
Foundations and TrendsR© in Machine Learning
Vol. 9, No. 4-5 (2016) 249–429
c© 2017 A. Cichocki et al.
DOI: 10.1561/2200000059

Tensor Networks for Dimensionality Reduction
and Large-Scale Optimization

Part 1 Low-Rank Tensor Decompositions

Andrzej Cichocki
RIKEN Brain Science Institute (BSI), Japan and

Skolkovo Institute of Science and Technology (SKOLTECH)
a.cichocki@riken.jp

Namgil Lee
RIKEN BSI, namgil.lee@riken.jp

Ivan Oseledets
Skolkovo Institute of Science and Technology (SKOLTECH) and

Institute of Numerical Mathematics of Russian Academy of Sciences
i.oseledets@skolkovotech.ru

Anh-Huy Phan
RIKEN BSI, phan@brain.riken.jp

Qibin Zhao
RIKEN BSI, qbzhao@brain.riken.jp

Danilo P. Mandic
Department of Electrical and Electronic Engineering

Imperial College London
d.mandic@imperial.ac.uk

Contents

1 Introduction and Motivation 250
1.1 Challenges in Big Data Processing 251
1.2 Tensor Notations and Graphical Representations 252
1.3 Curse of Dimensionality and Generalized Separation of Vari-

ables for Multivariate Functions 260
1.4 Advantages of Multiway Analysis via Tensor Networks . . . 268
1.5 Scope and Objectives . 269

2 Tensor Operations and Tensor Network Diagrams 272
2.1 Basic Multilinear Operations 272
2.2 Graphical Representation of Fundamental Tensor Networks 292
2.3 Generalized Tensor Network Formats 310

3 Constrained Tensor Decompositions: From Two-way to Mul-
tiway Component Analysis 314
3.1 Constrained Low-Rank Matrix Factorizations 314
3.2 The CP Format . 317
3.3 The Tucker Tensor Format 323
3.4 Higher Order SVD (HOSVD) for Large-Scale Problems . . 332
3.5 Tensor Sketching Using Tucker Model 342
3.6 Multiway Component Analysis (MWCA) 351

ii

iii

3.7 Nonlinear Tensor Decompositions – Infinite Tucker 360

4 Tensor Train Decompositions: Graphical Interpretations and
Algorithms 363
4.1 Tensor Train Decomposition – Matrix Product State . . . 363
4.2 Matrix TT Decomposition – Matrix Product Operator . . . 369
4.3 Links Between CP, BTD Formats and TT/TC Formats . . 374
4.4 Quantized Tensor Train (QTT) – Blessing of Dimensionality 377
4.5 Basic Operations in TT Formats 383
4.6 Algorithms for TT Decompositions 393

5 Discussion and Conclusions 407

Acknowledgements 409

References 410

Abstract

Modern applications in engineering and data science are increasingly
based on multidimensional data of exceedingly high volume, variety,
and structural richness. However, standard machine learning algo-
rithms typically scale exponentially with data volume and complex-
ity of cross-modal couplings - the so called curse of dimensionality -
which is prohibitive to the analysis of large-scale, multi-modal and
multi-relational datasets. Given that such data are often efficiently
represented as multiway arrays or tensors, it is therefore timely and
valuable for the multidisciplinary machine learning and data analytic
communities to review low-rank tensor decompositions and tensor net-
works as emerging tools for dimensionality reduction and large scale
optimization problems. Our particular emphasis is on elucidating that,
by virtue of the underlying low-rank approximations, tensor networks
have the ability to alleviate the curse of dimensionality in a number
of applied areas. In Part 1 of this monograph we provide innovative
solutions to low-rank tensor network decompositions and easy to in-
terpret graphical representations of the mathematical operations on
tensor networks. Such a conceptual insight allows for seamless migra-
tion of ideas from the flat-view matrices to tensor network operations
and vice versa, and provides a platform for further developments, prac-
tical applications, and non-Euclidean extensions. It also permits the
introduction of various tensor network operations without an explicit
notion of mathematical expressions, which may be beneficial for many
research communities that do not directly rely on multilinear algebra.
Our focus is on the Tucker and tensor train (TT) decompositions and
their extensions, and on demonstrating the ability of tensor networks
to provide linearly or even super-linearly (e.g., logarithmically) scalable
solutions, as illustrated in detail in Part 2 of this monograph.

A. Cichocki et al. Tensor Networks for Dimensionality Reduction and Large-Scale
Optimization Part 1 Low-Rank Tensor Decompositions. Foundations and TrendsR©

in Machine Learning, vol. 9, no. 4-5, pp. 249–429, 2016.
DOI: 10.1561/2200000059.

1
Introduction and Motivation

This monograph aims to present a coherent account of ideas and
methodologies related to tensor decompositions (TDs) and tensor net-
works models (TNs). Tensor decompositions (TDs) decompose complex
data tensors of exceedingly high dimensionality into their factor (com-
ponent) tensors and matrices, while tensor networks (TNs) decompose
higher-order tensors into sparsely interconnected small-scale factor ma-
trices and/or low-order core tensors. These low-order core tensors are
called “components”, “blocks”, “factors” or simply “cores”. In this way,
large-scale data can be approximately represented in highly compressed
and distributed formats.

In this monograph, the TDs and TNs are treated in a unified way,
by considering TDs as simple tensor networks or sub-networks; the
terms “tensor decompositions” and “tensor networks” will therefore be
used interchangeably. Tensor networks can be thought of as special
graph structures which break down high-order tensors into a set of
sparsely interconnected low-order core tensors, thus allowing for both
enhanced interpretation and computational advantages. Such an ap-
proach is valuable in many application contexts which require the com-
putation of eigenvalues and the corresponding eigenvectors of extremely
high-dimensional linear or nonlinear operators. These operators typi-
cally describe the coupling between many degrees of freedom within
real-world physical systems; such degrees of freedom are often only
weakly coupled. Indeed, quantum physics provides evidence that cou-
plings between multiple data channels usually do not exist among all

250

1.1. Challenges in Big Data Processing 251

the degrees of freedom but mostly locally, whereby “relevant” infor-
mation, of relatively low-dimensionality, is embedded into very large-
dimensional measurements (Verstraete et al., 2008; Schollwöck, 2013;
Orús, 2014; Murg et al., 2015).

Tensor networks offer a theoretical and computational framework
for the analysis of computationally prohibitive large volumes of data, by
“dissecting” such data into the “relevant” and “irrelevant” information,
both of lower dimensionality. In this way, tensor network representa-
tions often allow for super-compression of datasets as large as 1050

entries, down to the affordable levels of 107 or even less entries (Os-
eledets and Tyrtyshnikov, 2009; Dolgov and Khoromskij, 2013; Kazeev
et al., 2013a, 2014; Kressner et al., 2014a; Vervliet et al., 2014; Dolgov
and Khoromskij, 2015; Liao et al., 2015; Bolten et al., 2016).

With the emergence of the big data paradigm, it is therefore both
timely and important to provide the multidisciplinary machine learning
and data analytic communities with a comprehensive overview of tensor
networks, together with an example-rich guidance on their application
in several generic optimization problems for huge-scale structured data.
Our aim is also to unify the terminology, notation, and algorithms for
tensor decompositions and tensor networks which are being developed
not only in machine learning, signal processing, numerical analysis and
scientific computing, but also in quantum physics/chemistry for the
representation of, e.g., quantum many-body systems.

1.1 Challenges in Big Data Processing

The volume and structural complexity of modern datasets are becom-
ing exceedingly high, to the extent which renders standard analysis
methods and algorithms inadequate. Apart from the huge Volume, the
other features which characterize big data include Veracity, Variety
and Velocity (see Figures 1.1(a) and (b)). Each of the “V features”
represents a research challenge in its own right. For example, high vol-
ume implies the need for algorithms that are scalable; high Velocity
requires the processing of big data streams in near real-time; high Ve-
racity calls for robust and predictive algorithms for noisy, incomplete

252 Introduction and Motivation

and/or inconsistent data; high Variety demands the fusion of different
data types, e.g., continuous, discrete, binary, time series, images, video,
text, probabilistic or multi-view. Some applications give rise to addi-
tional “V challenges”, such as Visualization, Variability and Value. The
Value feature is particularly interesting and refers to the extraction of
high quality and consistent information, from which meaningful and
interpretable results can be obtained.

Owing to the increasingly affordable recording devices, extreme-
scale volumes and variety of data are becoming ubiquitous across the
science and engineering disciplines. In the case of multimedia (speech,
video), remote sensing and medical/biological data, the analysis also
requires a paradigm shift in order to efficiently process massive datasets
within tolerable time (velocity). Such massive datasets may have bil-
lions of entries and are typically represented in the form of huge block
matrices and/or tensors. This has spurred a renewed interest in the
development of matrix/tensor algorithms that are suitable for very
large-scale datasets. We show that tensor networks provide a natural
sparse and distributed representation for big data, and address both es-
tablished and emerging methodologies for tensor-based representations
and optimization. Our particular focus is on low-rank tensor network
representations, which allow for huge data tensors to be approximated
(compressed) by interconnected low-order core tensors.

1.2 Tensor Notations and Graphical Representations

Tensors are multi-dimensional generalizations of matrices. A matrix
(2nd-order tensor) has two modes, rows and columns, while an Nth-
order tensor has N modes (see Figures 1.2–1.7); for example, a 3rd-
order tensor (with three-modes) looks like a cube (see Figure 1.2).
Subtensors are formed when a subset of tensor indices is fixed. Of par-
ticular interest are fibers which are vectors obtained by fixing every
tensor index but one, and matrix slices which are two-dimensional sec-
tions (matrices) of a tensor, obtained by fixing all the tensor indices
but two. It should be noted that block matrices can also be represented
by tensors, as illustrated in Figure 1.3 for 4th-order tensors.

1.2. Tensor Notations and Graphical Representations 253

(a)

Petabytes

Terabytes

GB

MB

Batch

Micro-batch

Near real-time

Streams

VELOCITY

VA
R

IE
T

Y

VOLUME

M
is

si
ng

 d
at

a
A

no
m

al
y

O
ut

lie
rs

N
oi

seIn
co

ns
is

te
nc

y

Ti
m

e
se

rie
s

Im
ag

es
Bi

na
ry

 d
at

a
3D

 im
ag

es
M

ul
tiv

ie
w

 d
at

a
Pr

ob
ab

ili
sti

c

V
E

R
A

C
IT

Y

(b)

Storage
Management,

Scale

Integration
of Variety of

Data

High Speed
Distributed,

Parallel
Computing

Robustness to
Noise, Outliers,
Missing Values

VOLUME

VERACITY

VELOCITY

VARIETY

Applications,
Tasks

Matrix/Tensor
Completion,
Inpainting,
Imputation

Anomaly
Detection

Feature
Extraction,

Classification,
Clustering

Correlation,
Regression,
Prediction,
Forecasting

PARAFAC
CPD,NTF

Tucker,NTD
Hierarchical

Tucker
Tensor Train,

MPS/MPO

PEPS,
MERA

Tensor
Models

Sparseness
Optimization

Criteria,
Constraints

SmoothnessNon-negativity

Statistical
Independence,

Correlation

Signal
Processing

and Machine
Learning for

Big Data

Challenges

Figure 1.1: A framework for extremely large-scale data analysis. (a) The 4V
challenges for big data. (b) A unified framework for the 4V challenges and the
potential applications based on tensor decomposition approaches.

254 Introduction and Motivation

X

=1,2,...,j J
Mode-2

M
od

e-
1 ,...,2,1=i

I
M

od
e-

3 ,...,2,1=k

K

6,5,1x

Horizontal Slices Lateral Slices Frontal Slices

X(i,:,:) X(:, j,:)

X(:,:,k)

Column (Mode-1)
Fibers

Row (Mode-2)
Fibers

Tube (Mode-3)
Fibers

(:,3,1)

(1,:,3)

(1,3,:)

X

X

X

Figure 1.2: A 3rd-order tensor X P RI�J�K , with entries xi,j,k � Xpi, j, kq, and
its subtensors: slices (middle) and fibers (bottom). All fibers are treated as column
vectors.

We adopt the notation whereby tensors (for N ¥ 3) are denoted by
bold underlined capital letters, e.g., X P RI1�I2�����IN . For simplicity,
we assume that all tensors are real-valued, but it is, of course, possible
to define tensors as complex-valued or over arbitrary fields. Matrices
are denoted by boldface capital letters, e.g., X P RI�J , and vectors
(1st-order tensors) by boldface lower case letters, e.g., x P RJ . For
example, the columns of the matrix A � ra1,a2, . . . ,aRs P RI�R are

1.2. Tensor Notations and Graphical Representations 255

. . .G11 G12 G1K

. . .G21 G22 G2K

. . .GM1 GM2 GMK

. .
 .

. .

...
. . .

. . .
. . .

Figure 1.3: A block matrix and its representation as a 4th-order tensor, created
by reshaping (or a projection) of blocks in the rows into lateral slices of 3rd-order
tensors.

... ...

...

...

...

...

...

...

...

