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T
he widespread use of multisensor technology and the emergence of big data 
sets have highlighted the limitations of standard flat-view matrix models and 
the necessity to move toward more versatile data analysis tools. We show that 
higher-order tensors (i.e., multiway arrays) enable such a fundamental para-
digm shift toward models that are essentially polynomial, the uniqueness of 

which, unlike the matrix methods, is guaranteed under very mild and natural conditions. 
Benefiting from the power of multilinear algebra as their mathematical backbone, data 
analysis techniques using tensor decompositions are shown to have great flexibility in the 
choice of constraints which match data properties and extract more general latent compo-
nents in the data than matrix-based methods.

A comprehensive introduction to tensor decompositions is provided from a signal process-
ing perspective, starting from the algebraic foundations, via basic canonical polyadic and Tucker 
models, to advanced cause-effect and multiview data analysis schemes. We show that tensor 
decompositions enable natural generalizations of some commonly used signal processing para-
digms, such as canonical correlation and subspace techniques, signal separation, linear regres-
sion, feature extraction, and classification. We also cover computational aspects and point out 
how ideas from compressed sensing (CS) and scientific computing may be used for addressing 
the otherwise unmanageable storage and manipulation issues associated with big data sets. The 
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concepts are supported by illustrative real-world case studies that 
highlight the benefits of the tensor framework as efficient and 
promising tools, inter alia, for modern signal processing, data ana-
lysis, and machine-learning applications; moreover, these benefits 
also extend to vector/matrix data through tensorization.

HISTORICAL NOTES
The roots of multiway analysis can be traced back to studies of 
homogeneous polynomials in the 19th century, with contributors 
including Gauss, Kronecker, Cayley, Weyl, and Hilbert. In the 
modern-day interpretation, these are fully symmetric tensors. 
Decompositions of nonsymmetric tensors have been studied since 
the early 20th century [1], whereas the benefits of using more 
than two matrices in factor analysis (FA) [2] have been apparent in 
several communities since the 1960s. The Tucker decomposition 
(TKD) for tensors was introduced in psychometrics [3], [4], while 
the canonical polyadic decomposition (CPD) was independently 
rediscovered and put into an application context under the names 
of canonical decomposition (CANDECOMP) in psychometrics [5] 
and parallel factor model (PARAFAC) in linguistics [6]. Tensors 
were subsequently adopted in diverse branches of data analysis 
such as chemometrics, the food industry, and social sciences [7], 
[8]. When it comes to signal processing, the early 1990s saw a 
considerable interest in higher-order statistics (HOS) [9], and it 
was soon realized that, for multivariate cases, HOS are effectively 
higher-order tensors; indeed, algebraic approaches to independent 
component analysis (ICA) using HOS [10]–[12] were inherently 
tensor based. Around 2000, it was realized that the TKD repre-
sents a multilinear singular value decomposition (MLSVD) [15]. 
Generalizing the matrix singular value decomposition (SVD), the 
workhorse of numerical linear algebra, the MLSVD spurred the 
interest in tensors in applied mathematics and scientific comput-
ing in very high dimensions [16]–[18]. In parallel, CPD was suc-
cessfully adopted as a tool for sensor array processing and 
deterministic signal separation in wireless communication [19], 
[20]. Subsequently, tensors have been used in audio, image and 
video processing, machine learning, and biomedical applications, 
to name but a few areas. The significant interest in tensors and 
their quickly emerging applications is reflected in books [7], [8], 

[12], [21]–[23] and tutorial papers [24]–[31] covering various 
aspects of multiway analysis.

FROM A MATRIX TO A TENSOR
Approaches to two-way (matrix) component analysis are well estab-
lished and include principal component analysis (PCA), ICA, non-
negative matrix factorization (NMF), and sparse component analysis 
(SCA) [12], [21], [32]. These techniques have become standard tools 
for, e.g., blind source separation (BSS), feature extraction, or classifi-
cation. On the other hand, large classes of data arising from modern 
heterogeneous sensor modalities have a multiway character and are, 
therefore, naturally represented by multiway arrays or tensors (see 
the section “Tensorization—Blessing of Dimensionality”).

Early multiway data analysis approaches reformatted the data 
tensor as a matrix and resorted to methods developed for classical 
two-way analysis. However, such a flattened view of the world and 
the rigid assumptions inherent in two-way analysis are not always a 
good match for multiway data. It is only through higher-order ten-
sor decomposition that we have the opportunity to develop sophis-
ticated models capturing multiple interactions and couplings 
instead of standard pairwise interactions. In other words, we can 
only discover hidden components within multiway data if the ana-
lysis tools account for the intrinsic multidimensional patterns pre-
sent, motivating the development of multilinear techniques.

In this article, we emphasize that tensor decompositions are 
not just matrix factorizations with additional subscripts, multi-
linear algebra is much more structurally rich than linear alge-
bra. For example, even basic notions such as rank have a more 
subtle meaning, the uniqueness conditions of higher-order ten-
sor decompositions are more relaxed and accommodating than 
those for matrices [33], [34], while matrices and tensors also 
have completely different geometric properties [22]. This boils 
down to matrices representing linear transformations and quad-
ratic forms, while tensors are connected with multilinear map-
pings and multivariate polynomials [31].

NOTATIONS AND CONVENTIONS
A tensor can be thought of as a multi-index numerical array, 
whereby the order of a tensor is the number of its modes or 

[TABLE 1] Basic notation.

, , aa,AA tensor, matrix, vector, scalar 

[ , , , ]a a aA R1 2 f= matrix A  with column vectors ar

(: , , , , )i i ia N2 3 f fiber of tensor A  obtained by fixing all but one index 

(: , : , , , )i iA N3 f matrix slice of tensor A  obtained by fixing all but two indices 

(: , : , : , , , )i iA N4 f tensor slice of A  obtained by fixing some indices 

( , , , )A I I IN1 2 f subtensor of A  obtained by restricting indices to belong to subsets  
{ , , , }I1 2In nf3

A R( )n
I I I I I In n n N1 2 1 1! # g g- + mode-n  matricization of tensor RA I I IN1 2! # # #g  whose entry at row in  and  

column ( ) ( )i I I I I i I i1 1n n N N N N1 2 1 1 1g g g- + + - +- + -  is equal to ai i iN1 f2

Avec R I I IN N 1 1! g-^ h vectorization of tensor RA I I IN1 2! # # #g  with the entry at position 
[( ) ]i i I I I1k kk

N
1 1 2 12

g+ - -
=

/  equal to ai i i1 f N2

( , , , )diagD R1 2 fm m m= diagonal matrix with drr rm=

( , , , )diagD N R1 2 fm m m= diagonal tensor of order N  with drr r rm=g

,AT  ,A 1-  A@ transpose, inverse, and Moore–Penrose pseudoinverse 
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dimensions; these may include space, time, frequency, trials, 
classes, and dictionaries. A real-valued tensor of order N  is denoted 
by RA I I IN1 2! # # #g  and its entries by .a , , ,i i iN1 2 f  Then, an N 1#  
vector a  is considered a tensor of order one, and an N M#  matrix 
A  a tensor of order two. Subtensors are parts of the original data 
tensor, created when only a fixed subset of indices is used. Vector-
valued subtensors are called fibers, defined by fixing every index but 
one, and matrix-valued subtensors are called slices, obtained by fix-
ing all but two indices (see Table 1). The manipulation of tensors 
often requires their reformatting (reshaping); a particular case of 
reshaping tensors to matrices is termed matrix unfolding or matri-
cization (see Figure 1). Note that a mode-n  multiplication of a ten-
sor A  with a matrix B  amounts to the multiplication of all 
mode-n  vector fibers with ,B  and that, in linear algebra, the ten-
sor (or outer) product appears in the expression for a rank-1 mat-
rix: .ab a bT = %  Basic tensor notations are summarized in Table 1, 
various product rules used in this article are given in Table 2, while 
Figure 2 shows two particular ways to construct a tensor.

