoid) character-
ization has found applications in oceanography [7], where the
underlying physical processes are well modeled as particles
in 2D and 3D spaces which trace elliptical trajectories. For an
arbitrary number of channels, the modulated multivariate
oscillation has been proposed in [8,9], whereby the under-
lying model assumes one common oscillation that best fits all
of the individual channel oscillations. For instance, the work
in [9] identifies modulated multivariate oscillations using the
multivariate extension of the wavelet ridge algorithm, a local
optimization technique that identifies local maxima with
respect to scale parameter in the wavelet coefficients, with
the objective of extracting the local oscillatory dynamics of
the signal. It should be noted that interest in time-frequency
analysis of multichannel data has also recently been growing
with multivariate data driven algorithms [10,11] that directly
exploit multichannel interdependencies.

A recent class of time-frequency techniques, referred to as
reassignment methods [12–14], aim to improve the “read-
ability” (localization) of time-frequency representations [15].
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The synchrosqueezing transform (SST) [16,17] belongs to this
class, it is a post-processing technique based on the contin-
uous wavelet transform that generates highly localized time-
frequency representations of nonlinear and nonstationary
signals. Synchrosqueezing provides a solution that mitigates
the limitations of linear projection based time-frequency
algorithms, such as the short-time Fourier transform (STFT)
and continuous wavelet transforms (CWT). The synchros-
queezing transform reassigns the energies of these trans-
forms, such that the resulting energies of coefficients are
concentrated around the instantaneous frequency curves of
the modulated oscillations. As such, synchrosqueezing is an
alternative to the recently introduced empirical mode decom-
position (EMD) algorithm [18]; it builds upon the EMD, by
generating localized time-frequency representations while at
the same time providing a well understood theoretical basis.

However, despite all those efforts, multivariate time-
frequency algorithms are still at their infancy. This is in stark
contrast with the developments in sensor technology which
have made readily accessible multivariate data (3D inertial
body sensor and 3D anemometers). To this end, we develop a
multivariate time-frequency algorithm based on SST that
generates a compact time-frequency representation of multi-
channel signals, based on the principles developed in [8,9,19].

The organization of this paper is as follows: Section 2
introduces the notion of modulated multivariate oscil-
lations and joint instantaneous frequency. Section 3
describes the SST, Section 4 presents the proposed multi-
variate extension of the synchrosqueezing algorithm, and
Section 5 verifies the algorithm through simulations.

2. Modulated multivariate oscillations

Signals containing single time varying amplitudes and
frequencies are readily described by the modulated oscil-
lation model

xðtÞ ¼ aðtÞ cos ϕðtÞ ð1Þ
where a(t) and ϕðtÞ are respectively the instantaneous
amplitude and phase, and are termed the canonical pair
[2]. The application of the Hilbert transform to the original
signal, yields the analytic signal xþ ðtÞ in the form

xþ ðtÞ ¼ aðtÞe_ıϕðtÞ ¼ xðtÞþ _ıHfxðtÞg ð2Þ
whereHf�g is the Hilbert transform operator, and _ı ¼

ffiffiffiffiffiffiffiffi
�1

p
.

The analytic signal xþ ðtÞ is complex valued and admits a
unique time-frequency representation for the signal x(t),
based on the derivative of the instantaneous phase, ϕðtÞ.

Recently, the concept of univariate modulated oscilla-
tion has been extended to the multivariate case, in order
to model the joint oscillatory structure of a multichannel
signal, using the well understood concepts of joint instan-
taneous frequency and bandwidth. Extending the repre-
sentation in (2), for multichannel signal xðtÞ, we can
construct a vector at each time instant t, to give a multi-
variate analytic signal

xþ ðtÞ ¼

a1ðtÞe_ıϕ1ðtÞ

a2ðtÞe_ıϕ2ðtÞ

⋮
aNðtÞe_ıϕN ðtÞ

2
66664

3
77775 ð3Þ
where an(t) and ϕnðtÞ represent the instantaneous ampli-
tude and phase for each channel n¼ 1;…;N. The work in
[9] proposed the joint instantaneous frequency (power
weighted average of the instantaneous frequencies of all
the channels) of multivariate data in the form:

ωx tð Þ ¼
I xH

þ tð Þ d
dt

xþ tð Þ
� �

Jxþ ðtÞJ2
¼∑N

n ¼ 1a
2
nðtÞϕ0

nðtÞ
∑N

n ¼ 1a
2
nðtÞ

ð4Þ

where the symbol “I” denotes the imaginary part of a
complex signal and ϕ0

nðtÞ is the instantaneous frequency
for each channel.