Scalar Vector Matrix 3rd-order Tensor 4th-order Tensor

One-way 4-way 5-way

Univariate Multivariate
Multiway Analysis (High-order tensors)

 O
ne

 s
am

pl
e

A
 s

am
pl

e
se

t

2-way 3-way

Figure 1.4: Graphical representation of multiway array (tensor) data of increasing
structural complexity and “Volume” (see (Olivieri, 2008) for more detail).

the vectors denoted by ar P RI , while the elements of a matrix (scalars)
are denoted by lowercase letters, e.g., air � Api, rq (see Table 1.1).

A specific entry of an Nth-order tensor X P RI1�I2�����IN is denoted
by xi1,i2,...,iN � Xpi1, i2, . . . , iN q P R. The order of a tensor is the
number of its “modes”, “ways” or “dimensions”, which can include
space, time, frequency, trials, classes, and dictionaries. The term ‘‘size”
stands for the number of values that an index can take in a particular

256 Introduction and Motivation

(a)

a

Scalar

a

Vector

II
A

Matrix

A
I J

I

J

3rd-order tensor

AI1

I2

I3
I1

I2

I3 Λ
I

I

I I I

I

3rd-order diagonal tensor

(b)
x

I J
A

= I
b=Ax

B
I J

A
= I

C =AB
K K

B

J
K

A
M

I P

L

=
C

Σ
K

k=1
ai,j,k bk,l,m,p = ci,j,l,m,p

J

I
M

P

L

Figure 1.5: Graphical representation of tensor manipulations. (a) Basic building
blocks for tensor network diagrams. (b) Tensor network diagrams for matrix-vector
multiplication (top), matrix by matrix multiplication (middle) and contraction of
two tensors (bottom). The order of reading of indices is anti-clockwise, from the left
position.

mode. For example, the tensor X P RI1�I2�����IN is of order N and size
In in all modes-n pn � 1, 2, . . . , Nq. Lower-case letters e.g, i, j are used
for the subscripts in running indices and capital letters I, J denote the
upper bound of an index, i.e., i � 1, 2, . . . , I and j � 1, 2, . . . , J . For
a positive integer n, the shorthand notation n ¡ denotes the set of
indices t1, 2, . . . , nu.

1.2. Tensor Notations and Graphical Representations 257

Table 1.1: Basic matrix/tensor notation and symbols.

X P RI1�I2�����IN Nth-order tensor of size I1 � I2 � � � � � IN

xi1,i2,...,iN
� Xpi1, i2, . . . , iN q pi1, i2, . . . , iN qth entry of X

x, x, X scalar, vector and matrix

G, S, Gpnq, Xpnq core tensors

Λ P RR�R�����R Nth-order diagonal core tensor with nonzero
entries λr on the main diagonal

AT, A�1, A: transpose, inverse and Moore–Penrose
pseudo-inverse of a matrix A

A � ra1,a2, . . . ,aRs P RI�R matrix with R column vectors ar P RI , with
entries air

A, B, C, Apnq,Bpnq, Upnq component (factor) matrices

Xpnq P RIn�I1���In�1In�1���IN

mode-n matricization of X P RI1�����IN

X n¡ P RI1I2���In�In�1���IN

mode-(1, . . . , n) matricization of X P RI1�����IN

Xp:, i2, i3, . . . , iN q P RI1 mode-1 fiber of a tensor X obtained by fixing all
indices but one (a vector)

Xp:, :, i3, . . . , iN q P RI1�I2 slice (matrix) of a tensor X obtained by fixing
all indices but two

Xp:, :, :, i4, . . . , iN q subtensor of X, obtained by fixing several in-
dices

R, pR1, . . . , RN q tensor rank R and multilinear rank

� , d , b

bL , |b|

outer, Khatri–Rao, Kronecker products

Left Kronecker, strong Kronecker products

x � vecpXq vectorization of X

trp
q trace of a square matrix

diagp
q diagonal matrix

258 Introduction and Motivation

Table 1.2: Terminology used for tensor networks across the machine learn-
ing/scientific computing and quantum physics/chemistry communities.

Machine Learning Quantum Physics

Nth-order tensor rank-N tensor

high/low-order tensor tensor of high/low dimension

ranks of TNs bond dimensions of TNs

unfolding, matricization grouping of indices

tensorization splitting of indices

core site

variables open (physical) indices

ALS Algorithm one-site DMRG or DMRG1

MALS Algorithm two-site DMRG or DMRG2

column vector x P RI�1 ket |Ψy
row vector xT P R1�I bra xΨ|
inner product xx,xy �
xTx

xΨ|Ψy

Tensor Train (TT) Matrix Product State (MPS) (with Open
Boundary Conditions (OBC))

Tensor Chain (TC) MPS with Periodic Boundary Conditions
(PBC)

Matrix TT Matrix Product Operators (with OBC)

Hierarchical Tucker (HT) Tree Tensor Network State (TTNS) with
rank-3 tensors

1.2. Tensor Notations and Graphical Representations 259

Notations and terminology used for tensors and tensor networks
differ across the scientific communities (see Table 1.2); to this end we
employ a unifying notation particularly suitable for machine learning
and signal processing research, which is summarized in Table 1.1.

Even with the above notation conventions, a precise description of
tensors and tensor operations is often tedious and cumbersome, given
the multitude of indices involved. To this end, in this monograph, we
grossly simplify the description of tensors and their mathematical op-
erations through diagrammatic representations borrowed from physics
and quantum chemistry (see (Orús, 2014) and references therein). In
this way, tensors are represented graphically by nodes of any geometri-
cal shapes (e.g., circles, squares, dots), while each outgoing line (“edge”,
“leg”,“arm”) from a node represents the indices of a specific mode (see
Figure 1.5(a)). In our adopted notation, each scalar (zero-order ten-
sor), vector (first-order tensor), matrix (2nd-order tensor), 3rd-order
tensor or higher-order tensor is represented by a circle (or rectangu-
lar), while the order of a tensor is determined by the number of lines
(edges) connected to it. According to this notation, an Nth-order ten-
sor X P RI1�����IN is represented by a circle (or any shape) with N

branches each of size In, n � 1, 2, . . . , N (see Section 2). An intercon-
nection between two circles designates a contraction of tensors, which
is a summation of products over a common index (see Figure 1.5(b)
and Section 2).

Block tensors, where each entry (e.g., of a matrix or a vector) is an
individual subtensor, can be represented in a similar graphical form,
as illustrated in Figure 1.6. Hierarchical (multilevel block) matrices are
also naturally represented by tensors and vice versa, as illustrated in
Figure 1.7 for 4th-, 5th- and 6th-order tensors. All mathematical oper-
ations on tensors can be therefore equally performed on block matrices.

In this monograph, we make extensive use of tensor network di-
agrams as an intuitive and visual way to efficiently represent tensor
decompositions. Such graphical notations are of great help in studying
and implementing sophisticated tensor operations. We highlight the
significant advantages of such diagrammatic notations in the descrip-
tion of tensor manipulations, and show that most tensor operations can

260 Introduction and Motivation

4th-order tensor
. . . =

5th-order tensors
...

...

... = =

6th-order tensor

=

Figure 1.6: Graphical representations and symbols for higher-order block tensors.
Each block represents either a 3rd-order tensor or a 2nd-order tensor. The outer
circle indicates a global structure of the block tensor (e.g. a vector, a matrix, a
3rd-order block tensor), while the inner circle reflects the structure of each element
within the block tensor. For example, in the top diagram a vector of 3rd order
tensors is represented by an outer circle with one edge (a vector) which surrounds
an inner circle with three edges (a 3rd order tensor), so that the whole structure
designates a 4th-order tensor.

be visualized through changes in the architecture of a tensor network
diagram.

1.3 Curse of Dimensionality and Generalized Separation of
Variables for Multivariate Functions

1.3.1 Curse of Dimensionality

The term curse of dimensionality was coined by Bellman (1961) to
indicate that the number of samples needed to estimate an arbitrary
function with a given level of accuracy grows exponentially with the

1.3. Curse of Dimensionality 261

(a)
X X

R1 1I

R2 2I

I1 I2

R1

R2

1 2()�I I

�

I1 I2

R1

R2

=

(b)
...

Vector (each entry is a block matrix)

Block matrix

Matrix

=

(c)
Matrix

� =

Figure 1.7: Hierarchical matrix structures and their symbolic representation as
tensors. (a) A 4th-order tensor representation for a block matrix X P RR1I1�R2I2

(a matrix of matrices), which comprises block matrices Xr1,r2 P RI1�I2 . (b) A 5th-
order tensor. (c) A 6th-order tensor.

number of variables, that is, with the dimensionality of the function.
In a general context of machine learning and the underlying optimiza-
tion problems, the “curse of dimensionality” may also refer to an ex-
ponentially increasing number of parameters required to describe the
data/system or an extremely large number of degrees of freedom. The
term “curse of dimensionality”, in the context of tensors, refers to the

262 Introduction and Motivation

phenomenon whereby the number of elements, IN , of an Nth-order ten-
sor of size pI�I�� � ��Iq grows exponentially with the tensor order, N .
Tensor volume can therefore easily become prohibitively big for multi-
way arrays for which the number of dimensions (“ways” or “modes”)
is very high, thus requiring enormous computational and memory re-
sources to process such data. The understanding and handling of the
inherent dependencies among the excessive degrees of freedom create
both difficult to solve problems and fascinating new opportunities, but
comes at a price of reduced accuracy, owing to the necessity to involve
various approximations.

We show that the curse of dimensionality can be alleviated or even
fully dealt with through tensor network representations; these natu-
rally cater for the excessive volume, veracity and variety of data (see
Figure 1.1) and are supported by efficient tensor decomposition algo-
rithms which involve relatively simple mathematical operations. An-
other desirable aspect of tensor networks is their relatively small-scale
and low-order core tensors, which act as “building blocks” of tensor
networks. These core tensors are relatively easy to handle and visual-
ize, and enable super-compression of the raw, incomplete, and noisy
huge-scale datasets. This also suggests a solution to a more general
quest for new technologies for processing of exceedingly large datasets
within affordable computation times.

To address the curse of dimensionality, this work mostly focuses on
approximative low-rank representations of tensors, the so-called low-
rank tensor approximations (LRTA) or low-rank tensor network de-
compositions.

1.3.2 Separation of Variables and Tensor Formats

A tensor is said to be in a full format when it is represented as an orig-
inal (raw) multidimensional array (Klus and Schütte, 2015), however,
distributed storage and processing of high-order tensors in their full
format is infeasible due to the curse of dimensionality. The sparse for-
mat is a variant of the full tensor format which stores only the nonzero
entries of a tensor, and is used extensively in software tools such as the

1.3. Curse of Dimensionality 263

Tensor Toolbox (Bader and Kolda, 2015) and in the sparse grid ap-
proach (Garcke et al., 2001; Bungartz and Griebel, 2004; Hackbusch,
2012).

As already mentioned, the problem of huge dimensionality can be
alleviated through various distributed and compressed tensor network
formats, achieved by low-rank tensor network approximations. The un-
derpinning idea is that by employing tensor networks formats, both
computational costs and storage requirements may be dramatically re-
duced through distributed storage and computing resources. It is im-
portant to note that, except for very special data structures, a tensor
cannot be compressed without incurring some compression error, since
a low-rank tensor representation is only an approximation of the orig-
inal tensor.

The concept of compression of multidimensional large-scale data
by tensor network decompositions can be intuitively explained as fol-
lows. Consider the approximation of an N -variate function fpxq �
fpx1, x2, . . . , xN q by a finite sum of products of individual functions,
each depending on only one or a very few variables (Bebendorf, 2011;
Dolgov, 2014; Cho et al., 2016; Trefethen, 2017). In the simplest sce-
nario, the function fpxq can be (approximately) represented in the
following separable form

fpx1, x2, . . . , xN q � f p1qpx1qf p2qpx2q � � � f pNqpxN q. (1.1)

In practice, when an N -variate function fpxq is discretized into an Nth-
order array, or a tensor, the approximation in (1.1) then corresponds to
the representation by rank-1 tensors, also called elementary tensors (see
Section 2). Observe that with In, n � 1, 2, . . . , N denoting the size of
each mode and I � maxntInu, the memory requirement to store such a
full tensor is

±N
n�1 In ¤ IN , which grows exponentially with N . On the

other hand, the separable representation in (1.1) is completely defined
by its factors, f pnqpxnq, pn � 1, 2, . . . , N), and requires only

°N
n�1 In !

IN storage units. If x1, x2, . . . , xN are statistically independent random
variables, their joint probability density function is equal to the product
of marginal probabilities, fpxq � f p1qpx1qf p2qpx2q � � � f pNqpxN q, in an
exact analogy to outer products of elementary tensors. Unfortunately,
the form of separability in (1.1) is rather rare in practice.

264 Introduction and Motivation

The concept of tensor networks rests upon generalized (full or par-
tial) separability of the variables of a high dimensional function. This
can be achieved in different tensor formats, including:

• The Canonical Polyadic (CP) format (see Section 3.2), where

fpx1, x2, . . . , xN q �
Ŗ

r�1
f p1qr px1q f p2qr px2q � � � f pNq

r pxN q, (1.2)

in an exact analogy to (1.1). In a discretized form, the above CP
format can be written as an Nth-order tensor

F �
Ŗ

r�1
f p1qr � f p2qr � � � � � f pNq

r P RI1�I2�����IN , (1.3)

where f pnqr P RIn denotes a discretized version of the univariate
function f pnqr pxnq, symbol � denotes the outer product, and R is
the tensor rank.