INTERPRETABLE COMPONENTS  
IN TWO-WAY DATA ANALYSIS
The aim of BSS, FA, and latent variable analysis is to decompose 
a data matrix X R I J! #  into the factor matrices [ ,A a1=

, , ]a a RR
I R

2 f ! #  and [ , , , ]B b b b RR
J R

1 2 f != #  as

	 X ADB E Ea bT
r

r

R

r r
T

1
m= + = +

=

/

	 ,Ea br
r

R

r r
1

%m= +
=

/ � (1)

where  ( , , , )D diag R1 2 fm m m=  is a scaling (normalizing) matrix, 
the columns of B  represent the unknown source signals (factors or 
latent variables depending on the tasks in hand), the columns of A  
represent the associated mixing vectors (or factor loadings), while 
E  is noise due to an unmodeled data part or model error. In other 
words, model (1) assumes that the data matrix X  comprises hidden 
components br  , , ,r R1 2 f=^ h that are mixed together in an 
unknown manner through coefficients ,A  or, equivalently, that data 
contain factors that have an associated loading for every data chan-
nel. Figure 3(a) depicts the model (1) as a dyadic decomposition, 
whereby the terms a b a br r r r

T=%  are rank-1 matrices.
The well-known indeterminacies intrinsic to this model are: 

1) arbitrary scaling of components and 2) permutation of the 
rank-1 terms. Another indeterminacy is related to the physical 
meaning of the factors: if the model in (1) is unconstrained, it 
admits infinitely many combinations of A  and .B  Standard 
matrix factorizations in linear algebra, such as QR-factorization, 
eigenvalue decomposition (EVD), and SVD, are only special 
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[Fig1]  MWCA for a third-order tensor, assuming that the components are (a) principal and orthogonal in the first mode,  
(b) nonnegative and sparse in the second mode, and (c) statistically independent in the third mode. 

[TABLE 2] Definition of products.

BC A n#= mode-n  product of RA I I IN1 2! # # #g  and B R J In n! #  yields RC I I J I In n n N1 1 1! # # # # # #g g- +  with entries 
c a bi i j i i i i i i i j ii

I

1n n n N n n n N n n
n

n

1 1 1 1 1 1=g g g g
=- + - +/  and matrix representation C BA( ) ( )n n=

 ; , , ,B B BC A ( ) ( ) ( )N1 2 f= " , full multilinear product, B B BC A ( ) ( ) ( )
N

N
1

1
2

2# # #g=

C A B= % tensor or outer product of RA I I IN1 2! # # #g  and RB J J JM1 2! # # #g  yields RC I I I J J JN M1 2 1 2! # # # # # # #g g  with 
entries c a bi i i j j j i i i j j jN N MM1 2 1 2 1 2 1 2=g g g g

a a aX ( ) ( ) ( )N1 2 g= % % % tensor or outer product of vectors a R( )n In!  ( , , )n N1 f=  yields a rank-1 tensor RX I I IN1 2! # # #g  
with entries x a a a( ) ( ) ( )

i i i i i i
N1 2

N N1 2 1 2 f=f

C A B7= Kronecker product of A R I I1 2! #  and B R J J1 2! #  yields C R I J I J1 1 2 2! #  with entries 
c a b( ) ,( )i J j i J j i i j j1 11 1 1 2 2 2 1 2 1 2=- + - +

C A B9= Khatri–Rao product of [ , , ]a aA RR
I R

1 f != #  and [ , , ]b bB RR
J R

1 f != #  yields C R IJ R! #  with columns 
c a br r r7=
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cases of (1), and owe their uniqueness to hard and restrictive 
constraints such as triangularity and orthogonality. On the 
other hand, certain properties of the factors in (1) can be repre-
sented by appropriate constraints, making possible the unique 
estimation or extraction of such factors. These constraints 
include statistical independence, sparsity, nonnegativity, expo-
nential structure, uncorrelatedness, constant modulus, finite 
alphabet, smoothness, and unimodality. Indeed, the first four 
properties form the basis of ICA [12]–[14], SCA [32], NMF [21], 
and harmonic retrieval [35].

TENSORIZATION—BLESSING OF DIMENSIONALITY
While one-way (vectors) and two-way (matrices) algebraic struc-
tures were, respectively, introduced as natural representations 
for segments of scalar measurements and measurements on a 
grid, tensors were initially used purely for the mathematical 
benefits they provide in data analysis; for instance, it seemed 
natural to stack together excitation–emission spectroscopy 
matrices in chemometrics into a third-order tensor [7].

The procedure of creating a data tensor from lower-dimen-
sional original data is referred to as tensorization, and we propose 
the following taxonomy for tensor generation:

1)	Rearrangement of lower-dimensional data structures: 
Large-scale vectors or matrices are readily tensorized to 
higher-order tensors and can be compressed through tensor 
decompositions if they admit a low-rank tensor approxima-
tion; this principle facilitates big data analysis [23], [29], [30] 
[see Figure 2(a)]. For instance, a one-way exponential signal 

( )x k azk=  can be rearranged into a rank-1 Hankel matrix or 
a Hankel tensor [36]

	

( )
( )
( )

( )
( )
( )

( )
( )
( )

,H b b

x
x
x

x
x
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x
x
x
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0
1
2

1
2
3

2
3
4

h h h

g

g

g
= = %

J

L

K
K
K
KK

N

P

O
O
O
OO

� (2)

where .[ , , , ]b z z1 T2 f=  Also, in sensor array processing, 
tensor structures naturally emerge when combining snap-
shots from identical subarrays [19].
2)	Mathematical construction: Among many such examples, 
the Nth-order moments (cumulants) of a vector-valued random 
variable form an Nth-order tensor [9], while in second-order 
ICA, snapshots of data statistics (covariance matrices) are effect-
ively slices of a third-order tensor [12], [37]. Also, a (channel#
time) data matrix can be transformed into a (channel#time#
frequency) or (channel#time#scale) tensor via time-frequency 
or wavelet representations, a powerful procedure in multi-
channel electroencephalogram (EEG) analysis in brain sci-
ence [21], [38].
3)	Experiment design: Multifaceted data can be naturally 
stacked into a tensor; for instance, in wireless communica-
tions the so-called signal diversity (temporal, spatial, spec-
tral, etc.) corresponds to the order of the tensor [20]. In the 
same spirit, the standard eigenfaces can be generalized to 
tensor faces by combining images with different illumina-
tions, poses, and expressions [39], while the common modes 
in EEG recordings across subjects, trials, and conditions are 
best analyzed when combined together into a tensor [28].
4)	Natural tensor data: Some data sources are readily gen-
erated as tensors [e.g., RGB color images, videos, three-
dimensional (3-D) light field displays] [40]. Also, in scientific 
computing, we often need to evaluate a discretized multivariate 
function; this is a natural tensor, as illustrated in Figure 2(b) for 
a trivariate function ( , , )f x y z  [23], [29], [30].
The high dimensionality of the tensor format is therefore 

associated with blessings, which include the possibilities to obtain 
compact representations, the uniqueness of decompositions, the 
flexibility in the choice of constraints, and the generality of com-
ponents that can be identified.

CANONICAL POLYADIC DECOMPOSITION

DEFINITION
A polyadic decomposition (PD) represents an Nth-order tensor 

RX I I IN1 2! # # #g  as a linear combination of rank-1 tensors in 
the form

	 .b b bX ( ) ( ) ( )
r

r

R

r r r
N

1

1 2 gm=
=

% % %/ � (3)

Equivalently, X  is expressed as a multilinear product with a 
diagonal core

	 B B BX D ( ) ( ) ( )
N

N
1

1
2

2# # #g=

	 ,; , , ,B B BD ( ) ( ) ( )N1 2 f= " , � (4)

where  ( , , , )diagD N R1 2 fm m m=  [cf. the matrix case in (1)]. 
Figure 3 illustrates these two interpretations for a third-order 
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[Fig2]  Construction of tensors. (a) The tensorization of a vector 
or matrix into the so-called quantized format; in scientific 
computing, this facilitates supercompression of large-scale 
vectors or matrices. (b) The tensor is formed through the 
discretization of a trivariate function ( , , ) .f x y z
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tensor. The tensor rank is defined as the smallest value of R  for 
which (3) holds exactly; the minimum rank PD is called canoni-
cal PD (CPD) and is desired in signal separation. The term CPD 
may also be considered as an abbreviation of CANDECOMP/
PARAFAC decomposition, see the “Historical Notes” section. The 
matrix/vector form of CPD can be obtained via the Khatri–Rao 
products (see Table 2) as