Remark 1. It should be noted that for single channel
multicomponent signals, the weighted average instanta-
neous frequency [20] has the same form as in (4) and is
consistent with the joint instantaneous frequency.

Both measures of instantaneous frequency overcome a
fundamental problem that arises when estimating instan-
taneous frequency of multiple modulated oscillations, that
is, power imbalances between the components lead to
instantaneous frequency estimates that are outside the
bounds of the individual instantaneous frequencies [21].

The joint instantaneous frequency captures the com-
bined oscillatory dynamics of multivariate signals, while
the joint instantaneous bandwidth υxðtÞ captures the
deviations of the multivariate oscillations in each channel
from the joint instantaneous frequency, and is given by

υx tð Þ ¼
d
dt

xþ tð Þ� _ıωx tð Þxþ tð Þ
����

����
xþ ðtÞ
�� �� : ð5Þ

Therefore, the joint instantaneous bandwidth represents
the normalized error of the joint instantaneous frequency
estimate with respect to the rate of change of the multi-
variate analytic signal xþ ðtÞ. Inserting (3) into (5) results in
the expression for the squared instantaneous bandwidth:

υ2x tð Þ ¼∑N
n ¼ 1ða0nðtÞÞ2þ∑N

n ¼ 1a
2
nðtÞðϕ0

nðtÞ�ωxðtÞÞ2
∑N

n ¼ 1a
2
nðtÞ

: ð6Þ

Remark 2. Observe that the instantaneous bandwidth
depends upon the rate of change of the instantaneous
amplitudes for each channel, as well as the deviation of
the instantaneous frequencies in each channel from the
combined joint instantaneous frequency. Large deviations
of the individual instantaneous frequencies from the joint
instantaneous frequency result in a large instantaneous
bandwidth, implying that the multivariate signal would
not be well modeled as a multivariate modulated
oscillation.

It has been shown in [6] that the global moments of the
joint analytic spectrum can be expressed in terms of the
joint instantaneous frequency and bandwidth. The first
and second global moments are termed the joint mean
frequency and the joint global second central moments
(multivariate bandwidth squared). As a result, given the



1 A detailed implementation of the synchrosqueezing transform can
be found in [22].

2 We have used linear frequency scales therefore Δω is constant,
however for logarithmic frequency scales,Δω would vary with frequency
[22].
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joint analytic spectrum

S ωð Þ ¼ 1
E
JXþ ωð ÞJ2; ð7Þ

where Xþ ðωÞ is the Fourier transform of xþ ðtÞ and E is the
total energy of the Fourier coefficients given by

E¼ 1
2π

Z 1

0
JXþ ωð ÞJ2 dω; ð8Þ

this makes possible to express the joint global mean
frequency expressed as the first moment of the joint
analytic spectrum as

ω ¼ 1
2π

Z 1

0
ωS ωð Þ dω: ð9Þ

The joint global second central moment (multivariate
bandwidth squared) measures the spectral deviation of
the joint analytic spectrum from the joint global mean
frequency, and is given by

σ2 ¼ 1
2π

Z 1

0
ðω�ωÞ2S ωð Þ dω: ð10Þ

Accordingly, the global moments of the analytic spectrum
can be related to the moments of joint instantaneous
frequency and bandwidth as

ω ¼ 1
E

Z 1

�1
Jxþ tð ÞJ2ωx tð Þ dt ð11Þ

σ2 ¼ 1
E

Z 1

�1
Jxþ tð ÞJ2σ2

x tð Þ dt; ð12Þ

where σ2
x ðtÞ is the joint instantaneous second central

moment, given by

σ2
x ðtÞ ¼ υ2x ðtÞþðωxðtÞ�ωÞ2: ð13Þ

Remark 3. Observe that the multivariate bandwidth
squared, σ2, depends on both the joint instantaneous
bandwidth, σ2

x ðtÞ, and the deviations of the joint instanta-
neous frequency from the joint global mean frequency, ω.