• The Tucker format, given by

fpx1, . . . , xN q �
R1̧

r1�1
� � �

RŅ

rN�1
gr1,...,rN f p1qr1 px1q � � � f pNq

rN
pxN q,

(1.4)
and its distributed tensor network variants (see Section 3.3),

• The Tensor Train (TT) format (see Section 4.1), in the form

fpx1, x2, . . . , xN q �
R1̧

r1�1

R2̧

r2�1
� � �

RN�1¸
rN�1�1

f p1qr1 px1q f p2qr1 r2px2q � � �

� � � f pN�2q
rN�2 rN�1pxN�1q f pNq

rN�1pxN q, (1.5)

with the equivalent compact matrix representation

fpx1, x2, . . . , xN q � Fp1qpx1qFp2qpx2q � � �FpNqpxN q, (1.6)

where Fpnqpxnq P RRn�1�Rn , with R0 � RN � 1.

• The Hierarchical Tucker (HT) format (also known as the Hierar-
chical Tensor format) can be expressed via a hierarchy of nested

1.3. Curse of Dimensionality 265

separations in the following way. Consider nested nonempty dis-
joint subsets u, v, and t � u Y v � t1, 2, . . . , Nu, then for some
1 ¤ N0 N , with u0 � t1, . . . , N0u and v0 � tN0 � 1, . . . , Nu,
the HT format can be expressed as

fpx1, . . . , xN q �
Ru0̧

ru0�1

Rv0̧

rv0�1
gp12���Nq
ru0 ,rv0

f pu0q
ru0

pxu0q f pv0q
rv0

pxv0q,

f ptqrt
pxtq �

Ru̧

ru�1

Rv̧

rv�1
gptqru,rv ,rt

f puqru
pxuq f pvqrv

pxvq,

where xt � txi : i P tu. See Section 2.2.1 for more detail.
Example. In a particular case for N=4, the HT format can be
expressed by

fpx1, x2, x3, x4q �
R12̧

r12�1

R34̧

r34�1
gp1234q
r12,r34 f

p12q
r12 px1, x2q f p34q

r34 px3, x4q,

f p12q
r12 px1, x2q �

R1̧

r1�1

R2̧

r2�1
gp12q
r1,r2,r12 f

p1q
r1 px1q f p2qr2 px2q,

f p34q
r34 px3, x4q �

R3̧

r3�1

R4̧

r4�1
gp34q
r3,r4,r34 f

p3q
r3 px3q f p4qr4 px4q.

The Tree Tensor Network States (TTNS) format, which is an ex-
tension of the HT format, can be obtained by generalizing the two
subsets, u, v, into a larger number of disjoint subsets u1, . . . , um,
m ¥ 2. In other words, the TTNS can be obtained by more flexi-
ble separations of variables through products of larger numbers of
functions at each hierarchical level (see Section 2.2.1 for graphical
illustrations and more detail).

All the above approximations adopt the form of “sum-of-products” of
single-dimensional functions, a procedure which plays a key role in all
tensor factorizations and decompositions.

Indeed, in many applications based on multivariate functions, very
good approximations are obtained with a surprisingly small number
of factors; this number corresponds to the tensor rank, R, or tensor

266 Introduction and Motivation

network ranks, tR1, R2, . . . , RNu (if the representations are exact and
minimal). However, for some specific cases this approach may fail to
obtain sufficiently good low-rank TN approximations. The concept of
generalized separability has already been explored in numerical meth-
ods for high-dimensional density function equations (Liao et al., 2015;
Trefethen, 2017; Cho et al., 2016) and within a variety of huge-scale
optimization problems (see Part 2 of this monograph).

To illustrate how tensor decompositions address excessive volumes
of data, if all computations are performed on a CP tensor format in
(1.3) and not on the raw Nth-order data tensor itself, then instead of
the original, exponentially growing, data dimensionality of IN , the num-
ber of parameters in a CP representation reduces to NIR, which scales
linearly in the tensor order N and size I (see Table 4.4). For exam-
ple, the discretization of a 5-variate function over 100 sample points on
each axis would yield the difficulty to manage 1005 � 10, 000, 000, 000
sample points, while a rank-2 CP representation would require only
5� 2� 100 � 1000 sample points.

Although the CP format in (1.2) effectively bypasses the curse of
dimensionality, the CP approximation may involve numerical problems
for very high-order tensors, which in addition to the intrinsic unclose-
ness of the CP format (i.e., difficulty to arrive at a canonical format),
the corresponding algorithms for CP decompositions are often ill-posed
(de Silva and Lim, 2008). As a remedy, greedy approaches may be
considered which, for enhanced stability, perform consecutive rank-1
corrections (Lim and Comon, 2010). On the other hand, many efficient
and stable algorithms exist for the more flexible Tucker format in (1.4),
however, this format is not practical for tensor orders N ¡ 5 because
the number of entries of both the original data tensor and the core
tensor (expressed in (1.4) by elements gr1,r2,...,rN) scales exponentially
in the tensor order N (curse of dimensionality).

In contrast to CP decomposition algorithms, TT tensor network for-
mats in (1.5) exhibit both very good numerical properties and the abil-
ity to control the error of approximation, so that a desired accuracy of
approximation is obtained relatively easily. The main advantage of the
TT format over the CP decomposition is the ability to provide stable

1.3. Curse of Dimensionality 267

quasi-optimal rank reduction, achieved through, for example, truncated
singular value decompositions (tSVD) or adaptive cross-approximation
(Oseledets and Tyrtyshnikov, 2010; Bebendorf, 2011; Khoromskij and
Veit, 2016). This makes the TT format one of the most stable and
simple approaches to separate latent variables in a sophisticated way,
while the associated TT decomposition algorithms provide full control
over low-rank TN approximations1. In this monograph, we therefore
make extensive use of the TT format for low-rank TN approximations
and employ the TT toolbox software for efficient implementations (Os-
eledets et al., 2012). The TT format will also serve as a basic prototype
for high-order tensor representations, while we also consider the Hier-
archical Tucker (HT) and the Tree Tensor Network States (TTNS) for-
mats (having more general tree-like structures) whenever advantageous
in applications.

Furthermore, we address in depth the concept of tensorization of
structured vectors and matrices to convert a wide class of huge-scale op-
timization problems into much smaller-scale interconnected optimiza-
tion sub-problems which can be solved by existing optimization meth-
ods (see Part 2 of this monograph).

The tensor network optimization framework is therefore performed
through the two main steps:

• Tensorization of data vectors and matrices into a high-order ten-
sor, followed by a distributed approximate representation of a
cost function in a specific low-rank tensor network format.

• Execution of all computations and analysis in tensor network for-
mats (i.e., using only core tensors) that scale linearly, or even
sub-linearly (quantized tensor networks), in the tensor order N .
This yields both the reduced computational complexity and dis-
tributed memory requirements.

1Although similar approaches have been known in quantum physics for a long
time, their rigorous mathematical analysis is still a work in progress (see (Oseledets,
2011; Orús, 2014) and references therein).

268 Introduction and Motivation

1.4 Advantages of Multiway Analysis via Tensor Networks

In this monograph, we focus on two main challenges in huge-scale data
analysis which are addressed by tensor networks: (i) an approximate
representation of a specific cost (objective) function by a tensor net-
work while maintaining the desired accuracy of approximation, and (ii)
the extraction of physically meaningful latent variables from data in a
sufficiently accurate and computationally affordable way. The benefits
of multiway (tensor) analysis methods for large-scale datasets then in-
clude:

• Ability to perform all mathematical operations in tractable tensor
network formats;

• Simultaneous and flexible distributed representations of both the
structurally rich data and complex optimization tasks;

• Efficient compressed formats of large multidimensional data
achieved via tensorization and low-rank tensor decompositions
into low-order factor matrices and/or core tensors;

• Ability to operate with noisy and missing data by virtue of numer-
ical stability and robustness to noise of low-rank tensor/matrix
approximation algorithms;

• A flexible framework which naturally incorporates various diver-
sities and constraints, thus seamlessly extending the standard,
flat view, Component Analysis (2-way CA) methods to multiway
component analysis;

• Possibility to analyze linked (coupled) blocks of large-scale ma-
trices and tensors in order to separate common/correlated from
independent/uncorrelated components in the observed raw data;

• Graphical representations of tensor networks allow us to express
mathematical operations on tensors (e.g., tensor contractions and
reshaping) in a simple and intuitive way, and without the explicit
use of complex mathematical expressions.

1.5. Scope and Objectives 269

In that sense, this monograph both reviews current research in this
area and complements optimisation methods, such as the Alternating
Direction Method of Multipliers (ADMM) (Boyd et al., 2011).

Tensor decompositions (TDs) have been already adopted in widely
diverse disciplines, including psychometrics, chemometrics, biometric,
quantum physics/information, quantum chemistry, signal and image
processing, machine learning, and brain science (Smilde et al., 2004;
Tao et al., 2007; Kroonenberg, 2008; Kolda and Bader, 2009; Hack-
busch, 2012; Favier and de Almeida, 2014; Cichocki et al., 2009, 2015b).
This is largely due to their advantages in the analysis of data that ex-
hibit not only large volume but also very high variety (see Figure 1.1),
as in the case in bio- and neuroinformatics and in computational neu-
roscience, where various forms of data collection include sparse tabular
structures and graphs or hyper-graphs.

Moreover, tensor networks have the ability to efficiently parame-
terize, through structured compact representations, very general high-
dimensional spaces which arise in modern applications (Kressner et al.,
2014b; Cichocki, 2014; Zhang et al., 2015; Corona et al., 2015; Litsarev
and Oseledets, 2016; Khoromskij and Veit, 2016; Benner et al., 2016).
Tensor networks also naturally account for intrinsic multidimensional
and distributed patterns present in data, and thus provide the oppor-
tunity to develop very sophisticated models for capturing multiple in-
teractions and couplings in data – these are more physically insightful
and interpretable than standard pair-wise interactions.

1.5 Scope and Objectives

Review and tutorial papers (Kolda and Bader, 2009; Lu et al., 2011;
Grasedyck et al., 2013; Cichocki et al., 2015b; de Almeida et al., 2015;
Sidiropoulos et al., 2016; Papalexakis et al., 2016; Bachmayr et al.,
2016) and books (Smilde et al., 2004; Kroonenberg, 2008; Cichocki
et al., 2009; Hackbusch, 2012) dealing with TDs and TNs already exist,
however, they typically focus on standard models, with no explicit links
to very large-scale data processing topics or connections to a wide class
of optimization problems. The aim of this monograph is therefore to

270 Introduction and Motivation

extend beyond the standard Tucker and CP tensor decompositions,
and to demonstrate the perspective of TNs in extremely large-scale
data analytics, together with their role as a mathematical backbone
in the discovery of hidden structures in prohibitively large-scale data.
Indeed, we show that TN models provide a framework for the analysis
of linked (coupled) blocks of tensors with millions and even billions of
non-zero entries.

We also demonstrate that TNs provide natural extensions of 2-
way (matrix) Component Analysis (2-way CA) methods to multi-way
component analysis (MWCA), which deals with the extraction of de-
sired components from multidimensional and multimodal data. This
paradigm shift requires new models and associated algorithms capable
of identifying core relations among the different tensor modes, while
guaranteeing linear/sub-linear scaling with the size of datasets2.

Furthermore, we review tensor decompositions and the associated
algorithms for very large-scale linear/multilinear dimensionality reduc-
tion problems. The related optimization problems often involve struc-
tured matrices and vectors with over a billion entries (see (Grasedyck
et al., 2013; Dolgov, 2014; Garreis and Ulbrich, 2016) and references
therein). In particular, we focus on Symmetric Eigenvalue Decomposi-
tion (EVD/PCA) and Generalized Eigenvalue Decomposition (GEVD)
(Dolgov et al., 2014; Kressner et al., 2014a; Kressner and Uschmajew,
2016), SVD (Lee and Cichocki, 2015), solutions of overdetermined and
undetermined systems of linear algebraic equations (Oseledets and Dol-
gov, 2012; Dolgov and Savostyanov, 2014), the Moore–Penrose pseudo-
inverse of structured matrices (Lee and Cichocki, 2016b), and Lasso
problems (Lee and Cichocki, 2016a). Tensor networks for extremely
large-scale multi-block (multi-view) data are also discussed, especially
TN models for orthogonal Canonical Correlation Analysis (CCA) and
related Partial Least Squares (PLS) problems. For convenience, all
these problems are reformulated as constrained optimization problems

2Usually, we assume that huge-scale problems operate on at least 107 parameters.

1.5. Scope and Objectives 271

which are then, by virtue of low-rank tensor networks reduced to man-
ageable lower-scale optimization sub-problems. The enhanced tractabil-
ity and scalability is achieved through tensor network contractions and
other tensor network transformations.

The methods and approaches discussed in this work can be con-
sidered a both an alternative and complementary to other emerging
methods for huge-scale optimization problems like random coordinate
descent (RCD) scheme (Nesterov, 2012; Richtárik and Takáč, 2016),
sub-gradient methods (Nesterov, 2014), alternating direction method
of multipliers (ADMM) (Boyd et al., 2011), and proximal gradient de-
scent methods (Parikh and Boyd, 2014) (see also (Cevher et al., 2014;
Hong et al., 2016) and references therein).