	 ,X B D B B B B( )
( ) ( ) ( ) ( ) ( )

n
n N n n T1 1 19 9 9 9 9g g= + -^ h �

	 ( ) [ ] ,B B B dvec X ( ) ( ) ( )N N 1 19 9 9g= - � (5)

where ., , ,[ ]d R
T

1 2 fm m m=

RANK
As mentioned earlier, the rank-related properties are very  
different for matrices and tensors. For instance, the number of 
complex-valued rank-1 terms needed to represent a higher-order 
tensor can be strictly smaller than the number of real-valued 
rank-1 terms [22], while the determination of tensor rank is in gen-
eral NP-hard [41]. Fortunately, in signal processing applications, 
rank estimation most often corresponds to determining the num-
ber of tensor components that can be retrieved with sufficient 
accuracy, and often there are only a few data components present. 
A pragmatic first assessment of the number of components may be 
through inspection of the multilinear singular value spectrum (see 
the “Tucker Decomposition” section), which indicates the size of 
the core tensor in the right-hand side of Figure 3(b). The existing 
techniques for rank estimation include the core consistency diag-
nostic (CORCONDIA) algorithm, which checks whether the core 
tensor is (approximately) diagonalizable [7], while a number of 
techniques operate by balancing the approximation error versus 
the number of degrees of freedom for a varying number of rank-1 
terms [42]–[44].

UNIQUENESS
Uniqueness conditions give theoretical bounds for exact tensor 
decompositions. A classical uniqueness condition is due to Kruskal 
[33], which states that for third-order tensors, the CPD is unique up 
to unavoidable scaling and permutation ambiguities, provided that 

,k k k R2 2B B B( ) ( ) ( )1 2 3 $+ + +  where the Kruskal rank kB  of a matrix 
B  is the maximum value ensuring that any subset of kB  columns is 
linearly independent. In sparse modeling, the term ( )k 1B +  is also 
known as the spark [32]. A generalization to Nth-order tensors is 
due to Sidiropoulos and Bro [45] and is given by

	 .k R N2 1
n

N

1
B( )n $ + -

=

/ � (6)

More relaxed uniqueness conditions can be obtained when one 
factor matrix has full-column rank [46]–[48]; for a thorough 
study of the third-order case, we refer to [34]. This all shows that, 
compared to matrix decompositions, CPD is unique under more 
natural and relaxed conditions, which only require the compo-
nents to be sufficiently different and their number not unreason-
ably large. These conditions do not have a matrix counterpart and 
are at the heart of tensor-based signal separation.

COMPUTATION
Certain conditions, including Kruskal’s, enable explicit computa-
tion of the factor matrices in (3) using linear algebra [essentially, 
by solving sets of linear equations and computing (generalized) 
EVD] [6], [47], [49], [50]. The presence of noise in data means 
that CPD is rarely exact, and we need to fit a CPD model to the 
data by minimizing a suitable cost function. This is typically 
achieved by minimizing the Frobenius norm of the difference 
between the given data tensor and its CP approximation, or, alter-
natively, by least absolute error fitting when the noise is Lapla-
cian [51]. The theoretical Cramér–Rao lower bound and 
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[Fig3]  The analogy between (a) dyadic decompositions and (b) PDs; the Tucker format has a diagonal core. The uniqueness of these 
decompositions is a prerequisite for BSS and latent variable analysis.
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Cramér–Rao induced bound for the assessment of CPD perform-
ance were derived in [52] and [53].

Since the computation of CPD is intrinsically multilinear, we 
can arrive at the solution through a sequence of linear subprob-
lems as in the alternating least squares (ALS) framework, 
whereby the least squares (LS) cost function is optimized for 
one component matrix at a time, while keeping the other com-
ponent matrices fixed [6]. As seen from (5), such a conditional 
update scheme boils down to solving overdetermined sets of 
linear equations.

While the ALS is attractive for its simplicity and satisfactory 
performance for a few well-separated components and at suffi-
ciently high signal-to-noise ratio (SNR), it also inherits the 
problems of alternating algorithms and is not guaranteed to 
converge to a stationary point. This can be rectified by only 
updating the factor matrix for which the cost function has most 
decreased at a given step [54], but this results in an N-times 
increase in computational cost per iteration. The convergence 
of ALS is not yet completely understood—it is quasilinear close 
to the stationary point [55], while it becomes rather slow for ill-
conditioned cases; for more details, we refer to [56] and [57].

The conventional all-at-once algorithms for numerical optimi-
zation, such as nonlinear conjugate gradients, quasi-Newton, or 
nonlinear least squares (NLS) [58], [59], have been shown to often 
outperform ALS for ill-conditioned cases and to be typically more 
robust to overfactoring. However, these come at the cost of a much 
higher computational load per iteration. More sophisticated ver-
sions use the rank-1 structure of the terms within CPD to perform 
efficient computation and storage of the Jacobian and (approxi-
mate) Hessian; their complexity is on par with ALS while, for ill-
conditioned cases, the performance is often superior [60], [61].

An important difference between matrices and tensors is that 
the existence of a best rank- R  approximation of a tensor of rank 
greater than R  is not guaranteed [22], [62] since the set of ten-
sors whose rank is at most R  is not closed. As a result, the cost 
functions for computing factor matrices may only have an infi-
mum (instead of a minimum) so that their minimization will 
approach the boundary of that set without ever reaching the 
boundary point. This will cause two or more rank-1 terms go to 
infinity upon convergence of an algorithm; however, numerically, 
the diverging terms will almost completely cancel one another 
while the overall cost function will still decrease along the itera-
tions [63]. These diverging terms indicate an inappropriate data 
model: the mismatch between the CPD and the original data ten-
sor may arise because of an underestimated number of compo-
nents, not all tensor components having a rank-1 structure, or 
data being too noisy.

CONSTRAINTS
As mentioned earlier, under quite mild conditions, the CPD is 
unique by itself, without requiring additional constraints. However, 
to enhance the accuracy and robustness with respect to noise, prior 
knowledge of data properties (e.g., statistical independence, spars-
ity) may be incorporated into the constraints on factors so as to 
facilitate their physical interpretation, relax the uniqueness 

conditions, and even simplify computation [64]–[66]. Moreover, the 
orthogonality and nonnegativity constraints ensure the existence of 
the minimum of the optimization criterion used [63], [64], [67].

APPLICATIONS
The CPD has already been established as an advanced tool for sig-
nal separation in vastly diverse branches of signal processing and 
data analysis, such as in audio and speech processing, biomedical 
engineering, chemometrics, and machine learning [7], [24], [25], 
[28]. Note that algebraic ICA algorithms are effectively based on 
the CPD of a tensor of the statistics of recordings; the statistical 
independence of the sources is reflected in the diagonality of the 
core tensor in Figure 3, i.e., in vanishing cross-statistics [11], [12]. 
The CPD is also heavily used in exploratory data analysis, where 
the rank-1 terms capture the essential properties of dynamically 
complex signals [8]. Another example is in wireless communica-
tion, where the signals transmitted by different users correspond 
to rank-1 terms in the case of line-of-sight propagation [19]. Also, 
in harmonic retrieval and direction of arrival type applications, 
real or complex exponentials have a rank-1 structure, for which 
the use of CPD is natural [36], [65].

Example 1
Consider a sensor array consisting of K  displaced but otherwise 
identical subarrays of I  sensors, with I KI=u  sensors in total. 
For R  narrowband sources in the far field, the baseband equiva-
lent model of the array output becomes ,X AS ET= +  where 
A C I R! #u  is the global array response, S C J R! #  contains J  
snapshots of the sources, and E  is the noise. A single source 

)(R 1=  can be obtained from the best rank-1 approximation of 
the matrix ;X  however, for ,R 12  the decomposition of X  is 
not unique, and, hence, the separation of sources is not possible 
without incorporating additional information. The constraints 
on the sources that may yield a unique solution are, for instance, 
constant modulus and statistical independence [12], [68].