3. Synchrosqueezing transform

The synchrosqueezing transform is a post-processing
technique applied to the continuous wavelet transform in
order to generate localized time-frequency representa-
tions of non-stationary signals. The continuous wavelet
transform is a projection based algorithm that identifies
oscillatory components of interest through a series of
time-frequency filters known as wavelets. A wavelet ψ ðtÞ
is a finite oscillatory function, which when convolved with
a signal x(t), in the form

W a; bð Þ ¼
Z

a�1=2ψ
t�b
a

� �
x tð Þ dt ð14Þ

gives the wavelet coefficients Wða; bÞ, for each scale-time
pair (a,b). In this way, the wavelet coefficients in (14) and
can be seen as the outputs of a set of scaled bandpass
filters. The scale factor a shifts the bandpass filters in the
frequency domain, and also changes the bandwidth of
the bandpass filters. Therefore, the energy of the wavelet
transform of a sinusoid at a frequency ωs will spread out
around the scale factor as ¼ωψ=ωs, whereωψ is the center
frequency of a wavelet, while the energy of the original
frequency ωs is spread across as. Thus, the estimated
frequency present in those scales is equal to the original
frequency ωs. Consequently, the instantaneous frequency
ωxða; bÞ can be estimated as

ωx a; bð Þ ¼ � _ıWða; bÞ�1 ∂Wða;bÞ
∂b

ð15Þ

for each scale-time pair (a,b). The resulting wavelet coeffi-
cients that contain the same instantaneous frequencies
can then be combined using a procedure referred to as
synchrosqueezing (SST). For a set of wavelet coefficients
Wða; bÞ, the synchrosqueezing transform1 Tðωl; bÞ is given
by

Tðωl; bÞ ¼ ∑
ak : ∣ωxðak ;bÞ�ωl ∣rΔω=2

Wðak; bÞa�3=2 Δak ð16Þ

where ωl are the frequency bins with a resolution2 of Δω.
The SST has been shown to reconstruct univariate modu-
lated oscillations of the form in (1), as follows [16]

xðbÞ ¼R R�1
ψ ∑

l
Tðωl;bÞΔω

" #
ð17Þ

where Rψ ¼ 1
2

R1
0 ψ̂ n ξ

� 	 dξ
ξ , is the normalization constant

and ψ̂ ðξÞ is the Fourier transform of the mother wavelet
ψ ðtÞ.

4. Multivariate time-frequency representation using the
SST

In order to extend the SST to the analysis of multi-
variate signals, recall that if the modulated oscillatory
components are known for each channel as in (3), then
we can determine the joint instantaneous frequency,
provided that the frequencies of the modulated oscilla-
tions are sufficiently close together. With that insight, we
propose to first partition the time-frequency domain into
K frequency bands fωkgk ¼ 1;…;K . This makes it possible to
identify, a set of matched monocomponent signals from a
given multivariate signal. The instantaneous amplitudes
and frequencies present within those frequency bands can
then be determined (yielding amplitude and frequency
modulated oscillations, similar to the intrinsic-mode func-
tions (IMFs) of the EMD algorithm [18]).

4.1. Partitioning of the time-frequency domain

We propose to partition the time-frequency domain via
a multivariate extension of an adaptive frequency tiling
technique first proposed in [19]; the underlying concept is
to determine multivariate monocomponent signals based
on the multivariate bandwidth. The time-frequency plane
is first partitioned into 2l equal-width frequency bands, for
the frequency range, ωl;m ¼ ½m=2ðlþ1Þ; ðmþ1Þ=2ðlþ1Þ�, where
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Fig. 1. The partitioned frequency domain with the multivariate band-
width given by Bl;m , where l corresponds to the level of the frequency
band and m is the frequency band index.
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l¼ 0;…; L, corresponds to the level of the frequency bands
(L¼5 typically) and m¼ 0;…;2l�1, is the index of the
frequency band.

The multivariate bandwidth Bl;m for a given frequency
band at level l and index m, is then calculated as shown in
Fig. 1. Within a given frequency band ωl;m, the multivariate
bandwidth is split into two frequency subbands ωlþ1;2m

and ωlþ1;2mþ1, as follows [19]:
�
 If the frequency band ωl;m contains a multivariate
monocomponent signal, then, Bl;m ¼ Blþ1;2mþ
Blþ1;2mþ1.
�
3 A bound on the error of the estimated multivariate instantaneous
frequency is provided in the Appendix.
If each frequency subband contains separate multi-
variate monocomponents then, Bl;m4Blþ1;2mþ
Blþ1;2mþ1.