This monograph systematically introduces TN models and the as-
sociated algorithms for TNs/TDs and illustrates many potential appli-
cations of TDs/TNS. The dimensionality reduction and optimization
frameworks (see Part 2 of this monograph) are considered in detail,
and we also illustrate the use of TNs in other challenging problems
for huge-scale datasets which can be solved using the tensor network
approach, including anomaly detection, tensor completion, compressed
sensing, clustering, and classification.

2
Tensor Operations and Tensor Network

Diagrams

Tensor operations benefit from the power of multilinear algebra which
is structurally much richer than linear algebra, and even some basic
properties, such as the rank, have a more complex meaning. We next
introduce the background on fundamental mathematical operations in
multilinear algebra, a prerequisite for the understanding of higher-order
tensor decompositions. A unified account of both the definitions and
properties of tensor network operations is provided, including the outer,
multi-linear, Kronecker, and Khatri–Rao products. For clarity, graphi-
cal illustrations are provided, together with an example rich guidance
for tensor network operations and their properties. To avoid any con-
fusion that may arise given the numerous options on tensor reshap-
ing, both mathematical operations and their properties are expressed
directly in their native multilinear contexts, supported by graphical
visualizations.

2.1 Basic Multilinear Operations

The following symbols are used for most common tensor multiplica-
tions: b for the Kronecker product, d for the Khatri–Rao product,
f for the Hadamard (componentwise) product, � for the outer
product and �n for the mode-n product. Basic tensor operations
are summarized in Table 2.1, and illustrated in Figures 2.1–2.13.

272

2.1. Basic Multilinear Operations 273

Table 2.1: Basic tensor/matrix operations.

C � A�n B
Mode-n product of a tensor A P RI1�I2�����IN

and a matrix B P RJ�In yields a ten-
sor C P RI1�����In�1�J�In�1�����IN ,
with entries c i1,...,in�1, j, in�1,...,iN

�°In

in�1 ai1,...,in,...,iN
bj, in

C � JG; Bp1q, . . . ,BpNqK
Multilinear (Tucker) product of a core tensor,
G, and factor matrices Bpnq, which gives

C � G�1 Bp1q �2 Bp2q � � � �N BpNq

C � A �̄n b

Mode-n product of a tensor A P RI1�����IN

and vector b P RIn yields a ten-
sor C P RI1�����In�1�In�1�����IN ,
with entries c i1,...,in�1,in�1,...,iN

�°In

in�1 ai1,...,in�1,in,in�1,...,iN
bin

C � A�1
N B � A�1 B

Mode-pN, 1q contracted product of tensors
A P RI1�I2�����IN and B P RJ1�J2�����JM ,
with IN � J1, yields a tensor
C P RI1�����IN�1�J2�����JM with entries
ci1,...,iN�1,j2,...,jM

� °IN

iN�1 ai1,...,iN
biN ,j2,...,jM

C � A �B
Outer product of tensors A P RI1�I2�����IN

and B P RJ1�J2�����JM yields an pN �Mqth-
order tensor C, with entries c i1,...,iN , j1,...,jM

�
ai1,...,iN

bj1,...,jM

X � a � b � c P RI�J�K Outer product of vectors a,b and c forms a
rank-1 tensor, X, with entries xijk � ai bj ck

C � AbL B
(Left) Kronecker product of tensors A P
RI1�I2�����IN and B P RJ1�J2�����JN yields
a tensor C P RI1J1�����IN JN , with entries
c i1j1,...,iN jN

� ai1,...,iN
bj1,...,jN

C � AdL B
(Left) Khatri–Rao product of matrices A �
ra1, . . . ,aJ s P RI�J and B � rb1, . . . ,bJ s P
RK�J yields a matrix C P RIK�J , with
columns cj � aj bL bj P RIK

274 Tensor Operations and Tensor Network Architectures

Matricization

Vectorization

Tensorization

Tensor
Data

Tensorization

Vectorization

...

...
=

=

=

=

Figure 2.1: Tensor reshaping operations: Matricization, vectorization and ten-
sorization. Matricization refers to converting a tensor into a matrix, vectorization to
converting a tensor or a matrix into a vector, while tensorization refers to converting
a vector, a matrix or a low-order tensor into a higher-order tensor.

We refer to (Kolda and Bader, 2009; Cichocki et al., 2009; Lee and
Cichocki, 2016c) for more detail regarding the basic notations and
tensor operations. For convenience, general operations, such as vecp�q
or diagp�q, are defined similarly to the MATLAB syntax.

Multi–indices: By a multi-index i � i1i2 � � � iN we refer to an index
which takes all possible combinations of values of indices, i1, i2, . . . , iN ,
for in � 1, 2, . . . , In, n � 1, 2, . . . , N and in a specific order. Multi–
indices can be defined using two different conventions (Dolgov and
Savostyanov, 2014):

1. Little-endian convention (reverse lexicographic ordering)

i1i2 � � � iN � i1�pi2�1qI1�pi3�1qI1I2�� � ��piN�1qI1 � � � IN�1.

2. Big-endian (colexicographic ordering)

i1i2 � � � iN � iN � piN�1 � 1qIN � piN�2 � 1qININ�1 �
� � � � pi1 � 1qI2 � � � IN .

2.1. Basic Multilinear Operations 275

The little-endian convention is used, for example, in Fortran and
MATLAB, while the big-endian convention is used in C language.
Given the complex and non-commutative nature of tensors, the basic
definitions, such as the matricization, vectorization and the Kronecker
product, should be consistent with the chosen convention1. In this
monograph, unless otherwise stated, we will use little-endian notation.

Matricization. The matricization operator, also known as the
unfolding or flattening, reorders the elements of a tensor into a matrix
(see Figure 2.2). Such a matrix is re-indexed according to the choice
of multi-index described above, and the following two fundamental
matricizations are used extensively.

The mode-n matricization. For a fixed index n P t1, 2, . . . , Nu, the
mode-nmatricization of an Nth-order tensor, X P RI1�����IN , is defined
as the (“short” and “wide”) matrix

Xpnq P RIn�I1I2���In�1In�1���IN , (2.1)

with In rows and I1I2 � � � In�1In�1 � � � IN columns, the entries of which
are

pXpnqqin,i1���in�1in�1���iN
� xi1,i2,...,iN .

Note that the columns of a mode-n matricization, Xpnq, of a tensor X
are the mode-n fibers of X.

The mode-tnu canonical matricization. For a fixed index n P
t1, 2, . . . , Nu, the mode-p1, 2, . . . , nq matricization, or simply mode-n
canonical matricization, of a tensor X P RI1�����IN is defined as the
matrix

X n¡ P RI1I2���In�In�1���IN , (2.2)
with I1I2 � � � In rows and In�1 � � � IN columns, and the entries

pX n¡qi1i2���in, in�1���iN
� xi1,i2,...,iN .

1 Note that using the colexicographic ordering, the vectorization of an outer
product of two vectors, a and b, yields their Kronecker product, that is, vecpa�bq �
abb, while using the reverse lexicographic ordering, for the same operation, we need
to use the Left Kronecker product, vecpa � bq � b b a � a bL b.

276 Tensor Operations and Tensor Network Architectures

(a)
I2

I1

I3

I1

I2

I3

I1

I3

I2

I1

I2

I3

I3

I1

I2

I1

I2

I3

A A(1)

A

∈

A

I1 × I2 I3

I I1 I32

I I1 I23

×

×

R

A(2) ∈ R

A(2) ∈ R

(b)
A

I1

I2

I
n

I
N

�

...

... I
n

A()n

I
N

I1

1 1 1n n N
I I I I� �

� �

�

...

(c)
I1

I2

In

I
In+1

IN J

... ...

A<n>

I1
IN.... ..

A

I2
In

In+1

Figure 2.2: Matricization (flattening, unfolding) used in tensor reshaping. (a)
Mode-1, mode-2, and mode-3 matricizations of a 3rd-order tensor, from the top
to the bottom panel. (b) Tensor network diagram for the mode-n matricization
of an Nth-order tensor, A P RI1�I2�����IN , into a short and wide matrix, Apnq P
RIn � I1���In�1In�1���IN . (c) Mode-t1, 2, . . . , nuth (canonical) matricization of an Nth-
order tensor, A, into a matrix A n¡ � Api1���in ; in�1���iN q P RI1I2���In � In�1���IN .

2.1. Basic Multilinear Operations 277

Vector

x∊ 8K

Matrix

X∊
4K×2

3rd-order tensor

X ∊
2K×2×2

3

4th-order tensor

X ∊RK×2×2×2
4 IRIRIRI

Figure 2.3: Tensorization of a vector into a matrix, 3rd-order tensor and 4th-order
tensor.

The matricization operator in the MATLAB notation (reverse lexico-
graphic) is given by

X n¡ � reshape pX, I1I2 � � � In, In�1 � � � IN q . (2.3)

As special cases we immediately have (see Figure 2.2)

X 1¡ � Xp1q, X N�1¡ � XT
pNq, X N¡ � vecpXq. (2.4)

The tensorization of a vector or a matrix can be considered as a
reverse process to the vectorization or matricization (see Figures 2.1
and 2.3).

Kronecker, strong Kronecker, and Khatri–Rao products of
matrices and tensors. For an I�J matrix A and a K�L matrix B,
the standard (Right) Kronecker product, AbB, and the Left Kronecker
product, AbL B, are the following IK � JL matrices

AbB �

���a1,1B � � � a1,JB
...

aI,1B � � � aI,JB

��� , AbL B �

���Ab1,1 � � � Ab1,L
...

AbK,1 � � � AbK,L

��� .
Observe that A bL B � B b A, so that the Left Kronecker product
will be used in most cases in this monograph as it is consistent with
the little-endian notation.

278 Tensor Operations and Tensor Network Architectures

A
B

 =

C = A B

A11 A12 A13

A21 A22 A23

B11 B12

B21 B22

B31 B32

A11 B
+A12
+A13

L 11
BL 21
BL 31

A21 B
+A22
+A23

L 11
BL 21
BL 31

A11 B
+A12
+A13

L 12
BL 22
BL 32

A21 B
+A22
+A23

L 12
BL 22
BL 32

Figure 2.4: Illustration of the strong Kronecker product of two block matrices, A �
rAr1,r2 s P RR1I1�R2J1 and B � rBr2,r3 s P RR2I2�R3J2 , which is defined as a block
matrix C � A |b|B P RR1I1I2�R3J1J2 , with the blocks Cr1,r3 � °R2

r2�1 Ar1,r2 bL

Br2,r3 P RI1I2�J1J2 , for r1 � 1, . . . , R1, r2 � 1, . . . , R2 and r3 � 1, . . . , R3.

Using Left Kronecker product, the strong Kronecker product of two
block matrices, A P RR1I�R2J and B P RR2K�R3L, given by

A �

��� A1,1 � � � A1,R2
...

AR1,1 � � � AR1,R2

��� , B �

��� B1,1 � � � B1,R3
...

BR2,1 � � � BR2,R3

��� ,
can be defined as a block matrix (see Figure 2.4 for a graphical illus-
tration)

C � A |b| B P RR1IK�R3JL, (2.5)

with blocks Cr1,r3 � °R2
r2�1 Ar1,r2 bL Br2,r3 P RIK�JL, where

Ar1,r2 P RI�J and Br2,r3 P RK�L are the blocks of matrices within
A and B, respectively (de Launey and Seberry, 1994; Kazeev et al.,
2013a,b). Note that the strong Kronecker product is similar to the
standard block matrix multiplication, but performed using Kronecker
products of the blocks instead of the standard matrix-matrix prod-
ucts. The above definitions of Kronecker products can be naturally
extended to tensors (Phan et al., 2012) (see Table 2.1), as shown below.

The Kronecker product of tensors. The (Left) Kronecker product
of two Nth-order tensors, A P RI1�I2�����IN and B P RJ1�J2�����JN ,
yields a tensor C � A bL B P RI1J1�����INJN of the same order
but enlarged in size, with entries ci1j1,...,iN jN � ai1,...,iN bj1,...,jN as

2.1. Basic Multilinear Operations 279

I1

I2

I3

I4 J1

J3

J4

J2

A B

K I J1 1 1 K I J4 4 4

K I J2 2 2 K I J3 3 3

Figure 2.5: The left Kronecker product of two 4th-order tensors, A and B,
yields a 4th-order tensor, C � A bL B P RI1J1�����I4J4 , with entries ck1,k2,k3,k4 �
ai1,...,i4 bj1,...,j4 , where kn � injn (n � 1, 2, 3, 4). Note that the order of tensor C is
the same as the order of A and B, but the size in every mode within C is a product
of the respective sizes of A and B.

illustrated in Figure 2.5.

The mode-n Khatri–Rao product of tensors. The Mode-n
Khatri–Rao product of two Nth-order tensors, A P RI1�I2�����In�����IN

and B P RJ1�J2�����Jn�����JN , for which In � Jn, yields a tensor
C � A d n B P RI1J1�����In�1Jn�1�In�In�1Jn�1�����INJN , with subten-
sors Cp:, . . . :, in, :, . . . , :q � Ap:, . . . :, in, :, . . . , :q bBp:, . . . :, in, :, . . . , :q.