Consider a row-selection matrix J Ck
I I! # u  that extracts the 

rows of X  corresponding to the kth subarray, , , .k K1 f=  For 
two identical subarrays, the generalized EVD of the matrices 
J X1  and J X2  corresponds to the well-known estimation of sig-
nal parameters via rotational invariance techniques (ESPRIT) 
[69]. For the case ,K 22  we shall consider J Xk  as slices of the 
tensor CX I J K! # #  (see the section “Tensorization—Blessing 
of Dimensionality”). It can be shown that the signal part of  
X  admits a CPD as in (3) and (4), with ,1R1 gm m= = =  

 ( , , ),J A B b bdiag( ) ( ) ( )
k k kR

1
1
3 3
f=  and B S( )2 = [19], and the conse-

quent source separation under rather mild conditions—its 
uniqueness does not require constraints such as statistical inde-
pendence or constant modulus. Moreover, the decomposition is 
unique even in cases when the number of sources, ,R  exceeds the 
number of subarray sensors, ,I  or even the total number of sen-
sors, .Iu  Note that particular array geometries, such as linearly 
and uniformly displaced subarrays, can be converted into a con-
straint on CPD, yielding a further relaxation of the uniqueness 
conditions, reduced sensitivity to noise, and often faster 
computation [65].
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TUCKER DECOMPOSITION
Figure 4 illustrates the principle of TKD, which treats a tensor 

RX I I IN1 2! # # #g  as a multilinear transformation of a (typically 
dense but small) core tensor RG R R RN1 2! # # #g  by the factor 
matrices [ , , , ] ,B b b b R( ) ( ) ( ) ( )n n n

R
n I R

1 2 n
n nf != #  , , ,n N1 2 f=  [3], 

[4], given by

	 ,b b bgX ( ) ( ) ( )
r r r r r r

N

r

R

r

R

r

R
1 2

111
N N

N

N

1 2 1 2

2

2

1

1

% % %g g= g

===

^ h/// � (7)

or equivalently

	 B B BX G ( ) ( ) ( )
N

N
1

1
2

2# # #g=

	  ; , , , .B B BG ( ) ( ) ( )N1 2 f= " , � (8)

Via the Kronecker products (see Table 2), TKD can be expressed 
in a matrix/vector form as

	 ( )X B G B B B B( )
( )

( )
( ) ( ) ( ) ( )

n
n

n
N n n T1 1 17 7 7 7 7g g= + -

	 .( ) [ ] ( )B B Bvec vecX G( ) ( ) ( )N N 1 17 7 7g= - �

Although Tucker initially used the orthogonality and ordering 
constraints on the core tensor and factor matrices [3], [4], we 
can also employ other meaningful constraints.

MULTILINEAR RANK
For a core tensor of minimal size, R1  is the column rank (the 
dimension of the subspace spanned by mode-1 fibers), R2  is the 
row rank (the dimension of the subspace spanned by mode-2 
fibers), and so on. A remarkable difference from matrices is that 
the values of , , ,R R RN1 2 f  can be different for .N 3$  The  
N-tuple ( , , , )R R RN1 2 f  is consequently called the multilinear 
rank of the tensor .X

LINKS BETWEEN CPD AND tucker decompostion
TKD can be considered an expansion in rank-1 terms (polyadic but 
not necessary canonical), as shown in (7), while (4) represents 
CPD as a multilinear product of a core tensor and factor matrices 
(but the core is not necessary minimal); Table 3 shows various 
other connections. However, despite the obvious interchangeabil-
ity of notation, the CPD and TKD serve different purposes. In gen-
eral, the Tucker core cannot be diagonalized, while the number of 
CPD terms may not be bounded by the multilinear rank. Conse-
quently, in signal processing and data analysis, CPD is typically 
used for factorizing data into easy to interpret components (i.e., 
the rank-1 terms), while the goal of unconstrained TKD is most 
often to compress data into a tensor of smaller size (i.e., the core 
tensor) or to find the subspaces spanned by the fibers (i.e., the col-
umn spaces of the factor matrices).

UNIQUENESS
The unconstrained TKD is in general not unique, i.e., factor matri-
ces B( )n  are rotation invariant. However, physically, the subspaces 
defined by the factor matrices in TKD are unique, while the bases 
in these subspaces may be chosen arbitrarily—their choice is 
compensated for within the core tensor. This becomes clear upon 

realizing that any factor matrix in (8) can be postmultiplied by any 
nonsingular (rotation) matrix; in turn, this multiplies the core 
tensor by its inverse, i.e.,

	  ; , , ,B B BX G ( ) ( ) ( )N1 2 f= " ,
	  ,; , , ,B R B R B RH ( ) ( ) ( ) ( ) ( ) ( )N N1 1 2 2 f= " ,
	 , ; , , ,R R RH G ( ) ( ) ( )N1 21 1 1

f=
- - -" , � (9)

where the matrices R( )n  are invertible.

MULTILINEAR SVD
Orthonormal bases in a constrained Tucker representation can 
be obtained via the SVD of the mode- n  matricized tensor 
X U V( )n n n n

TR=  (i.e., ,B U( )n
n=  , , , ) .n N1 2 f=  Because of the 

orthonormality, the corresponding core tensor becomes

	 .U U US X T T
N N

T
1 1 2 2# # #g= � (10)

C
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BT
=∼

[Fig4]  The Tucker decompostion of a third-order tensor. The 
column spaces of ,A  ,B  and c  represent the signal subspaces 
for the three modes. The core tensor G  is nondiagonal, 
accounting for the possibly complex interactions among tensor 
components.

[TABLE 3] Different forms of CPD and Tucker 
representations of a third-order tensor .RX I J K! # #
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Then, the singular values of X( )n  are the Frobenius norms of 
the corresponding slices of the core tensor :S  ( ) ,n r rn nR =  

(: , : , , , : , , :) ,rS Fnf f  with slices in the same mode being 
mutually orthogonal, i.e., their inner products are zero. The col-
umns of Un  may thus be seen as multilinear singular vectors, 
while the norms of the slices of the core are multilinear singular 
values [15]. As in the matrix case, the multilinear singular values 
govern the multilinear rank, while the multilinear singular vectors 
allow, for each mode separately, an interpretation as in PCA [8].

LOW MULTILINEAR RANK APPROXIMATION
Analogous to PCA, a large-scale data tensor X  can be approxi-
mated by discarding the multilinear singular vectors and slices of 
the core tensor that correspond to small multilinear singular val-
ues, i.e., through truncated matrix SVDs. Low multilinear rank 
approximation is always well posed; however, the truncation is not 
necessarily optimal in the LS sense, although a good estimate can 
often be made as the approximation error corresponds to the 
degree of truncation. When it comes to finding the best approxi-
mation, the ALS-type algorithms exhibit similar advantages and 
drawbacks to those used for CPD [8], [70]. Optimization-based 
algorithms exploiting second-order information have also been 
proposed [71], [72].

CONSTRAINTS AND TUCKER-BASED  
MULTIWAY COMPONENT ANALYSIS
Besides orthogonality, constraints that may help to find unique 
basis vectors in a Tucker representation include statistical inde-
pendence, sparsity, smoothness, and nonnegativity [21], [73], [74]. 
Components of a data tensor seldom have the same properties in 
its modes, and for physically meaningful representation, different 
constraints may be required in different modes so as to match the 
properties of the data at hand. Figure 1 illustrates the concept of 
multiway component analysis (MWCA) and its flexibility in choos-
ing the modewise constraints; a Tucker representation of MWCA 
naturally accommodates such diversities in different modes.

OTHER APPLICATIONS
We have shown that TKD may be considered a multilinear 
extension of PCA [8]; it therefore generalizes signal subspace 
techniques, with applications including classification, feature 
extraction, and subspace-based harmonic retrieval [27], [39], 
[75], [76]. For instance, a low multilinear rank approximation 
achieved through TKD may yield a higher SNR than the SNR in 
the original raw data tensor, making TKD a very natural tool for 
compression and signal enhancement [7], [8], [26].