As a result, given a multivariate signal xðtÞ with N channels
with the SST coefficients for each channel given by
Tnðω;bÞ, the multivariate bandwidth for a given frequency
band ωl;m [5,6], is obtained by first calculating the Fourier
transform of the inverse of the SST coefficients

Φl;mðωÞ ¼ F R�1
ψ ∑

ωAωl;m

Tnðω; bÞ
( )" #

n ¼ 1;…;N

ð18Þ

where F f�g is the Fourier transform operator, Rψ the
normalization constant [16] and Φl;mðωÞARN a column
vector. The multivariate bandwidth is then determined via
Eqs. (7)–(10), as outlined in Section 2.

The rationale behind the adaptive frequency scales is
then as follows: if the initial multivariate bandwidth is
calculated for the entire signal at level l¼0, then the
bandwidth is split based on the following condition:

Bl;m4
Blþ1;2mΛlþ1;2mþ1þBlþ1;2mþ1Λlþ1;2mþ1

Λlþ1;2mþ1þΛlþ1;2mþ1
ð19Þ

where

Λlþ1;2m ¼ ∑
T

b ¼ 1
ðAmulti

lþ1;2mðbÞÞ2

Λlþ1;2mþ1 ¼ ∑
T

b ¼ 1
ðAmulti

lþ1;2mþ1ðbÞÞ2
and Amulti
lþ1;2mðbÞ and Amulti

lþ1;2mþ1ðbÞ correspond to the multi-
variate instantaneous amplitudes for the respective fre-
quency subbands, as defined by (23). The right hand side
of (19) factors the total energy of the frequency subbands,
such that the subbands with negligible signal content are
not considered. The final set of adaptive frequency bands is
given by fωkgk ¼ 1;…;K , where K is the number of oscillatory
scales and ω14ω24⋯4ωK .
Remark 4. For modulated oscillations separated in fre-
quency, the proposed partitioning method provides a
robust method for separating monocomponent signals.
However, for closely spaced monocomponent functions
that are separated in both time and frequency (i.e. two
parallel chirp signals), the method cannot resolve the
separate monocomponent signals.
4.2. Multivariate time-frequency representation

For a multivariate signal xðtÞ with the corresponding SST
coefficients for each channel Tnðω; bÞ (the SST coefficients
Tnðω;bÞ have been normalized with the constant Rψ ), and a
given a set of oscillatory scales fωkgk ¼ 1;…;K obtained using a
multivariate extension of a method proposed in [19], the
instantaneous frequency Ωn

k ðbÞ for each frequency band k is
given by

Ωn
k bð Þ ¼∑ωAωk jTnðω; bÞj2ω

∑ωAωk jTnðω; bÞj2 ð20Þ

and the instantaneous amplitude Ai
kðbÞ for each frequency

band as

An
k ðbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

ωAωk

jTnðω; bÞj2
r

: ð21Þ

The following condition holds for the instantaneous frequen-
cies calculated in each frequency band, Ωn

k ðbÞ4 Ωn
k�1ðbÞ,

that is, at each point in time the instantaneous frequencies
are well separated. The second step is to estimate the
multivariate instantaneous frequency by combining, for a
given frequency band k, the instantaneous frequencies across
the N channels, using the joint instantaneous frequency in
(4). As a result, the multivariate instantaneous frequency
band Ωmulti

k ðbÞ is given by3

Ωmulti
k bð Þ ¼∑N

n ¼ 1ðAn
k ðbÞÞ2Ωn

k ðbÞ
∑N

n ¼ 1ðAn
k ðbÞÞ2

ð22Þ

while the instantaneous amplitude Amulti
k ðbÞ for each

frequency band becomes

Amulti
k ðbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

n ¼ 1
ðAn

k ðbÞÞ2
s

: ð23Þ

Now that we have determined the joint instantaneous
amplitude and frequency for each frequency band, it is
possible to generate the multivariate time-frequency
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coefficients Tmulti
k ðω; bÞ for each oscillatory scale k, as4

Tmulti
k ðω;bÞ ¼ Amulti

k ðbÞδðω�Ωmulti
k ðbÞÞ ð24Þ

where δð�Þ is the Dirac delta function and the multivariate
time-frequency coefficients for each oscillatory scale are
given by Tmultiðω; bÞ ¼ Tmulti

k ðω; bÞjk ¼ 1;…;K . However, it should
be noted that phase information has been lost through
calculating the instantaneous frequency, and so the original
multivariate signal xðtÞ cannot be reconstructed. A summary
of the proposed method is shown in Algorithm 1.
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Algorithm 1. Multivariate extension of the SST.
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Determine the multivariate synchrosqueezed coeffi-
cients Tmultiðω; bÞ.