The mode-2 and mode-1 Khatri–Rao product of matrices.
The above definition simplifies to the standard Khatri–Rao (mode-
2) product of two matrices, A � ra1,a2, . . . ,aRs P RI�R and B �
rb1,b2, . . . ,bRs P RJ�R, or in other words a “column-wise Kronecker
product”. Therefore, the standard Right and Left Khatri–Rao products
for matrices are respectively given by2

AdB � ra1 b b1,a2 b b2, . . . ,aR b bRs P RIJ�R, (2.6)
AdL B � ra1 bL b1,a2 bL b2, . . . ,aR bL bRs P RIJ�R. (2.7)

2For simplicity, the mode 2 subindex is usually neglected, i.e., Ad2 B � AdB.

280 Tensor Operations and Tensor Network Architectures

Analogously, the mode-1 Khatri–Rao product of two matrices A P
RI�R and B P RI�Q, is defined as

Ad1 B �

���Ap1, :q bBp1, :q
...

ApI, :q bBpI, :q

��� P RI�RQ. (2.8)

Direct sum of tensors. A direct sum of Nth-order tensors
A P RI1�����IN and B P RJ1�����JN yields a tensor C � A ` B P
RpI1�J1q�����pIN�JN q, with entries Cpk1, . . . , kN q � Apk1, . . . , kN q
if 1 ¤ kn ¤ In, @n, Cpk1, . . . , kN q � Bpk1 � I1, . . . , kN � IN q if
In kn ¤ In � Jn, @n, and Cpk1, . . . , kN q � 0, otherwise (see
Figure 2.6(a)).

Partial (mode-n) direct sum of tensors. A partial direct sum of
tensors A P RI1�����IN and B P RJ1�����JN , with In � Jn, yields a ten-
sor C � A ` n B P RpI1�J1q�����pIn�1�Jn�1q�In�pIn�1�Jn�1q�����pIN�JN q,
where Cp:, . . . , :, in, :, . . . , :q � Ap:, . . . , :, in, :, . . . , :q ` Bp:, . . . , :, in, :
, . . . , :q, as illustrated in Figure 2.6(b).

Concatenation of Nth-order tensors. A concatenation along
mode-n of tensors A P RI1�����IN and B P RJ1�����JN , for
which Im � Jm, @m � n yields a tensor C � A ` n B P
RI1�����In�1�pIn�Jnq�In�1�����pIN q, with subtensors Cpi1, . . . , in�1, :
, in�1, . . . , iN q � Api1, . . . , in�1, :, in�1, . . . , iN q ` Bpi1, . . . , in�1, :
, in�1, . . . , iN q, as illustrated in Figure 2.6(c). For a concatenation of
two tensors of suitable dimensions along mode-n, we will use equivalent
notations C � A` n B � A" n B.

3D Convolution. For simplicity, consider two 3rd-order tensors
A P RI1�I2�I3 and B P RJ1�J2�J3 . Their 3D Convolution yields
a tensor C � A � B P RpI1�J1�1q�pI2�J2�1q�pI3�J3�1q, with entries
Cpk1, k2, k3q �

°
j1

°
j2

°
j3

Bpj1, j2, j3q Apk1 � j1, k2 � j2, k3 � j3q as
illustrated in Figure 2.7 and Figure 2.8.

Partial (mode-n) Convolution. For simplicity, consider two 3rd-
order tensors A P RI1�I2�I3 and B P RJ1�J2�J3 . Their mode-2 (partial)

2.1. Basic Multilinear Operations 281

(b)

(a) I3

I1

I2
J1

J

J

3

2

A
B

A B ∈ R(+) I1 J1 ×(+) ×(+) I3 J3I2 J2

(c)

A B1 A B2
A B

3

A B1 A B2 A B3

I2 = J2

I3 = J3

I3 = J3

I1 = J1

I2 = J2

I3

I1

I2

J

J

3

2

A

A

B B

BJ3
I3

I1 = J1

B

A A

B B
I2 J2 I2 = J2 I2 J2

I3

I1
J1

I1

J1

I3 = J3

I1=J1

I1

J1 A A

I

Figure 2.6: Illustration of the direct sum, partial direct sum and concatenation
operators of two 3rd-order tensors. (a) Direct sum. (b) Partial (mode-1, mode-2,
and mode-3) direct sum. (c) Concatenations along mode-1,2,3.

282 Tensor Operations and Tensor Network Architectures

* =

A B

C

1 2 3 4

0 3 2 1

5 0 1 4

3 1 0 2

0 -1 0

-1 4 -1

0 -1 0

3 4

2 1

5 0 1 4

3 1 0 2

3 4

1

4

3 1 0 2

0 -1 0

-1

0

1 2

0

0

0

0 0

4 -1

-1 0
0 3

0 -1 0
1 2 3

2

5 0 1
-1

0

0
4 -1

-1 0

3

3

3 1 0 2

0 -1 0
1 2 3

2

5 0 1
-1

0

0
4 -1

-1 0

3

4

1

4

1･4+2･(-1)=2

2･(-1)+3･4+2･(-1)=8

3･(-1)+3･(-1)+2･4+1･(-1)+1･(-1)=0

0 -1 -2 -3

-1 2 1 4

0 -9 8 0

-5 17 -10 -2

-4 0

12 -4

-6 -1

12 -4

-3 6 1 -4

0 -3 -1 0

4 -2

-2 0

2

8

0

Figure 2.7: Illustration of the 2D convolution operator, performed through a
sliding window operation along both the horizontal and vertical index.

2.1. Basic Multilinear Operations 283

A B C
I3

I1

I2

* =

J3I3+ -1

J1I1+ -1

* =

Reduction
(summation)

2 3 3
6 2 4
4 2 5

4 0 3
2 3 5
2 1 2

0 3 2
2 3 1
1 0 5

0 -1 0
-1 5 -1
0 -1 0

-2 -1 0
-1 1 1
0 1 2

0 -1 0
-1 4 -1
0 -1 0

0 -3 0
-610 -4
0 -2 0

-8 0 0
-2 3 5
0 1 4

0 -3 0
-2 12 -1
0 -1 0

J3

J1
J2

()

()
3

J2I2+ -1()

Hadamard product

Σ

Figure 2.8: Illustration of the 3D convolution operator, performed through a
sliding window operation along all three indices.

convolution yields a tensor C � A d2 B P RI1J1�pI2�J2�1q�I3J3 , the
subtensors (vectors) of which are Cpk1, :, k3q � Api1, :, i3q � Bpj1, :
, j3q P RI2�J2�1, where k1 � i1j1, and k3 � i3j3.

Outer product. The central operator in tensor analysis is the outer
or tensor product, which for the tensors A P RI1�����IN and B P
RJ1�����JM gives the tensor C � A � B P RI1�����IN�J1�����JM with
entries ci1,...,iN ,j1,...,jM � ai1,...,iN bj1,...,jM .

Note that for 1st-order tensors (vectors), the tensor product reduces
to the standard outer product of two nonzero vectors, a P RI and
b P RJ , which yields a rank-1 matrix, X � a � b � abT P RI�J .
The outer product of three nonzero vectors, a P RI , b P RJ and
c P RK , gives a 3rd-order rank-1 tensor (called pure or elementary
tensor), X � a � b � c P RI�J�K , with entries xijk � ai bj ck.

284 Tensor Operations and Tensor Network Architectures

Rank-1 tensor. A tensor, X P RI1�I2�����IN , is said to be of rank-1 if it
can be expressed exactly as the outer product, X � bp1q�bp2q�� � ��bpNq

of nonzero vectors, bpnq P RIn , with the tensor entries given by
xi1,i2,...,iN � b

p1q
i1
b
p2q
i2
� � � bpNq

iN
.

Kruskal tensor, CP decomposition. For further discussion, it is
important to highlight that any tensor can be expressed as a finite sum
of rank-1 tensors, in the form

X �
Ŗ

r�1
bp1q
r � bp2q

r � � � � � bpNq
r �

Ŗ

r�1

�
N�
n�1

bpnq
r

	
, bpnq

r P RIn , (2.9)

which is exactly the form of the Kruskal tensor, illustrated in Figure
2.9, also known under the names of CANDECOMP/PARAFAC,
Canonical Polyadic Decomposition (CPD), or simply the CP decom-
position in (1.2). We will use the acronyms CP and CPD.

Tensor rank. The tensor rank, also called the CP rank, is a natural
extension of the matrix rank and is defined as a minimum number, R,
of rank-1 terms in an exact CP decomposition of the form in (2.9).

Although the CP decomposition has already found many practical
applications, its limiting theoretical property is that the best rank-R
approximation of a given data tensor may not exist (see de Silva
and Lim (2008) for more detail). However, a rank-R tensor can be
approximated arbitrarily well by a sequence of tensors for which the
CP ranks are strictly less than R. For these reasons, the concept
of border rank was proposed (Bini, 1985), which is defined as the
minimum number of rank-1 tensors which provides the approximation
of a given tensor with an arbitrary accuracy.

Symmetric tensor decomposition. A symmetric tensor (sometimes
called a super-symmetric tensor) is invariant to the permutations of its
indices. A symmetric tensor of Nth-order has equal sizes, In � I, @n, in
all its modes, and the same value of entries for every permutation of its
indices. For example, for vectors bpnq � b P RI , @n, the rank-1 tensor,
constructed by N outer products, �Nn�1bpnq � b�b�� � ��b P RI�I�����I ,
is symmetric. Moreover, every symmetric tensor can be expressed as a

2.1. Basic Multilinear Operations 285

I1

I4

I3
I2

X
=

I1

I2

I3

I4

(1)
rb

(2)
rb

(3)
rb

(4)
rb

=1

R

r

Figure 2.9: The CP decomposition for a 4th-order tensor X of rank R. Observe
that the rank-1 subtensors are formed through the outer products of the vectors
bp1q

r , . . . ,bp4q
r , r � 1, . . . , R.

linear combination of such symmetric rank-1 tensors through the so-
called symmetric CP decomposition, given by

X �
Ŗ

r�1
λrbr � br � � � � � br, br P RI , (2.10)

where λr P R are the scaling parameters for the unit length vectors br,
while the symmetric tensor rank is the minimal number R of rank-1
tensors that is necessary for its exact representation.

Multilinear products. The mode-n (multilinear) product, also called
the tensor-times-matrix product (TTM), of a tensor, A P RI1�����IN ,
and a matrix, B P RJ�In , gives the tensor

C � A�n B P RI1�����In�1�J�In�1�����IN , (2.11)

with entries

ci1,i2,...,in�1,j,in�1,...,iN �
Iņ

in�1
ai1,i2,...,iN bj,in . (2.12)

From (2.12) and Figure 2.10, the equivalent matrix form is
Cpnq � BApnq, which allows us to employ established fast matrix-by-
vector and matrix-by-matrix multiplications when dealing with very
large-scale tensors. Efficient and optimized algorithms for TTM are,
however, still emerging (Li et al., 2015; Ballard et al., 2015a,b).

Full multilinear (Tucker) product. A full multilinear product, also
called the Tucker product, of an Nth-order tensor, G P RR1�R2�����RN ,

286 Tensor Operations and Tensor Network Architectures

(a)
...

...
B

C(1)

I2

I1

I3I2I1

J
J

J

I1

2 3I II3

A

C B

I1

J

...

...

A1 A2 AI3

BA1 BA2 BAI3

C=A× B1 C =B A(1) (1)

A(1)

(b)

IN
A B

InI1
I2

...

... J J

B
In

A ()n

1 1 1n- n+ NI I I I

nC A B
() ()n nC B A

Figure 2.10: Illustration of the multilinear mode-n product, also known as the
TTM (Tensor-Times-Matrix) product, performed in the tensor format (left) and
the matrix format (right). (a) Mode-1 product of a 3rd-order tensor, A P RI1�I2�I3 ,
and a factor (component) matrix, B P RJ�I1 , yields a tensor C � A �1 B P
RJ�I2�I3 . This is equivalent to a simple matrix multiplication formula, Cp1q �
BAp1q. (b) Graphical representation of a mode-n product of an Nth-order tensor,
A P RI1�I2�����IN , and a factor matrix, B P RJ�In .

and a set of N factor matrices, Bpnq P RIn�Rn for n � 1, 2, . . . , N ,
performs the multiplications in all the modes and can be compactly
written as (see Figure 2.11(b))

C � G�1 Bp1q �2 Bp2q � � � �N BpNq (2.13)
� JG; Bp1q,Bp2q, . . . ,BpNqK P RI1�I2�����IN .

Observe that this format corresponds to the Tucker decomposition
(Tucker, 1964, 1966; Kolda and Bader, 2009) (see Section 3.3).

Multilinear product of a tensor and a vector (TTV). In a sim-
ilar way, the mode-n multiplication of a tensor, A P RI1�����IN , and a

2.1. Basic Multilinear Operations 287

vector, b P RIn (tensor-times-vector, TTV) yields a tensor

C � A�̄nb P RI1�����In�1�In�1�����IN , (2.14)

with entries

ci1,...,in�1,in�1,...,iN �
Iņ

in�1
ai1,...,in�1,in,in�1,...,iN bin . (2.15)

Note that the mode-n multiplication of a tensor by a matrix does not
change the tensor order, while the multiplication of a tensor by vectors
reduces its order, with the mode n removed (see Figure 2.11).