BLOCK TERM DECOMPOSITIONS
We have already shown that CPD is unique under quite mild con-
ditions. A further advantage of tensors over matrices is that it is 
even possible to relax the rank-1 constraint on the terms, thus 
opening completely new possibilities in, e.g., BSS. For clarity, we 
shall consider the third-order case, whereby, by replacing the 
rank-1 matrices b b b b( ) ( ) ( ) ( )

r r r r
T1 2 1 2% =  in (3) by low-rank matrices 

,A Br r
T  the tensor X  can be represented as [Figure 5(a)]

	 ( ) .A B cX
r

R

r r
T

r
1

%=
=

/ � (11)

Figure 5(b) shows that we can even use terms that are only 
required to have a low multilinear rank (see the “Tucker Decom-
position” section) to give

	 .A B CX Gr
r

R

r r r
1

1 2 3# # #=
=

/ � (12)

These so-called block term decompositions (BTDs) in (11) and 
(12) admit the modeling of more complex signal components 
than CPD and are unique under more restrictive but still fairly 
natural conditions [77]–[79].

Example 2 
To compare some standard and tensor approaches for the separa-
tion of short duration correlated sources, BSS was performed on 
five linear mixtures of the sources ( ) ( )sins t t61 r=  and 

( ) ( ) ( ),exp sins t t t10 202 r=  which were contaminated by white 
Gaussian noise, to give the mixtures ,X AS E R5 60!= + #  where 

( ) [ ( ), ( )]S sst t t T
1 2=  and A !  R5 2#  was a random matrix whose 

columns (mixing vectors) satisfy . ,a a 0 1T
1 2 =  .a a 11 22 2= =  

The 3-Hz sine wave did not complete a full period over the 60 sam-
ples so that the two sources had a correlation degree of 
(| |) / ( ) . .s s s s 0 35T

1 2 1 2 2 2 =  The tensor approaches, CPD, TKD, 
and BTD employed a third-order tensor X  of size 24 #  37 #  5 
generated from five Hankel matrices whose elements obey 

( , , )i j kX = ( , )X k i j 1+ -  (see the section “Tensorization—
Blessing of Dimensionality”). The average squared angular error 
(SAE) was used as the performance measure. Figure 6 shows the 
simulation results, illustrating the following.

■■ PCA failed since the mixing vectors were not orthogonal 
and the source signals were correlated, both violating the 
assumptions for PCA.

■■ The ICA [using the joint approximate diagonalization of 
eigenmatrices (JADE) algorithm [10]] failed because the sig-
nals were not statistically independent, as assumed in ICA.
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[Fig5]  BTDs find data components that are structurally more 
complex than the rank-1 terms in CPD. (a) Decomposition into 
terms with multilinear rank ( , , ) .L L 1r r  (b) Decomposition into 
terms with multilinear rank ( , , ) .L M Nr r r
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■■ Low-rank tensor approximation via a rank-2 CPD was used 
to estimate A  as the third factor matrix, which was then 
inverted to yield the sources. The accuracy of CPD was com-
promised as the components of tensor X  cannot be repre-
sented by rank-1 terms.

■■ Low multilinear rank approximation via TKD for the mul-
tilinear rank (4, 4, 2) was able to retrieve the column space of 
the mixing matrix but could not find the individual mixing 
vectors because of the nonuniqueness of TKD.

■■ BTD in multilinear rank-(2, 2, 1) terms matched the data 
structure [78]; it is remarkable that the sources were recov-
ered using as few as six samples in the noise-free case.

HIGHER-ORDER COMPRESSED SENSING (ho-cs)
The aim of CS is to provide a faithful reconstruction of a signal of 
interest, even when the set of available measurements is (much) 
smaller than the size of the original signal [80]–[83]. Formally, we 
have available M  (compressive) data samples ,y RM!  which are 
assumed to be linear transformations of the original signal x R I!

( ) .M I1  In other words, y x,U=  where the sensing matrix 
RM I!U #  is usually random. Since the projections are of a lower 

dimension than the original data, the reconstruction is an ill-posed 
inverse problem whose solution requires knowledge of the physics 

of the problem converted into constraints. For example, a two-
dimensional image X R I I1 2! #  can be vectorized as a long vector 

( )Xx vec R I!=  )(I I I1 2=  that admits sparse representation in a 
known dictionary B R I I! #  so that ,Bx g=  where the matrix B  
may be a wavelet or discrete cosine transform dictionary. Then, 
faithful recovery of the original signal x  requires finding the spars-
est vector g  such that

	 ,   ,W W B,y g g Kwith 0 # U= = � (13)

where · 0  is the 0, -norm (number of nonzero entries) and 
.K I%

Since the 0, -norm minimization is not practical, alternative 
solutions involve iterative refinements of the estimates of vector g  
using greedy algorithms such as the orthogonal matching pur-
suit (OMP) algorithm, or the 1, -norm minimization algorithms  
g 1 =^ gii

I

1= j/  [83]. Low coherence of the composite dictionary 
matrix W  is a prerequisite for a satisfactory recovery of g  (and 
hence )x —we need to choose U  and B  so that the correlation 
between the columns of W  is minimum [83].

When extending the CS framework to tensor data, we face 
two obstacles:

■■ loss of information, such as spatial and contextual relation-
ships in data, when a tensor RX I I IN1 2! # # #g  is vectorized.
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■■ data handling since the size of vectorized data and the 
associated dictionary B R I I! #  easily becomes prohibitively 
large (see the section “Large-Scale Data and the Curse of 
Dimensionality”), especially for tensors of high order.
Fortunately, tensor data are typically highly structured, a per-

fect match for compressive sampling, so that the CS framework 
relaxes data acquisition requirements, enables compact storage, 
and facilitates data completion (i.e., inpainting of missing samples 
due to a faulty sensor or unreliable measurement).

KRONECKER-CS FOR FIXED DICTIONARIES
In many applications, the dictionary and the sensing matrix 
admit a Kronecker structure (Kronecker-CS model), as illustrated 
in Figure 7(a) [84]. In this way, the global composite dictionary 
matrix becomes ,W W W W( ) ( ) ( )N N 1 17 7 7g= -  where each 
term W B( ) ( ) ( )n n nU=  has a reduced dimensionality since 
B R( )n I In n! #  and .R( )n M In n!U #  Denote M M M MN1 2g=  and 

,I I I IN1 2g=  then, since ,M In n#  , , , ,n N1 2 f=  this reduces 
storage requirements by a factor of ( ) / ( ) .I M MIn n nR  The compu-
tation of Wg  is affordable since g  is sparse; however, computing 
W yT  is expensive but can be efficiently implemented through a 
sequence of products involving much smaller matrices W( )n  [85]. 
We refer to [84] for links between the coherence of factor matri-
ces W( )n  and the coherence of the global composite dictionary 
matrix .W

Figure 7 and Table 3 illustrate that the Kronecker-CS model 
is effectively a vectorized TKD with a sparse core. The tensor 
equivalent of the CS paradigm in (13) is therefore to find the 
sparsest core tensor G  such that

	 ,W W WY G ( ) ( ) ( )
N

N
1

1
2

2# # #g, 	 (14)

with ,KG 0 #  for a given set of modewise dictionaries B( )n  and 
sensing matrices ( )nU , , ,( ) .n N1 2 f=  Working with several 
small dictionary matrices, appearing in a Tucker representation, 
instead of a large global dictionary matrix, is an example of the 
use of tensor structure for efficient representation; see also the 
section “Large-Scale Data and the Curse of Dimensionality.”

A higher-order extension of the OMP algorithm, referred to as 
the Kronecker-OMP algorithm [85], requires K  iterations to find 
the K  nonzero entries of the core tensor .G  Additional computa-
tional advantages can be gained if it can be assumed that the K  
nonzero entries belong to a small subtensor of ,G  as shown in 
Figure 7(b); such a structure is inherent to, e.g., hyperspectral 
imaging [85], [86] and 3-D astrophysical signals. More precisely, if 
the K LN=  nonzero entries are located within a subtensor of size 
( ),L L L# # #g  where ,L In%  then, by exploiting the block-
tensor structure, the so-called N-way block OMP algorithm 
(N-BOMP) requires at most NL  iterations, which is linear in N  
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[Fig7]  CS with a Kronecker-structured dictionary. OMP can 
perform faster if the sparse entries belong to a small subtensor, 
up to permutation of the columns of ,W( )1  ,W( )2  and .W( )3

[Fig8]  The multidimensional CS of a 3-D hyperspectral image  
using Tucker representation with a small sparse core in wavelet 
bases. (a) The Kronecker-CS of a 32-channel hyperspectral image.  
(b) The original hyperspectral image-RGB display. (c) The 
reconstruction (SP = 33%, PSNR = 35.51 dB)-RGB display.
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[85]. The Kronecker-CS model has been applied in magnetic res-
onance imaging, hyperspectral imaging, and in the inpainting of 
multiway data [86], [84].