5. Simulations

The performance of the proposed multivariate exten-
sion of the synchrosqueezed transform was evaluated on
both synthetic and real-world signals. The synthetic data
were of sinusoidal oscillations in varying levels of noise, as
well as frequency- and amplitude- modulated oscillations
in noise. The real-world simulations were conducted on
velocity data collected from a freely drifting oceanographic
float (used by oceanographers to analyze ocean currents)
and Doppler shift signatures of a robotic device collected
from two Doppler radar systems.
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5.1. Sinusoidal oscillation in noise

The first set of simulations provides a quantitative
evaluation the proposed multivariate time-frequency algo-
rithm based on the synchrosquezing transform against the
multivariate pseudo Wigner distribution (MPWD) algo-
rithm (as outlined in Appendix B). The quantitative per-
formance index was a modification of a measure proposed
in [24], given by

B¼
R R

ðt;ωÞARjTFRðt;ωÞj dtdωR R
ðt;ωÞ=2RjTFRðt;ωÞj dtdω ð25Þ

where the symbol TFRðt;ωÞ denotes the time-frequency
representation, and R is the instantaneous frequency path
4 The multivariate extension of the synchrosqueezed transform
ltiðω; bÞ follows a similar form to the ideal time-frequency distribution
ction ITFðt;ΩÞ ¼ 2πjAðtÞj2δðΩ�ϕ0ðtÞÞ [23].
of the desired signal. We first considered a bivariate
sinusoidal oscillation in varying levels of white Gaussian
noise

ysðtÞ ¼
cos ð2πftÞ

cos ð2πðf þδÞtÞ

" #
þ

n1ðtÞ
n2ðtÞ

" #
Fig. 2. A comparison between the localization ratios B, for both the
proposed method and the MPWD, evaluated for a bivariate oscillation
with the following joint instantaneous frequencies: (a) 10.5 Hz,
(b) 40.5 Hz, and (c) 100.5 Hz. A window length of 1001 samples was
used for the MPWD.
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where f ¼ ½10;40;100� Hz are the set of frequencies pre-
sent, and n1ðtÞ and n2ðtÞ are independent white Gaussian
noise realizations and δ¼ 1 Hz corresponds to a frequency
deviation between the channels. The resulting joint
instantaneous frequency between the channels is given
by f jðtÞ ¼ ½10:5;40:5;100:5� Hz. The values of the localiza-
tion ratio B are shown in Fig. 2. It can be seen that the
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5.2. Amplitude and frequency modulated signal analysis

We next considered a multicomponent bivariate AM/
FM signal yðtÞ corrupted by noise

yðtÞ ¼
s1ðtÞþs2ðtÞ
s3ðtÞþs4ðtÞ

" #
þ

n1ðtÞ
n2ðtÞ

" #

where n1ðtÞ and n2ðtÞ are independent white Gaussian
noise realizations and the signal components s1ðtÞ; s2ðtÞ;
s3ðtÞ; s4ðtÞ are given by

s1ðtÞ ¼ ð1þ0:5 cos ð2πtÞÞ cos ð2πt20Þ
s2ðtÞ ¼ ð1þ0:5 cos ð2πtÞÞ cos ð2πtð20þδÞÞ
s3ðtÞ ¼ cos ð2πð10tþ3:5 cos ðtÞÞÞ
s4ðtÞ ¼ cos ð2πðð10þδÞtþ3:5 cos ðtÞÞÞ:
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Fig. 4. Time-frequency analysis of real world float drift data. (a) The time do
representation of float data using the proposed multivariate extension of the SST
was used for the MPWD.

Table 1
Localization ratios, B, for both the proposed algorithm and the MPWD.