Multilinear products of tensors by matrices or vectors play a
key role in deterministic methods for the reshaping of tensors and
dimensionality reduction, as well as in probabilistic methods for
randomization/sketching procedures and in random projections of
tensors into matrices or vectors. In other words, we can also perform
reshaping of a tensor through random projections that change its
entries, dimensionality or size of modes, and/or the tensor order. This
is achieved by multiplying a tensor by random matrices or vectors,
transformations which preserve its basic properties. (Sun et al., 2006;
Drineas and Mahoney, 2007; Lu et al., 2011; Li and Monga, 2012;
Pham and Pagh, 2013; Wang et al., 2015; Kuleshov et al., 2015; Sorber
et al., 2016) (see Section 3.5 for more detail).

Tensor contractions. Tensor contraction is a fundamental and the
most important operation in tensor networks, and can be considered
a higher-dimensional analogue of matrix multiplication, inner product,
and outer product.

In a way similar to the mode-n multilinear product3, the mode-pmn q
product (tensor contraction) of two tensors, A P RI1�I2�����IN and B P
RJ1�J2�����JM , with common modes, In � Jm, yields an pN �M � 2q-
order tensor, C P RI1�����In�1�In�1�����IN�J1�����Jm�1�Jm�1�����JM , in
the form (see Figure 2.12(a))

C � A �mn B, (2.16)
3In the literature, sometimes the symbol �n is replaced by
n.

288 Tensor Operations and Tensor Network Architectures

(a)

Scalar

Vector

Matrix

Lower-order
Tensor

=

=

=

=

R1

R1 R3 R1

R3

R1

R2
R3

R4

R1

R2 R3

R4

R1

R2 R3

R4

R1

R2 R3

R4

R1

R2

R4

R4

R2

G

G

G

G

G

(b) (c)

R1
R2

R4
B

(1) R5
B

(5)

B
(4)

B
(3)B

(2)

I1

I2
I3

I4

I5

R3

G

R4

R1

R2

R3

b3

b2

b1 G

Figure 2.11: Multilinear tensor products in a compact tensor network notation.
(a) Transforming and/or compressing a 4th-order tensor, G P RR1�R2�R3�R4 , into a
scalar, vector, matrix and 3rd-order tensor, by multilinear products of the tensor and
vectors. Note that a mode-n multiplication of a tensor by a matrix does not change
the order of a tensor, while a multiplication of a tensor by a vector reduces its order
by one. For example, a multilinear product of a 4th-order tensor and four vectors (top
diagram) yields a scalar. (b) Multilinear product of a tensor, G P RR1�R2�����R5 , and
five factor (component) matrices, Bpnq P RIn�Rn (n � 1, 2, . . . , 5), yields the tensor
C � G�1Bp1q�2Bp2q�3Bp3q�4Bp4q�5Bp5q P RI1�I2�����I5 . This corresponds to the
Tucker format. (c) Multilinear product of a 4th-order tensor, G P RR1�R2�R3�R4 ,
and three vectors, bn P RRn pn � 1, 2, 3q, yields the vector c � G�̄1b1�̄2b2�̄3b3 P
RR4 .

2.1. Basic Multilinear Operations 289

I1

I2 J3

J4

A B

I4

I J3 2=

A B

I1

I2

J5

J4

I5 1=J

I4 2=J

I3 3=J

IN J1

Jm+1

JM

A BI Jn m=I1

I2

)b()a(

c() d()

...

... ... A B
I2

I3

I1

J1
...

Figure 2.12: Examples of contractions of two tensors. (a) Multilinear product of
two tensors is denoted by A �m

n B. (b) Inner product of two 3rd-order tensors
yields a scalar c � xA,By � A �1,2,3

1,2,3 B � A �̄ B � °
i1,i2,i3

ai1,i2,i3 bi1,i2,i3 .
(c) Tensor contraction of two 4th-order tensors, along mode-3 in A and mode-
2 in B, yields a 6th-order tensor, C � A �2

3 B P RI1�I2�I4�J1�J3�J4 , with
entries ci1,i2,i4,j1,j3,j4 � °

i3
ai1,i2,i3,i4 bj1,i3,j3,j4 . (d) Tensor contraction of two

5th-order tensors along the modes 3, 4, 5 in A and 1, 2, 3 in B yields a 4th-order
tensor, C � A �1,2,3

5,4,3 B P RI1�I2�J4�J5 .

for which the entries are computed as

ci1, ..., in�1, in�1, ...,iN , j1, ..., jm�1, jm�1, ..., jM �

�
Iņ

in�1
ai1,...,in�1, in, in�1, ..., iN bj1, ..., jm�1, in, jm�1, ..., jM . (2.17)

This operation is referred to as a contraction of two tensors in single
common mode.

Tensors can be contracted in several modes or even in all modes, as
illustrated in Figure 2.12. For convenience of presentation, the super-
or sub-index, e.g., m,n, will be omitted in a few special cases. For
example, the multilinear product of the tensors, A P RI1�I2�����IN and
B P RJ1�J2�����JM , with common modes, IN � J1, can be written as

C � A �1
N B � A�1 B � A
B P RI1�I2�����IN�1�J2�����JM , (2.18)

290 Tensor Operations and Tensor Network Architectures

for which the entries

ci1,i2,...,iN�1,j2,j3,...,jM �
IŅ

iN�1
ai1,i2,...,iN biN ,j2,...,jM .

In this notation, the multiplications of matrices and vectors can be
written as, A �1

2 B � A �1 B � AB, A �2
2 B � ABT, A �1,2

1,2 B �
A�̄B � xA,By, and A�1

2 x � A�1 x � Ax.
Note that tensor contractions are, in general not associative or com-

mutative, since when contracting more than two tensors, the order has
to be precisely specified (defined), for example, A�ba pB�dcCq for b c.

It is also important to note that a matrix-by-vector product,
y � Ax P RI1���IN , with A P RI1���IN�J1���JN and x P RJ1���JN , can be ex-
pressed in a tensorized form via the contraction operator as Y � A�̄X,
where the symbol �̄ denotes the contraction of all modes of the tensor
X (see Section 4.5).

Unlike the matrix-by-matrix multiplications for which several
efficient parallel schemes have been developed, the number of efficient
algorithms for tensor contractions is rather limited. In practice, due to
the high computational complexity of tensor contractions, especially
for tensor networks with loops, this operation is often performed
approximately (Lubasch et al., 2014; Di Napoli et al., 2014; Pfeifer
et al., 2014; Kao et al., 2015).

Tensor trace. Consider a tensor with partial self-contraction modes,
where the outer (or open) indices represent physical modes of the ten-
sor, while the inner indices indicate its contraction modes. The Tensor
Trace operator performs the summation of all inner indices of the ten-
sor (Gu et al., 2009). For example, a tensor A of size R � I � R has
two inner indices, modes 1 and 3 of size R, and one open mode of size
I. Its tensor trace yields a vector of length I, given by

a � TrpAq �
¸
r

Apr, :, rq ,

the elements of which are the traces of its lateral slices Ai P RR�R

pi � 1, 2, . . . , Iq, that is, (see bottom of Figure 2.13)

a � rtrpA1q, . . . , trpAiq, . . . , trpAIqsT. (2.19)

2.1. Basic Multilinear Operations 291

I A

A1

A2

A3

A4

I
R =

tr()Ac

A1A2A3A4)

A

I

tr(c

aiii
=

a
R

I J

I I

K

Ax y

AX X

tr(Ay x) x AyT T

tr(X AX)T

[a1 a2, ,..., aI
]T

ai r
A(r,i,r)

1

Figure 2.13: Tensor network notation for the traces of matrices (panels 1-
4 from the top), and a (partial) tensor trace (tensor self-contraction) of a 3rd-
order tensor (bottom panel). Note that graphical representations of the trace
of matrices intuitively explain the permutation property of trace operator, e.g.,
trpA1A2A3A4q � trpA3A4A1A2q.

A tensor can have more than one pair of inner indices, e.g., the tensor
A of size R� I �S�S� I �R has two pairs of inner indices, modes 1
and 6, modes 3 and 4, and two open modes (2 and 5). The tensor trace
of A therefore returns a matrix of size I � I defined as

TrpAq �
¸
r

¸
s

Apr, :, s, s, :, rq .

A variant of Tensor Trace (Lee and Cichocki, 2016c) for the
case of the partial tensor self-contraction considers a tensor A P
RR�I1�I2�����IN�R and yields a reduced-order tensor rA � TrpAq P

292 Tensor Operations and Tensor Network Architectures

I1 I2 I3 I4 I5 I6

X

I1 I2 I3

I4

I5 I6

I7 I8
I9

I7 I8

I9

MPS

PEPS

TTNS

I1 I2 I3

I4

I5

I6

I7 I8

I9

I1 I2 I3 I4

I5

I6 I7

I8

I9

Figure 2.14: Illustration of the decomposition of a 9th-order tensor, X P
RI1�I2�����I9 , into different forms of tensor networks (TNs). In general, the ob-
jective is to decompose a very high-order tensor into sparsely (weakly) connected
low-order and small size tensors, typically 3rd-order and 4th-order tensors called
cores. Top: The Tensor Chain (TC) model, which is equivalent to the Matrix Prod-
uct State (MPS) with periodic boundary conditions (PBC). Middle: The Projected
Entangled-Pair States (PEPS), also with PBC. Bottom: The Tree Tensor Network
State (TTNS).

RI1�I2�����IN , with entries

rApi1, i2, . . . , iN q � Ŗ

r�1
Apr, i1, i2, . . . , iN , rq, (2.20)

Conversions of tensors to scalars, vectors, matrices or tensors with re-
shaped modes and/or reduced orders are illustrated in Figures 2.11–
2.13.

2.2 Graphical Representation of Fundamental Tensor Net-
works

Tensor networks (TNs) represent a higher-order tensor as a set of
sparsely interconnected lower-order tensors (see Figure 2.14), and

2.2. Graphical Representation of Fundamental Tensor Networks 293

in this way provide computational and storage benefits. The lines
(branches, edges) connecting core tensors correspond to the contracted
modes while their weights (or numbers of branches) represent the rank
of a tensor network4, whereas the lines which do not connect core ten-
sors correspond to the “external” physical variables (modes, indices)
within the data tensor. In other words, the number of free (dangling)
edges (with weights larger than one) determines the order of a data
tensor under consideration, while set of weights of internal branches
represents the TN rank.

2.2.1 Hierarchical Tucker (HT) and Tree Tensor Network State
(TTNS) Models

Hierarchical Tucker (HT) decompositions (also called hierarchical ten-
sor representation) have been introduced in (Hackbusch and Kühn,
2009) and also independently in (Grasedyck, 2010), see also (Hack-
busch, 2012; Lubich et al., 2013; Uschmajew and Vandereycken, 2013;
Kressner and Tobler, 2014; Bachmayr et al., 2016) and references
therein5. Generally, the HT decomposition requires splitting the set
of modes of a tensor in a hierarchical way, which results in a binary
tree containing a subset of modes at each branch (called a dimension
tree); examples of binary trees are given in Figures 2.15, 2.16 and 2.17.
In tensor networks based on binary trees, all the cores are of order of
three or less. Observe that the HT model does not contain any cycles
(loops), i.e., no edges connecting a node with itself. The splitting op-
eration of the set of modes of the original data tensor by binary tree
edges is performed through a suitable matricization.

Choice of dimension tree. The dimension tree within the HT
format is chosen a priori and defines the topology of the HT decompo-
sition. Intuitively, the dimension tree specifies which groups of modes

4Strictly speaking, the minimum set of internal indices tR1, R2, R3, . . .u is called
the rank (bond dimensions) of a specific tensor network.

5The HT model was developed independently, from a different perspective, in
the chemistry community under the name MultiLayer Multi-Configurational Time-
Dependent Hartree method (ML-MCTDH) (Wang and Thoss, 2003). Furthermore,
the PARATREE model, developed independently for signal processing applications
(Salmi et al., 2009), is quite similar to the HT model (Grasedyck, 2010).

294 Tensor Operations and Tensor Network Architectures

I8

I1

I2

I3

I4

I5

I6

I7

�

I8

I7

I5

I6

I4

I3
I2

I1

Figure 2.15: The standard Tucker decomposition of an 8th-order tensor into a core
tensor (red circle) and eight factor matrices (green circles), and its transformation
into an equivalent Hierarchical Tucker (HT) model using interconnected smaller size
3rd-order core tensors and the same factor matrices.

are “separated” from other groups of modes, so that a sequential HT
decomposition can be performed via a (truncated) SVD applied to a
suitably matricized tensor. One of the simplest and most straightfor-
ward choices of a dimension tree is the linear and unbalanced tree,
which gives rise to the tensor-train (TT) decomposition, discussed in
detail in Section 2.2.2 and Section 4 (Oseledets, 2011; Oseledets and
Tyrtyshnikov, 2009).

Using mathematical formalism, a dimension tree is a binary tree
TN , N ¡ 1, which satisfies that

(i) all nodes t P TN are non-empty subsets of {1, 2,. . . , N},

(ii) the set troot � t1, 2, . . . , Nu is the root node of TN , and

(iii) each non-leaf node has two children u, v P TN such that t is a
disjoint union t � uY v.

The HT model is illustrated through the following Example.