APPROACHES WITHOUT FIXED DICTIONARIES
In Kronecker-CS, the modewise dictionaries B R( )n I In n! #  can be 
chosen so as best to represent the physical properties or prior 
knowledge about the data. They can also be learned from a large 
ensemble of data tensors, for instance, in an ALS-type fashion 
[86]. Instead of the total number of sparse entries in the core ten-
sor, the size of the core (i.e., the multilinear rank) may be used as 
a measure for sparsity so as to obtain a low-complexity represen-
tation from compressively sampled data [87], [88]. Alternatively, a 
CPD representation can be used instead of a Tucker representa-
tion. Indeed, early work in chemometrics involved excitation–
emission data for which part of the entries was unreliable because 
of scattering; the CPD of the data tensor is then computed by 
treating such entries as missing [7]. While CS variants of several 
CPD algorithms exist [59], [89], the oracle properties of tensor-
based models are still not as well understood as for their standard 
models; a notable exception is CPD with sparse factors [90].

Example 3
Figure 8 shows an original 3-D (1,024#1,024#32) hyperspectral 
image ,X  which contains scene reflectance measured at 32 differ-
ent frequency channels, acquired by a low-noise Peltier-cooled dig-
ital camera in the wavelength range of 400–720 nm [91]. Within 
the Kronecker-CS setting, the tensor of compressive measure-
ments Y  was obtained by multiplying the frontal slices  
by random Gaussian sensing matrices R( ) M1 10241!U #  and 

R( ) M2 10242!U #  ( , , )M M 1 0241 2 1  in the first and second mode, 
respectively, while R( )3 32 32!U #  was the identity matrix [see 
Figure 8(a)]. We used Daubechies wavelet factor matrices 
B B R( ) ( )1 2 1024 1024!= #  and ,B R( )3 32 32! #  and employed the  
N-way block tensor N-BOMP to recover the small sparse core tensor 
and, subsequently, reconstruct the original 3-D image, as shown 
in Figure 8(b). For the sampling ratio SP=33% ( )M M 5851 2= =  
this gave the peak SNR (PSNR) of 35.51 dB, while taking 71 min 
for N 841iter =  iterations needed to detect the subtensor which 
contains the most significant entries. For the same quality of 
reconstruction (PSNR=35.51 dB), the more conventional 
Kronecker-OMP algorithm found 0.1% of the wavelet coefficients 
as significant, thus requiring . ( ,N K 0 001 1 024iter # #= =

, ) ,1 024 32 33 555# =  iterations and days of computation time.

LARGE-SCALE DATA AND THE CURSE OF DIMENSIONALITY
The sheer size of tensor data easily exceeds the memory or satu-
rates the processing capability of standard computers; it is, there-
fore, natural to ask ourselves how tensor decompositions can be 
computed if the tensor dimensions in all or some modes are large 
or, worse still, if the tensor order is high. The term curse of 
dimensionality, in a general sense, was introduced by Bellman to 
refer to various computational bottlenecks when dealing with 
high-dimensional settings. In the context of tensors, the curse of 
dimensionality refers to the fact that the number of elements of an 

Nth-order ( )I I I# # #g  tensor, ,IN  scales exponentially with 
the tensor order .N  For example, the number of values of a discre-
tized function in Figure 2(b) quickly becomes unmanageable in 
terms of both computations and storing as N  increases. In addi-
tion to their standard use (signal separation, enhancement, etc.), 
tensor decompositions may be elegantly employed in this context 
as efficient representation tools. The first question is, which type 
of tensor decomposition is appropriate?

EFFICIENT DATA HANDLING
If all computations are performed on a CP representation and not 
on the raw data tensor itself, then, instead of the original IN  raw 
data entries, the number of parameters in a CP representation 
reduces to ,NIR  which scales linearly in N  (see Table 4). This 
effectively bypasses the curse of dimensionality, while giving us the 
freedom to choose the rank, ,R  as a function of the desired accuracy 
[16]; on the other hand, the CP approximation may involve numer-
ical problems (see the section “Canonical Polyadic Decomposition”).

Compression is also inherent to TKD as it reduces the size of a 
given data tensor from the original IN  to ( ),NIR RN+  thus exhib-
iting an approximate compression ratio of .( / )I R N  We can then 
benefit from the well understood and reliable approximation by 
means of matrix SVD; however, this is only useful for low .N

TENSOR NETWORKS
A numerically reliable way to tackle curse of dimensionality is 
through a concept from scientific computing and quantum infor-
mation theory, termed tensor networks, which represents a tensor 
of a possibly very high order as a set of sparsely interconnected 
matrices and core tensors of low order (typically, order 3). These 
low-dimensional cores are interconnected via tensor contractions 
to provide a highly compressed representation of a data tensor. In 
addition, existing algorithms for the approximation of a given ten-
sor by a tensor network have good numerical properties, making it 

[TABLE 4]  Storage cost of tensor models for an 
thN -order tensor RX I I I! # # #g  for which the storage 

REQUIREMENT for raw data is ( ) .IO N
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2) Tucker ( )NIR RO N+

3) tensor train ( )NIRO 2

4) quantized tensor train ( ( ))logNR IO 2
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[Fig9]  The TT decomposition of a fifth-order tensor ,RX I I I1 2 5! # # #g  
consisting of two matrix carriages and three third-order tensor 
carriages. The five carriages are connected through tensor 
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possible to control the error and achieve any desired accuracy of 
approximation. For example, tensor networks allow for the 
representation of a wide class of discretized multivariate functions 
even in cases where the number of function values is larger than 
the number of atoms in the universe [23], [29], [30].

Examples of tensor networks are the hierarchical TKD and ten-
sor trains (TTs) (see Figure 9) [17], [18]. The TTs are also known as 
matrix product states and have been used by physicists for more 
than two decades (see [92] and [93] and references therein). The 
PARATREE algorithm was developed in signal processing and fol-
lows a similar idea; it uses a polyadic representation of a data ten-
sor (in a possibly nonminimal number of terms), whose 
computation then requires only the matrix SVD [94].

For very large-scale data that exhibit a well-defined structure, 
an even more radical approach to achieve a parsimonious 
representation may be through the concept of quantized or quan-
tic tensor networks (QTNs) [29], [30]. For example, a huge vector 
x R I!  with I 2L=  elements can be quantized and tensorized 
into a ( )2 2 2# # #g  tensor X  of order ,L  as illustrated in Fig-
ure 2(a). If x  is an exponential signal, ( ) ,x k azk=  then X  is a 
symmetric rank-1 tensor that can be represented by two parame-
ters: the scaling factor a  and the generator z  (cf. (2) in the sec-
tion “Tensorization—Blessing of Dimensionality”). Nonsymmetric 
terms provide further opportunities, beyond the sum-of-exponen-
tial representation by symmetric low-rank tensors. Huge matrices 
and tensors may be dealt with in the same manner. For instance, 
an Nth-order tensor ,RX I IN1! # #g  with ,I qn

Ln=  can be quan-
tized in all modes simultaneously to yield a ( )q q q# # #g  
quantized tensor of higher order. In QTN, q  is small, typically 

, , ,q 2 3 4=  e.g., the binary encoding q 2=^ h reshapes an Nth
-order tensor with ( )2 2 2L L LN1 2# # #g  elements into a tensor 
of order ( )L L LN1 2 g+ + +  with the same number of elements. 
The TT decomposition applied to quantized tensors is referred to 
as the quantized TT (QTT); variants for other tensor representa-
tions have also been derived [29], [30]. In scientific computing, 
such formats provide the so-called supercompression—a logarith-
mic reduction of storage requirements: .( ) ( ( ))logI N IO ON

q"

COMPUTATION OF THE  
DECOMPOSITION/REPRESENTATION
Now that we have addressed the possibilities for efficient tensor rep-
resentation, the question that needs to be answered is how these 
representations can be computed from the data in an efficient man-
ner. The first approach is to process the data in smaller blocks 
rather than in a batch manner [95]. In such a divide-and-conquer 
approach, different blocks may be processed in parallel, and their 
decompositions may be carefully recombined (see Figure 10) [95], 
[96]. In fact, we may even compute the decomposition through 
recursive updating as new data arrive [97]. Such recursive tech-
niques may be used for efficient computation and for tracking 
decompositions in the case of nonstationary data.