SNR (dB) Proposed method MPWD

10 0.208 0.037
5 0.105 0.025
0 0.04 0.014
Therefore, the components s1ðtÞ and s2ðtÞ were AM signals,
with an amplitude modulation index of 0.5. A frequency
deviation, δ¼ 0:3 Hz, was introduced to the carrier of s2ðtÞ
(this is analogous to a frequency bias that may arise
between sensors during data acquisition). The information
bearing components s3ðtÞ and s4ðtÞ of the bivariate signal
yðtÞ were sinusoidally modulated FM signals, while s4ðtÞ
also had a frequency deviation of δ¼ 0:3 Hz.

Fig. 3 shows the time-frequency representations using
both the proposed method and the MPWD, in processing
the bivariate AM/FM multicomponent signal yðtÞ, over a
range of input SNRs. Observe from Fig. 3(a) that for an
input SNR of 10 dB, that the proposed method localizes
the energy of the oscillations along the instantaneous
frequency frequencies that correspond to the components
of yðtÞ. However as the noise power increased, the perfor-
mance of the proposed method degraded as the joint
instantaneous frequency estimator is sensitive to noise.
On the other hand, the MPWD is less localized at higher
SNRs, while the performances of both methods converge
for lower SNRs. Table 1 shows the localization ratio B for
both techniques, illustrating that as the SNR decreases the
localization ratio B for the proposed algorithm converges
with that of the MPWD, implying that while localized the
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proposed method is not accurately representing the com-
ponents instantaneous frequencies.
5.3. Float drift data

The real world data was collected from a freely drifting
oceanographic float, used by oceanographers to study
ocean current drifts.5 The latitude and the longitude of
the float was recorded, and the resulting drift velocity in
both the latitude and longitude were processed as a
bivariate signal. The drift velocities along the latitude
and longitude (shown in Fig. 4(a)) contain a time-varying
oscillation that is common to both channels, however
these oscillations are not in phase. Also the noise in both
channels had different characteristics. Fig. 4(b) illustrates
that the common oscillatory dynamics of the float drift
data that is frequency modulated is effectively localized
5 The float drift data was obtained from the Jlab toolbox, and is
available at http://www.jmlilly.net.
using the proposed method, while the multivariate pseudo
Wigner distribution had poorer localization.
5.4. Doppler speed estimation

The second real world data example consists of a
bivariate Doppler radar signal, collected from both a high
gain and low gain Doppler radar system (the Doppler radar
operating frequency was f c ¼ 10:587 GHz). A Doppler shift
signature was then collected from a robotic device moving
at a constant speed towards both the high gain and low
gain Doppler radars [25]. The speed chosen for this work
was 0.065 m/s and the corresponding Doppler shift fre-
quency,6 was f d ¼ 4:567 Hz. From Fig. 5(a), observe from
the output of both Doppler radar systems, the amplitude
increasing as the robotic device approaches the radar. Also
note that the power from the output of the high gain radar
6 The Doppler shift frequency, fd, is related to the speed of an object
by f d ¼ 2f cv=c, where v is the speed of the object and c is the speed
of light.

http://www.jmlilly.net
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is significantly higher than the output of the low gain
radar. The multivariate time-frequency representations
using both the proposed method and the MPWD is shown
in Fig. 5(b). Observe that the proposed method localizes
the Doppler shift frequency more effectively, where it
should be noted that the speed of the robotic device
between the samples 400–600, and the deceleration
between the samples 1600–1800, can clearly be identified.
Finally the localization ratio for the proposed multivariate
time-frequency7 method is 0.38 while for the MPWD 0.11,
implying that the proposed method has a higher energy
concentration around the Doppler shift frequency, fd.

6. Conclusion

We have proposed a multivariate extension of the syn-
chrosqueezing transform in order to identify oscillations
common to the data channels within a multivariate signal.
For each channel, the instantaneous frequencies of the
synchrosqueezed coefficients are determined for each oscilla-
tory scale, and the resulting multivariate instantaneous fre-
quency is then found by calculating the joint instantaneous
frequency of each oscillatory scale across the channels. The
performance of the proposed algorithm has been illustrated
both analytically, in terms of an error bound, and through
simulations on synthetic and real-world signals. Finally, while
the algorithm has shown potential in generating a localized
multivariate time-frequency representation, further work is
required for the operation in highly noisy environments.
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Appendix A

This Appendix presents a bound on the error of the
multivariate instantaneous frequency estimate Ω̂multiðbÞ
(shown in (20)), based on error bounds for the univariate
synchrosqueezing transform [16]. We first present a brief
overview of the main results presented in [16] and proceed
to derive a bound for the estimated multivariate instanta-
neous frequency.