Example. Suppose that the dimension tree T7 is given, which gives

2.2. Graphical Representation of Fundamental Tensor Networks 295

Order 3: Order 4:

Order 5:

Order 6:

Order 7:

Order 8:

Figure 2.16: Examples of HT/TT models (formats) for distributed Tucker de-
compositions with 3rd-order cores, for different orders of data tensors. Green circles
denote factor matrices (which can be absorbed by core tensors), while red circles
indicate cores. Observe that the representations are not unique.

the HT decomposition illustrated in Figure 2.17. The HT decomposi-
tion of a tensor X P RI1�����I7 with given set of integers tRtutPT7 can

296 Tensor Operations and Tensor Network Architectures

G

G
(123)

G
(4567)

G
(67)

G
(45)

G (23)
B

(1)

B(2) B(3) B(4)
B(5)

B
(6)

B
(7)

R123

R 1

1

R 23

R 3
R 2

I2 I3 I4 I5 I6 I7

R4567

R67

R7

R45

R4 R5
R6

・・・(12 7)

I

Figure 2.17: Example illustrating the HT decomposition for a 7th-order data
tensor.

be expressed in the tensor and vector/matrix forms as follows. Let in-
termediate tensors Xptq with t � tn1, . . . , nku � t1, . . . , 7u have the
size In1 � In2 � � � � � Ink

� Rt. Let Xptq
rt � Xptqp:, . . . , :, rtq denote the

subtensor of Xptq and Xptq � Xptq
 k¡ P RIn1In2 ���Ink

�Rt denote the corre-
sponding unfolded matrix. Let Gptq P RRu�Rv�Rt be core tensors where
u and v denote respectively the left and right children of t.

The HT model shown in Figure 2.17 can be then described mathe-
matically in the vector form as

vecpXq � pXp123q bL Xp4567qq vecpGp12���7qq,

Xp123q � pBp1q bL Xp23qq Gp123q
 2¡ , Xp4567q � pXp45q bL Xp67qq Gp4567q

 2¡ ,

Xp23q � pBp2q bL Bp3qq Gp23q
 2¡, Xp45q � pBp4q bL Bp5qq Gp45q

 2¡,

Xp67q � pBp6q bL Bp7qq Gp67q
 2¡.

2.2. Graphical Representation of Fundamental Tensor Networks 297

An equivalent, more explicit form, using tensor notations becomes

X �
R123̧

r123�1

R4567¸
r4567�1

gp12���7q
r123,r4567 Xp123q

r123 �Xp4567q
r4567 ,

Xp123q
r123 �

R1̧

r1�1

R23̧

r23�1
gp123q
r1,r23,r123b

p1q
r1 �Xp23q

r23 ,

Xp4567q
r4567 �

R45̧

r45�1

R67̧

r67�1
gp4567q
r45,r67,r4567X

p45q
r45 �Xp67q

r67 ,

Xp23q
r23 �

R2̧

r2�1

R3̧

r3�1
gp23q
r2,r3,r23 bp2q

r2 � bp3q
r3 ,

Xp45q
r45 �

R4̧

r4�1

R5̧

r5�1
gp45q
r4,r5,r45 bp4q

r4 � bp5q
r5 ,

Xp67q
r67 �

R6̧

r6�1

R7̧

r7�1
gp67q
r6,r7,r67 bp6q

r6 � bp7q
r7 .

The TT/HT decompositions lead naturally to a distributed Tucker
decomposition, where a single core tensor is replaced by interconnected
cores of lower-order, resulting in a distributed network in which only
some cores are connected directly with factor matrices, as illustrated
in Figure 2.15. Figure 2.16 illustrates exemplary HT/TT structures
for data tensors of various orders (Tobler, 2012; Kressner and Tobler,
2014). Note that for a 3rd-order tensor, there is only one HT tensor
network representation, while for a 5th-order we have 5, and for a 10th-
order tensor there are 11 possible HT architectures.

A simple approach to reduce the size of a large-scale core tensor
in the standard Tucker decomposition (typically, for N ¡ 5) would
be to apply the concept of distributed tensor networks (DTNs). The

298 Tensor Operations and Tensor Network Architectures

Figure 2.18: The Tree Tensor Network State (TTNS) with 3rd-order and 4th-
order cores for the representation of 24th-order data tensors. The TTNS can be
considered both as a generalization of HT/TT format and as a distributed model
for the Tucker-N decomposition (see Section 3.3).

DTNs assume two kinds of cores (blocks): (i) the internal cores (nodes)
which are connected only to other cores and have no free edges and
(ii) external cores which do have free edges representing physical modes
(indices) of a given data tensor (see also Section 2.2.4). Such distributed
representations of tensors are not unique.

The tree tensor network state (TTNS) model, whereby all nodes
are of 3rd-order or higher, can be considered as a generalization of the
TT/HT decompositions, as illustrated by two examples in Figure 2.18
(Nakatani and Chan, 2013). A more detailed mathematical description
of the TTNS is given in Section 3.3.

2.2.2 Tensor Train (TT) Network

The Tensor Train (TT) format can be interpreted as a special case of
the HT format, where all nodes (TT-cores) of the underlying tensor
network are connected in cascade (or train), i.e., they are aligned while
factor matrices corresponding to the leaf modes are assumed to be iden-
tities and thus need not be stored. The TT format was first proposed
in numerical analysis and scientific computing in (Oseledets, 2011; Os-
eledets and Tyrtyshnikov, 2009). Figure 2.19 presents the concept of

2.2. Graphical Representation of Fundamental Tensor Networks 299

(a)

I1

...

R1
R2

R1

I2

(2)
G

(1)
G i1

()n
G

()N
G

R1 R2

I2 INI1 In

G(2) G()nG(1) G()N
Rn-1 Rn RN-1

Rn-1

In

Rn

RN-1

IN

...

...

...

...

...

...

...

i2 in Ni

(b)
...

R2

R1

I2

(2)
G

(1)
G i1

()n
G

R1 R2

I2 INI1 In

G(2) G()nG(1) G()N
Rn-1 Rn RN-1

Rn-1

In

Rn

...

...

...

i2 in

...

...IN

RN

RN-1

...

R1

RN

I1

...

RN

G i
()N

N

Figure 2.19: Concepts of the tensor train (TT) and tensor chain (TC) de-
compositions (MPS with OBC and PBC, respectively) for an Nth-order data
tensor, X P RI1�I2�����IN . (a) Tensor Train (TT) can be mathematically de-
scribed as xi1,i2,...,iN � Gp1q

i1
Gp2q

i2
� � � GpNq

iN
, where (bottom panel) the slice

matrices of TT-cores Gpnq P RRn�1�In�Rn are defined as Gpnq
in

� Gpnqp:, in, :q
P RRn�1�Rn with R0 � RN � 1. (b) For the Tensor Chain (TC), the en-
tries of a tensor are expressed as xi1,i2,...,iN � tr pGp1q

i1
Gp2q

i2
� � � GpNq

iN
q �

R1̧

r1�1

R2̧

r2�1

� � �
RŅ

rN�1

g
p1q
rN , i1, r1

g
p2q
r1, i2, r2

� � � gpNq
rN�1, iN , rN

, where (bottom panel) the lat-

eral slices of the TC-cores are defined as Gpnq
in

� Gpnqp:, in, :q P RRn�1�Rn and
g
pnq
rn�1, in, rn

� Gpnqprn�1, in, rnq for n � 1, 2, . . . , N , with R0 � RN ¡ 1. Notice
that TC/MPS is effectively a TT with a single loop connecting the first and the last
core, so that all TC-cores are of 3rd-order.

300 Tensor Operations and Tensor Network Architectures

TT decomposition for an Nth-order tensor, the entries of which can
be computed as a cascaded (multilayer) multiplication of appropriate
matrices (slices of TT-cores). The weights of internal edges (denoted by
tR1, R2, . . . , RN�1u) represent the TT-rank. In this way, the so aligned
sequence of core tensors represents a “tensor train” where the role of
“buffers” is played by TT-core connections. It is important to highlight
that TT networks can be applied not only for the approximation of
tensorized vectors but also for scalar multivariate functions, matrices,
and even large-scale low-order tensors, as illustrated in Figure 2.20 (for
more detail see Section 4).

In the quantum physics community, the TT format is known
as the Matrix Product State (MPS) representation with the Open
Boundary Conditions (OBC) and was introduced in 1987 as the
ground state of the 1D AKLT model (Affleck et al., 1987). It was
subsequently extended by many researchers6 (see (White, 1993; Vidal,
2003; Perez-Garcia et al., 2007; Verstraete et al., 2008; Schollwöck,
2013; Huckle et al., 2013; Orús, 2014) and references therein).

Advantages of TT formats. An important advantage of the
TT/MPS format over the HT format is its simpler practical imple-
mentation, as no binary tree needs to be determined (see Section 4).
Another attractive property of the TT-decomposition is its simplicity
when performing basic mathematical operations on tensors directly in
the TT-format (that is, employing only core tensors). These include
matrix-by-matrix and matrix-by-vector multiplications, tensor addi-
tion, and the entry-wise (Hadamard) product of tensors. These op-
erations produce tensors, also in the TT-format, which generally ex-
hibit increased TT-ranks. A detailed description of basic operations
supported by the TT format is given in Section 4.5. Moreover, only

6In fact, the TT was rediscovered several times under different names: MPS,
valence bond states, and density matrix renormalization group (DMRG) (White,
1993). The DMRG usually refers not only to a tensor network format but also the
efficient computational algorithms (see also (Schollwöck, 2011; Hubig et al., 2015)
and references therein). Also, in quantum physics the ALS algorithm is called the
one-site DMRG, while the Modified ALS (MALS) is known as the two-site DMRG
(for more detail, see Part 2).

2.2. Graphical Representation of Fundamental Tensor Networks 301

a

A

A

I I1= I2…IN

I I1= I2…IN

J J1= J2…JN

K K1= K2…KN

I J

I1 I2 I3 IN

I1 I2 I3 IN

J1 J2 J3 JN

K1 K2 3K

I1
J1 I2

J2 I3
J3

KN

IN
JN

Figure 2.20: Forms of tensor train decompositions for a vector, a P RI , matrix,
A P RI�J , and 3rd-order tensor, A P RI�J�K (by applying a suitable tensorization).

TT-cores need to be stored and processed, which makes the number of
parameters to scale linearly in the tensor order, N , of a data tensor and
all mathematical operations are then performed only on the low-order
and relatively small size core tensors.

The TT rank is defined as an pN � 1q-tuple of the form

rankTTpXq � rTT � tR1, . . . , RN�1u, Rn � rankpX n¡q, (2.21)

where X n¡ P RI1���In�In�1���IN is an nth canonical matricization of
the tensor X. Since the TT rank determines memory requirements
of a tensor train, it has a strong impact on the complexity, i.e., the
suitability of tensor train representation for a given raw data tensor.

The number of data samples to be stored scales linearly in the tensor
order, N , and the size, I, and quadratically in the maximum TT rank
bound, R, that is

Ņ

n�1
Rn�1RnIn � OpNR2Iq, R :� max

n
tRnu, I :� max

n
tInu. (2.22)

This is why it is crucially important to have low-rank TT approxima-
tions7. A drawback of the TT format is that the ranks of a tensor train

7In the worst case scenario the TT ranks can grow up to IpN{2q for an Nth-order
tensor.

302 Tensor Operations and Tensor Network Architectures

PEPS PEPO

MPS MPO

Figure 2.21: Class of 1D and 2D tensor train networks with open boundary
conditions (OBC): the Matrix Product State (MPS) or (vector) Tensor Train (TT),
the Matrix Product Operator (MPO) or Matrix TT, the Projected Entangled-Pair
States (PEPS) or Tensor Product State (TPS), and the Projected Entangled-Pair
Operators (PEPO).

decomposition depend on the ordering (permutation) of the modes,
which gives different size of cores for different ordering. To solve this
challenging permutation problem, we can estimate mutual information
between individual TT cores pairwise (see (Barcza et al., 2011; Ehlers
et al., 2015)). The procedure can be arranged in the following three
steps: (i) Perform a rough (approximate) TT decomposition with rel-
ative low TT-rank and calculate mutual information between all pairs
of cores, (ii) order TT cores in such way that the mutual information
matrix is close to a diagonal matrix, and finally, (iii) perform TT de-
composition again using the so optimised order of TT cores (see also
Part 2).

2.2.3 Tensor Networks with Cycles: PEPS, MERA and Honey-
Comb Lattice (HCL)

An important issue in tensor networks is the rank-complexity trade-off
in the design. Namely, the main idea behind TNs is to dramatically

2.2. Graphical Representation of Fundamental Tensor Networks 303

reduce computational cost and provide distributed storage and com-
putation through low-rank TN approximation. However, the TT/HT
ranks, Rn, of 3rd-order core tensors sometimes increase rapidly with
the order of a data tensor and/or increase of a desired approximation
accuracy, for any choice of a tree of tensor network. The ranks can
be often kept under control through hierarchical two-dimensional TT
models called the PEPS (Projected Entangled Pair States8) and PEPO
(Projected Entangled Pair Operators) tensor networks, which contain
cycles, as shown in Figure 2.21. In the PEPS and PEPO, the ranks are
kept considerably smaller at a cost of employing 5th- or even 6th-order
core tensors and the associated higher computational complexity with
respect to the order (Verstraete et al., 2008; Evenbly and Vidal, 2009;
Schuch et al., 2010).