The second approach would be to employ CS ideas (see the sec-
tion “Higher-Order Compressed Sensing (HO-CS)”) to fit an alge-
braic model with a limited number of parameters to possibly large 
data. In addition to enabling data completion (interpolation of 
missing data), this also provides  a significant reduction of the cost 
of data acquisition, manipulation, and storage, breaking the curse 
of dimensionality being an extreme case.

While algorithms for this purpose are available both for low-
rank and low multilinear rank representation [59], [87], an even 
more drastic approach would be to directly adopt sampled fibers 
as the bases in a tensor representation. In the TKD setting, we 
would choose the columns of the factor matrices B( )n  as 
mode-n fibers of the tensor, which requires us to address the fol-
lowing two problems: 1) how to find fibers that allow us to accurately 
represent the tensor and 2) how to compute the corresponding core 
tensor at a low cost (i.e., with minimal access to the data). The mat-
rix counterpart of this problem (i.e., representation of a large 
matrix on the basis of a few columns and rows) is referred to as 
the pseudoskeleton approximation [98], where the optimal 
representation corresponds to the columns and rows that inter-
sect in the submatrix of maximal volume (maximal absolute 
value of the determinant). Finding the optimal submatrix is 
computationally hard, but quasioptimal submatrices may be 
found by heuristic so-called cross-approximation methods that 
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only require a limited, partial exploration of the data matrix. 
Tucker variants of this approach have been derived in [99]–[101] 
and are illustrated in Figure 11, while a cross-approximation for 
the TT format has been derived in [102]. Following a somewhat 
different idea, a tensor generalization of the CUR decomposition 
of matrices samples fibers on the basis of statistics derived from 
the data [103].

MULTIWAY REGRESSION—HIGHER-ORDER PARTIAL LS

MULTIVARIATE REGRESSION
Regression refers to the modeling of one or more dependent 
variables (responses), ,Y  by a set of independent data (predic-
tors), .X  In the simplest case of conditional mean square esti-
mation (MSE), whereby ( | ),y E y x=t  the response y  is a linear 
combination of the elements of the vector of predictors ;x  for 
multivariate data, the multivariate linear regression (MLR) uses 
a matrix model, ,Y XP E= +  where P  is the matrix of coeffi-
cients (loadings) and E  is the residual matrix. The MLR solu-
tion gives ( )P X X X YT T1= -  and involves inversion of the 
moment matrix .X XT  A common technique to stabilize the 
inverse of the moment matrix X XT  is the principal component 
regression (PCR), which employs low-rank approximation of .X

MODELING STRUCTURE IN DATA—THE PARTIAL LS
Note that in stabilizing multivariate regression, PCR uses only 
information in the X variables, with no feedback from the Y varia-
bles. The idea behind the partial LS (PLS) method is to account for 
structure in data by assuming that the underlying system is gov-
erned by a small number, ,R  of specifically constructed latent vari-
ables, called scores, that are shared between the X  and Y variables; 
in estimating the number ,R  PLS compromises between fitting X  
and predicting .Y  Figure 12 illustrates that the PLS procedure: 
1) uses eigenanalysis to perform contraction of the data matrix X  
to the principal eigenvector score matrix [ , , ]T t tR1 f=  of rank R  
and 2) ensures that the tr  components are maximally correlated 
with the ur  components in the approximation of the responses ,Y  
this is achieved when the r\u s are scaled versions of the .s\tr  The 
Y-variables are then regressed on the matrix [ , , ] .U u uR1 f=  
Therefore, PLS is a multivariate model with inferential ability that 
aims to find a representation of X  (or a part of )X  that is relevant 
for predicting ,Y  using the model

	 ,X TP E Et pT
r

r

R

r
T

1
= + = +

=

/ 	 (15)

	 .Y UQ F Fu qT
r

r

R

r
T

1
= + = +

=

/ 	 (16)

The score vectors tr  provide an LS fit of X-data, while at the 
same time, the maximum correlation between t  and u  scores 
ensures a good predictive model for Y variables. The predicted 
responses Ynew  are then obtained from new data Xnew  and the 
loadings P  and .Q

In practice, the score vectors ,tr  are extracted sequentially, by a 
series of orthogonal projections followed by the deflation of X.  Since 
the rank of Y  is not necessarily decreased with each new ,tr  we may 

continue deflating until the rank of the X-block is exhausted so as to 
balance between prediction accuracy and model order.

The PLS concept can be generalized to tensors in the follow-
ing ways: 

1)	Unfolding multiway data. For example, tensors ( )I J KX # #  
and ( )I M NY # #  can be flattened into long matrices ( )X I JK#  
and ( )Y I MN#  so as to admit matrix-PLS (see Figure 12). 
However, such flattening prior to standard bilinear PLS obscures 
the structure in multiway data and compromises the interpret-
ation of latent components.
2)	Low-rank tensor approximation. The so-called N-PLS 
attempts to find score vectors having maximal covariance 
with response variables, under the constraints that tensors X  
and Y  are decomposed as a sum of rank-1 tensors [104].
3)	A BTD-type approximation. As in the higher-order PLS 
(HOPLS) model shown in Figure 13 [105], the use of block 
terms within HOPLS equips it with additional flexibility, 
together with a more physically meaningful analysis than 
unfolding-PLS and N-PLS. 
The principle of HOPLS can be formalized as a set of sequen-

tial approximate decompositions of the independent tensor 
RX I I IN1 2! # # #g  and the dependent tensor RY J J JM1 2! # # #g  

(with )I J1 1=  so as to ensure maximum similarity (correlation) 
between the scores tr  and ur  within the matrices T  and ,U  
based on

Entry of Maximum Absolute
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Residual Tensor
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Two-Way CA:
PCA, ICA,
NMF, . . .

=~

[Fig11]  The Tucker representation through fiber sampling and 
cross-approximation: the columns of factor matrices are sampled 
from the fibers of the original data tensor .X  Within MWCA, the 
selected fibers may be further processed using BSS algorithms.
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A number of data-analytic problems can be reformulated as either 
regression or similarity analysis [analysis of variance (ANOVA),  
autoregressive moving average modeling (ARMA), linear discri-
minant analysis (LDA), and canonical correlation analysis (CCA)], 
so that both the matrix and tensor PLS solutions can be general-
ized across exploratory data analysis.

Example 4
The predictive power of tensor-based PLS is illustrated on a real-
world example of the prediction of arm movement trajectory from 
the electrocorticogram (ECoG). Figure 14(a) illustrates the experi-
mental setup, whereby the 3-D arm movement of a monkey was 
captured by an optical motion capture system with reflective 
markers affixed to the left shoulder, elbow, wrist, and hand; for full 
details, see http://neurotycho.org. The predictors (32 ECoG chan-
nels) naturally build a fourth-order tensor X  (time#channel_no
#epoch_length# frequency) while the movement trajectories for 
the four markers (response) can be represented as a third-order 
tensor Y  (time#3D_marker_position#marker_no). The goal of 

the training stage is to identify the HOPLS parameters: 
, , ,P QG G( ) ( ) ( ) ( )r r

r
n

r
n

X Y  (see Figure 13). In the test stage, the move-
ment trajectories, ,Y*  for the new ECoG data, ,X*  are predicted 
through multilinear projections: 1) the new scores, ,t*

r  are found 
from new data, ,X*  and the existing model parameters: 

,, , ,P P PG( ) ( ) ( ) ( )
X
r

r r r
1 2 3  and 2) the predicted trajectory is calculated as 

.Q Q QtY G* ( ) * ( ) ( ) ( )r
r
R

r r r r1 1 2
1

3
2

4
3

Y # # # #.
=
/  In the simulations, 

standard PLS was applied in the same way to the unfolded tensors.
Figure 14(c) shows that although the standard PLS was able 

to predict the movement corresponding to each marker indi-
vidually, such a prediction is quite crude as the two-way PLS 
does not adequately account for mutual information among the 
four markers. The enhanced predictive performance of the BTD-
based HOPLS [the red line in Figure 14(c)] is therefore attrib-
uted to its ability to model interactions between complex latent 
components of both predictors and responses.