A real-valued oscillatory function of the form f ðtÞ ¼
AðtÞ cos ðϕðtÞÞ, can be considered an intrinsic mode type
(IMT) function, with accuracy ϵ, if the following conditions
on A and ϕ hold

AAC1ðRÞ \ L1ðRÞ; ϕAC2ðRÞ
inf
tAR

ϕ0ðtÞ40; sup
tAR

ϕ0ðtÞo1

jA0ðtÞj; jϕ″ðtÞjrϵjϕ0ðtÞj; 8tAR

A signal f(t) that satisfies the above constraints, has its
corresponding wavelet transform given by Wf ða; bÞ, and
7 It should be noted that the localization ratio of the proposed
method and the univariate SST of the high gain channel are equal, as
the instantaneous frequency of interest in both cases is f d ¼ 4:567 Hz.
the Fourier transform of the wavelet function ψ̂ having a
compact support in ½1�Δ;1þΔ�. The synchrosqueezing
transform with accuracy δ and threshold ~ϵ (where
~ϵ ¼ ϵ�1=3 is the threshold for which jWf ða; bÞj4 ~ϵ) is then
determined via [16]

Sδf ; ~ϵ b;ωð Þ ¼
Z
a:jWf ða;bÞj4 ~ϵ

Wf a; bð Þ1
δ
h

ω�ωf ða; bÞ
δ

� �
a�3=2 da

ð26Þ
where h(t) is a window function which satisfies,R
hðtÞ dt ¼ 1. The following error bounds have been deter-

mined in [16]
�
 Given a scale band Z ¼ fða; bÞ: jaϕ0ðbÞ�1joΔg, then
for each scale-time pair ða;bÞAZ and jWf ða; bÞj4 ~ϵ, it
follows that

jωf ða; bÞ�ϕ0ðbÞjr ~ϵ; ð27Þ
which implies that the SST coefficients are concen-
trated along the instantaneous frequency ϕ0ðbÞ.
�
 For all of bAR, there exists a constant C, such that as
δ-0, the inverse of the synchrosqueezing transform
along the vicinity of the instantaneous frequency
curve, ϕ0ðbÞ, results in the following error bound:

lim
δ-0

1
Rψ

Z
ω:jω�ωf ða;bÞjo ~ϵ

Sδf ; ~ϵ b;ωð Þ dω
 !

�A bð Þe_ıϕðbÞ





rC ~ϵ







ð28Þ
The multivariate instantaneous frequency estimate is then
the power weighted average of the instantaneous ampli-
tudes and frequencies of the multivariate signal according
to (4). Therefore, a bound on the error of the multivariate
instantaneous frequency depends upon the channel-wise
errors when estimating the instantaneous amplitude
and frequency of a modulated oscillation using the syn-
chrosqueezed transform. Based upon the univariate SST
error bounds with the instantaneous frequency ϕ0

nðbÞ
and amplitude An(b) (where n is the channel index)
and scale bands for each channel given by Zn ¼ fða; bÞ:
jaϕ0

nðbÞ�1joΔg, with jWnða;bÞj4 ~ϵ, the instantaneous
frequency for each channel is bounded by

ϕ0
nðbÞ� ~ϵrωnða; bÞrϕ0

nðbÞþ ~ϵ ð29Þ
with the bound on the corresponding error bound for the
instantaneous amplitude, obeying

AnðbÞ�C ~ϵo ÂnðbÞoAnðbÞþC ~ϵ ð30Þ
where

Ân bð Þ ¼ lim
δ-0

1
Rψ

Z
ω:jω�ωnða;bÞjo ~ϵ

Sδf ; ~ϵ ;n b;ωð Þ dω
� �




:







For the estimate of the multivariate instantaneous fre-
quency (determined using (22)), the objective is to deter-
mine an error bound on jΩ̂multiðbÞ�ΩmultiðbÞj, in the form:

jΩ̂multi bð Þ�Ωmulti bð Þj ¼ ∑N
n ¼ 1Â

2
nðbÞωnða; bÞ

∑N
n ¼ 1Â

2
nðbÞ

�Ωmulti bð Þ
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¼ ∑N
n ¼ 1Â

2
nðbÞðωnða; bÞ�ΩmultiðbÞÞ

∑N
n ¼ 1Â

2
nðbÞ






:






 ð31Þ

Using the following property, j∑N
n ¼ 1ynjr∑N

n ¼ 1jynj,
Eq. (31) can be written as follows:

∑N
n ¼ 1Â

2
nðbÞðωnða;bÞ�ΩmultiðbÞÞ

∑N
n ¼ 1Â

2
nðbÞ















o ∑
N

n ¼ 1

Â
2
nðbÞðωnða; bÞ�ΩmultiðbÞÞ

A2
lower















¼ ∑
N

n ¼ 1

Â
2
nðbÞ

A2
lower

ðωnða;bÞ�ΩmultiðbÞÞ
A2
lower






:




















where A2

lower ¼∑N
n ¼ 1ðAnðbÞ�C ~ϵÞ2. Finally, using inequal-

ities (30) and (29), we have

∑
N

n ¼ 1

Â
2
nðbÞ

A2
lower

ðωnða; bÞ�ΩmultiðbÞÞ
A2
lower




























o ∑
N

n ¼ 1

ðAnðbÞþC ~ϵÞ2
A2
lower

ðϕ0
nðbÞ�ΩmultiðbÞþ ~ϵÞ

A2
lower

























 ð32Þ

Therefore, the error bound in (32) is dependent upon the
differences of the individual channel-wise instantaneous
frequencies from the calculated multivariate instantaneous
frequency. However, if the instantaneous frequencies
within each channel are equal, from (32) this implies that
the bound is a multiple of the threshold ~ϵ.
Appendix B

This Appendix derives a multivariate extension for the
Wigner distribution which naturally estimates the joint
instantaneous frequency for a multivariate signal. Given a
multivariate analytic signal xþ ðtÞ, the Wigner distribution
is defined by

WD ω; tð Þ ¼
Z 1

�1
xH
þ t�τ

2

� �
xþ tþτ

2

� �
e� jωτ dτ: ð33Þ

and its inverse as

xH
þ t�τ

2

� �
xþ tþτ

2

� �
¼ 1
2π

Z 1

�1
WD ω; tð Þejωτ dω

where xH
þ ðtÞ is the Hermitian transpose of a vector xþ ðtÞ

defined in (3).
The central frequency of the Wigner distribution of a

multivariate signal xþ ðtÞ, for a given instant t, is given by

〈ω tð Þ〉¼
R1
�1ωWDðω; tÞ dωR1
�1 WDðω; tÞ dω : ð34Þ
Using the inverse Wigner distribution we can now rewrite
(34) as

〈ω tð Þ〉¼
d
jdτ

xH
þ t�τ

2

� �
xþ tþτ

2

� �h i
jτ ¼ 0

xHþ t�τ
2

� �
xþ tþτ

2

� �
jτ ¼ 0

¼ 1
2j
½xH

þ ðtÞx0
þ ðtÞ�x0H

þ ðtÞxþ ðtÞ�
xHþ ðtÞxþ ðtÞ

:

For the multivariate signal components xnðtÞ ¼ anðtÞe_ıϕnðtÞ,
the instantaneous frequency of a multivariate signal is
therefore of the form

〈ω tð Þ〉¼∑N
n ¼ 1a

2
nðtÞϕ0

nðtÞ
∑N

n ¼ 1a
2
nðtÞ

¼ωx tð Þ:

In a similar way, the instantaneous bandwidth (4)
follows from

υ2x tð Þ ¼
R1
�1 ðω�ωxðtÞÞ2WDðω; tÞ dωR1

�1 WDðω; tÞ dω

with

1
2π

Z 1

�1
ω2WD ω; tð Þ dω¼ � d2

dτ2
xH
þ t�τ

2

� �
xþ tþτ

2

� �h i
jτ ¼ 0

:

This analysis can be generalized to the Cohen class of
distributions and general time-scale representations,
including the spectrogram and the scalogram as the
energetic forms of the short-time Fourier transform and
the wavelet transform, respectively [26]. Finally, in order
to implement the MWD, we used an multivariate exten-
sion of the pseudo Wigner distribution [23], where a
window function is used to evaluate (33).
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