LINKED MULTIWAY COMPONENT ANALYSIS  
AND TENSOR DATA FUSION
Data fusion concerns the joint analysis of an ensemble of data 
sets, such as multiple views of a particular phenomenon, where 
some parts of the scene may be visible in only one or a few data 
sets. Examples include the fusion of visual and thermal images 
in low-visibility conditions and the analysis of human electro-
physiological signals in response to a certain stimulus but from 
different subjects and trials; these are naturally analyzed 
together by means of matrix/tensor factorizations. The coupled 
nature of the analysis of such multiple data sets ensures that we 
are able to account for the common factors across the data sets 
and, at the same time, to guarantee that the individual compo-
nents are not shared (e.g., processes that are independent of exci-
tations or stimuli/tasks).

The linked multiway component analysis (LMWCA) [106], 
shown in Figure 15, performs such a decomposition into shared 
and individual factors and is formulated as a set of approxi-
mate joint TKD of a set of data tensors ,RX( )k I I IN1 2! # # #g  
( , , , )k K1 2 f=

	 ,B B BX G( ) ( ) ( , ) ( , ) ( , )k k k k
N

N k
1

1
2

2# # #g, 	 (19)

where each factor matrix [ , ]B B B R( , ) ( ) ( , )n k
C
n

I
n k I Rn n!= #  has  

1) components B R( )
C
n I Cn n! #  (with )C R0 n n# #  that are common  

(i.e., maximally correlated) to all tensors and 2) components 
B R( , ) ( )
I
n k I R Cn n n! # -  that are tensor specific. The objective is to esti-

mate the common components ,B( )
C
n  the individual components 

,B( , )
I
n k  and, via the core tensors ,G( )k  their mutual interactions. As 

in MWCA (see the section “Tucker Decomposition”), constraints 
may be imposed to match data properties [73], [76]. This enables a 
more general and flexible framework than group ICA and independ-
ent vector analysis, which also performs linked analysis of multiple 
data sets but assume that 1) there exist only common components 
and 2) the corresponding latent variables are statistically independ-
ent [107], [108]. Both are quite stringent and limiting assumptions. 
As an alternative to TKD, coupled tensor decompositions may be of 
a polyadic or even block term type [89], [109].
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Example 5
We employed LWCA for classification based on common and dis-
tinct features of natural objects from the ETH-80 database (http://
www.d2.mpi-inf.mpg.de/Data sets/ETH80) whereby the discrimi-
nation among objects was performed using only the common fea-
tures. This data set consists of 3,280 images in eight categories, 
each containing ten objects with 41 views per object. For each cat-
egory, the training data were organized in two distinct fourth-
order ( )I128 128 3 4# # #  tensors, where . ,I p10 41 0 54 # #=   
where p  denotes the fraction of training data. LMWCA was applied 
to these two tensors to find the common and individual features, 
with the number of common features set to 80% of .I4  In this 
way, eight sets of common features were obtained for each cat-
egory. The test sample label was assigned to the category whose 
common features matched the new sample best (evaluated by 
canonical correlations) [110]. Figure 16 compares LMWCA with 
the standard K-nearest neighbors (K-NNs) and LDA classifiers 
(using 50 principal components as features), all averaged over 50 
Monte Carlo runs. The enhanced classification results for LMWCA 

are attributed to the fact that the classification makes use of only 
the common components and is not hindered by components that 
are not shared across objects or views.

SOFTWARE
The currently available software resources for tensor decompo-
sitions include: 

■■ The tensor toolbox, a versatile framework for basic opera-
tions on sparse and dense tensors, including CPD and Tucker 
formats [111].

■■ The TDALAB and TENSORBOX, which provide a user-
friendly interface and advanced algorithms for CPD, nonneg-
ative TKD, and MWCA [112], [113].

■■ The Tensorlab toolbox builds upon the complex optimiza-
tion framework and offers numerical algorithms for comput-
ing the CPD, BTD, and TKD; the toolbox includes a library of 
constraints (e.g., nonnegativity and orthogonality) and the 
possibility to combine and jointly factorize dense, sparse, and 
incomplete tensors [89].
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■■ The N-way toolbox, which includes (constrained) CPD, 
TKD, and PLS in the context of chemometrics applications 
[114]; many of these methods can handle constraints (e.g., 
nonnegativity and orthogonality) and missing elements.

■■ The TT toolbox, the Hierarchical Tucker toolbox, and the 
Tensor Calculus library provide tensor tools for scientific 
computing [115]–[117].

■■ Code developed for multiway analysis is also available from 
the Three-Mode Company [118].

CONCLUSIONS AND FUTURE DIRECTIONS
We live in a world overwhelmed by data, from multiple pictures 
of Big Ben on various social Web links to terabytes of data in 
multiview medical imaging, while we may also need to repeat 
the scientific experiments many times to obtain the ground 
truth. Each snapshot gives us a somewhat incomplete view of 
the same object and involves different angles, illumination, 
lighting conditions, facial expressions, and noise.

We have shown that tensor decompositions are a perfect 
match for exploratory analysis of such multifaceted data sets 
and have illustrated their applications in multisensor and multi-
modal signal processing. Our emphasis has been to show that 
tensor decompositions and multilinear algebra open up com-
pletely new possibilities for component analysis, as compared 
with the flat view of standard two-way methods.

Unlike matrices, tensors are multiway arrays of data samples 
whose representations are typically overdetermined (fewer 
parameters in the decomposition than the number of data 
entries). This gives us an enormous flexibility in finding hidden 
components in data and the ability to enhance both robustness 
to noise and tolerance to missing data samples and faulty 

sensors. We have also discussed multilinear variants of several 
standard signal processing tools such as multilinear SVD, ICA, 
NMF, and PLS and have shown that tensor methods can operate 
in a deterministic way on signals of very short duration.

At present, the uniqueness conditions of standard tensor 
models are relatively well understood and efficient computation 
algorithms do exist. However, for future applications, several 
challenging problems remain to be addressed in more depth.

■■ A whole new area emerges when several decompositions 
that operate on different data sets are coupled, as in multi-
view data where some details of interest are visible in, e.g., 
only one mode. Such techniques need theoretical support in 
terms of existence, uniqueness, and numerical properties. 

■■ As the complexity of advanced models increases, their 
computation requires efficient iterative algorithms, extend-
ing beyond the ALS class. 
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■■ The estimation of the number of components in data and 
the assessment of their dimensionality would benefit from 
automation, especially in the presence of noise and outliers. 

■■ Both new theory and algorithms are needed to further 
extend the flexibility of tensor models, e.g., for the con-
straints to be combined in many ways and tailored to the par-
ticular signal properties in different modes. 

■■ Work on efficient techniques for saving and/or fast process-
ing of ultra-large-scale tensors is urgent; these now routinely 
occupy terabytes, and will soon require petabytes of memory. 

■■ Tools for rigorous performance analysis and rule of thumb 
performance bounds need to be further developed across ten-
sor decomposition models. 

■■ Our discussion has been limited to tensor models in which 
all entries take values independently of one another. Probabil-
istic versions of tensor decompositions incorporate prior 
knowledge about complex variable interaction, various data 
alphabets, or noise distributions, and so promise to model 
data more accurately and efficiently [119], [120]. 

■■ The future computational, visualization, and interpret-
ation tools will be important next steps in supporting the dif-
ferent communities working on large-scale and big data 
analysis problems.
It is fitting to conclude with a quote from the French novelist 

Marcel Proust: “The voyage of discovery is not in seeking new 
landscapes but in having new eyes.” We hope to have helped to 
bring to the eyes of the signal processing community the multi-
disciplinary developments in tensor decompositions and to have 
shared our enthusiasm about tensors as powerful tools to dis-
cover new landscapes.  
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