Even with the PEPS/PEPO architectures, for very high-order ten-
sors, the ranks (internal size of cores) may increase rapidly with an
increase in the desired accuracy of approximation. For further control
of the ranks, alternative tensor networks can be employed, such as: (1)
the Honey-Comb Lattice (HCL) which uses 3rd-order cores, and (2)
the Multi-scale Entanglement Renormalization Ansatz (MERA) which
consist of both 3rd- and 4th-order core tensors (see Figure 2.22) (Gio-
vannetti et al., 2008; Orús, 2014; Matsueda, 2016). The ranks are often
kept considerably small through special architectures of such TNs, at
the expense of higher computational complexity with respect to tensor
contractions due to many cycles.

Compared with the PEPS and PEPO formats, the main advantage
of the MERA formats is that the order and size of each core tensor
in the internal tensor network structure is often much smaller, which
dramatically reduces the number of free parameters and provides more
efficient distributed storage of huge-scale data tensors. Moreover, TNs
with cycles, especially the MERA tensor network allow us to model
more complex functions and interactions between variables.

8An “entangled pair state” is a tensor that cannot be represented as an elemen-
tary rank-1 tensor. The state is called “projected” because it is not a real physical
state but a projection onto some subspace. The term “pair” refers to the entan-
glement being considered only for maximally entangled state pairs (Orús, 2014;
Handschuh, 2015).

304 Tensor Operations and Tensor Network Architectures

(a) (b)

Figure 2.22: Examples of TN architectures with loops. (a) Honey-Comb Lattice
(HCL) for a 16th-order tensor. (b) MERA for a 32th-order tensor.

2.2.4 Concatenated (Distributed) Representation of TT Networks

Complexity of algorithms for computation (contraction) on tensor net-
works typically scales polynomially with the rank, Rn, or size, In, of
the core tensors, so that the computations quickly become intractable
with the increase in Rn. A step towards reducing storage and compu-
tational requirements would be therefore to reduce the size (volume) of
core tensors by increasing their number through distributed tensor net-
works (DTNs), as illustrated in Figure 2.22. The underpinning idea is
that each core tensor in an original TN is replaced by another TN (see
Figure 2.23 for TT networks), resulting in a distributed TN in which
only some core tensors are associated with physical (natural) modes of
the original data tensor (Hübener et al., 2010). A DTN consists of two
kinds of relatively small-size cores (nodes), internal nodes which have
no free edges and external nodes which have free edges representing
natural (physical) indices of a data tensor.

The obvious advantage of DTNs is that the size of each core tensor
in the internal tensor network structure is usually much smaller than
the size of the initial core tensor; this allows for a better management
of distributed storage, and often in the reduction of the total num-
ber of network parameters through distributed computing. However,

2.2. Graphical Representation of Fundamental Tensor Networks 305

R1 R2

K1

I1

G
(2)

G
(-1)N

G
(1)

G
()N

J1

I2 IN-1
K2J2

IN
JN KN

RN-2 RN-1

JN-1 KN-1

I1

J1

K1

I2

J2

K2

IN-1

JN-1

KN-1

IN

JN

KN

I1

J1

K1

I2

J2

K2

IN-1

JN-1

KN-1

IN

JN

KN

Figure 2.23: Graphical representation of a large-scale data tensor via its TT
model (top panel), the PEPS model of the TT (third panel), and its transformation
to a distributed 2D (second from bottom panel) and 3D (bottom panel) tensor train
networks.

306 Tensor Operations and Tensor Network Architectures

Table 2.2: Links between tensor networks (TNs) and graphical models used in
Machine Learning (ML) and Statistics. The corresponding categories are not exactly
the same, but have general analogies.

Tensor Networks Neural Networks and Graphical Models in
ML/Statistics

TT/MPS Hidden Markov Models (HMM)

HT/TTNS Deep Learning Neural Networks, Gaussian
Mixture Model (GMM)

PEPS Markov Random Field (MRF), Conditional
Random Field (CRF)

MERA Wavelets, Deep Belief Networks (DBN)

ALS, DMRG/MALS
Algorithms

Forward-Backward Algorithms, Block Non-
linear Gauss-Seidel Methods

compared to initial tree structures, the contraction of the resulting dis-
tributed tensor network becomes much more difficult because of the
loops in the architecture.

2.2.5 Links between TNs and Machine Learning Models

Table 2.2 summarizes the conceptual connections of tensor net-
works with graphical and neural network models in machine learn-
ing and statistics (Morton, 2012; Critch, 2013; Critch and Morton,
2014; Kazeev et al., 2014; Novikov and Rodomanov, 2014; Yang and
Hospedales, 2016; Cohen et al., 2016; Cohen and Shashua, 2016; Even-
bly and White, 2016). More research is needed to establish deeper and
more precise relationships.

2.2.6 Changing the Structure of Tensor Networks

An advantage of the graphical (graph) representation of tensor net-
works is that the graphs allow us to perform complex mathematical
operations on core tensors in an intuitive and easy to understand way,

2.2. Graphical Representation of Fundamental Tensor Networks 307

without the need to resort to complicated mathematical expressions.
Another important advantage is the ability to modify (optimize) the
topology of a TN, while keeping the original physical modes intact. The
so optimized topologies yield simplified or more convenient graphical
representations of a higher-order data tensor and facilitate practical ap-
plications (Zhao et al., 2010; Hübener et al., 2010; Handschuh, 2015).
In particular:

• A change in topology to a HT/TT tree structure provides re-
duced computational complexity, through sequential contractions
of core tensors and enhanced stability of the corresponding algo-
rithms;

• Topology of TNs with cycles can be modified so as to completely
eliminate the cycles or to reduce their number;

• Even for vastly diverse original data tensors, topology modifica-
tions may produce identical or similar TN structures which make
it easier to compare and jointly analyze block of interconnected
data tensors. This provides opportunity to perform joint group
(linked) analysis of tensors by decomposing them to TNs.

It is important to note that, due to the iterative way in which
tensor contractions are performed, the computational requirements
associated with tensor contractions are usually much smaller for
tree-structured networks than for tensor networks containing many
cycles. Therefore, for stable computations, it is advantageous to
transform a tensor network with cycles into a tree structure.

Tensor Network transformations. In order to modify tensor net-
work structures, we may perform sequential core contractions, followed
by the unfolding of these contracted tensors into matrices, matrix fac-
torizations (typically truncated SVD) and finally reshaping of such ma-
trices back into new core tensors, as illustrated in Figures 2.24.

The example in Figure 2.24(a) shows that, in the first step a con-
traction of two core tensors, Gp1q P RI1�I2�R and Gp2q P RR�I3�I4 , is

308 Tensor Operations and Tensor Network Architectures

(a)

R
I4

I3 I2

I1
G(1) G(2)

I1

I2 I3

I4

G(1,2)
I1I4

I2I3

U

V

G(1,2)

I4

I3

I1

I2

(1)G

(2)G

I1

I4

I2 I3

I1I4

I2I3

R

R

R

Contraction Matricization SVD Reshaping

(b)

noitcartnoCDVS

Figure 2.24: Illustration of basic transformations on a tensor network. (a) Con-
traction, matricization, matrix factorization (SVD) and reshaping of matrices back
into tensors. (b) Transformation of a Honey-Comb lattice into a Tensor Chain (TC)
via tensor contractions and the SVD.

performed to give the tensor

Gp1,2q � Gp1q �1 Gp2q P RI1�I2�I3�I4 , (2.23)

with entries gp1,2qi1,i2,i3,i4
� °R

r�1 g
p1q
i1,i2,r

g
p2q
r,i3,i4

. In the next step, the tensor
Gp1,2q is transformed into a matrix via matricization, followed by a low-
rank matrix factorization using the SVD, to give

Gp1,2q
i1i4, i2i3

� USVT P RI1I4�I2I3 . (2.24)

In the final step, the factor matrices, US1{2 P RI1I4�R1 and VS1{2 P
RR1�I2I3 , are reshaped into new core tensors, G1p1q P RI1�R1�I4 and
G1p2q P RR1�I2�I3 .

2.2. Graphical Representation of Fundamental Tensor Networks 309

I1 I2G(1) G(2)

G(4) G(3)

I4 I3

R1

R3

R4

(4)G

(1)G
(2)G

(3 ,4)G

(3)G

(1,2)G

R4 R2

R3I4 I3

I1 I2

I1 I2

I4 I3

1R
R R2 4(4)G (3)G

R3I4 I3

(1)G (2)G

R2

I1 I2
1R

R4

(1)G
(2)G

(3)G

1R

R R2 4

3R
(4)G

(4)G (3)G

I4 I3

(1)G (2)GI1 I2
1R

2R

3R

I1 I2

I4 I3

R2

Figure 2.25: Transformation of the closed-loop Tensor Chain (TC) into the open-
loop Tensor Train (TT). This is achieved by suitable contractions, reshaping and
decompositions of core tensors.

The above tensor transformation procedure is quite general, and
is applied in Figure 2.24(b) to transform a Honey-Comb lattice into
a tensor chain (TC), while Figure 2.25 illustrates the conversion of a
tensor chain (TC) into TT/MPS with OBC.

To convert a TC into TT/MPS, in the first step, we perform a
contraction of two tensors, Gp1q P RI1�R4�R1 and Gp2q P RR1�R2�I2 ,
as

Gp1,2q � Gp1q �1 Gp2q P RI1�R4�R2�I2 ,

for which the entries gp1,2qi1,r4,r2,i2
� °R1

r1�1 g
p1q
i1,r4,r1

g
p2q
r1,r2,i2

. In the next
step, the tensor Gp1,2q is transformed into a matrix, followed by a trun-
cated SVD

Gp1,2q
p1q � USVT P RI1�R4R2I2 .

Finally, the matrices, U P RI1�R1
1 and VS P RR1

1�R4R2I2 , are re-
shaped back into the core tensors, G1p1q � U P R1�I1�R1

1 and G1p2q P

310 Tensor Operations and Tensor Network Architectures

RR1
1�R4�R2�I2 . The procedure is repeated all over again for different

pairs of cores, as illustrated in Figure 2.25.

2.3 Generalized Tensor Network Formats

The fundamental TNs considered so far assume that the links between
the cores are expressed by tensor contractions. In general, links between
the core tensors (or tensor sub-networks) can also be expressed via
other mathematical linear/multilinear or nonlinear operators, such as
the outer (tensor) product, Kronecker product, Hadamard product and
convolution operator. For example, the use of the outer product leads
to Block Term Decomposition (BTD) (De Lathauwer, 2008; De Lath-
auwer and Nion, 2008; De Lathauwer, 2011; Sorber et al., 2013) and
use the Kronecker products yields to the Kronecker Tensor Decom-
position (KTD) (Ragnarsson, 2012; Phan et al., 2012, 2013b). Block
term decompositions (BTD) are closely related to constrained Tucker
formats (with a sparse block Tucker core) and the Hierarchical Outer
Product Tensor Approximation (HOPTA), which be employed for very
high-order data tensors (Cichocki, 2014).

Figure 2.26 illustrates such a BTD model for a 6th-order tensor,
where the links between the components are expressed via outer prod-
ucts, while Figure 2.27 shows a more flexible Hierarchical Outer Prod-
uct Tensor Approximation (HOPTA) model suitable for very high-order
tensors.

Observe that the fundamental operator in the HOPTA generalized
tensor networks is outer (tensor) product, which for two tensors A P
RI1�����IN and B P RJ1�����JM , of arbitrary orders N and M , is defined
as an pN �Mqth-order tensor C � A �B P RI1�����IN�J1�����JM , with
entries c i1,...,iN , j1,...,jM � ai1,...,iN bj1,...,jM . This standard outer product
of two tensors can be generalized to a nonlinear outer product as follows

pA �f Bqi1,...,iN ,j1,...,JM
� f pai1,...,iN , bj1,...,jM q , (2.25)

where fp�, �q is a suitably designed nonlinear function with associa-
tive and commutative properties. In a similar way, we can define
other nonlinear tensor products, for example, Hadamard, Kronecker or
Khatri–Rao products and employ them in generalized nonlinear tensor

2.3. Generalized Tensor Network Formats 311

+ . . . ++A1 A2 ARb1
(3)

b1
(2)

b1
(1) b2

(1) b2
(2)

b2
(3)

bR
(1) bR

(2)

bR
(3)

+ ++ . . .

X A1 A2 AR

() () ()b1
(1) b1

(2) b1
(3) b2

(1) b2
(2) b2

(3) bR
(1) bR

(2) bR
(3)

X

Figure 2.26: Block term decomposition (BTD) of a 6th-order block tensor, to yield
X � °R

r�1 Ar �
�
bp1q

r � bp2q
r � bp3q

r

	
(top panel), for more detail see (De Lathauwer,

2008; Sorber et al., 2013). BTD in the tensor network notation (bottom panel).
Therefore, the 6th-order tensor X is approximately represented as a sum of R terms,
each of which is an outer product of a 3rd-order tensor, Ar, and another a 3rd-order,
rank-1 tensor, bp1q

r �bp2q
r �bp3q

r (in dashed circle), which itself is an outer product of
three vectors.

networks. The advantage of the HOPTA model over other TN models
is its flexibility and the ability to model more complex data structures
by approximating very high-order tensors through a relatively small
number of low-order cores.

The BTD, and KTD models can be expressed mathematically, for
example, in simple nested (hierarchical) forms, given by

BTD : X �
Ŗ

r�1
pAr �Brq, (2.26)

KTD : X̃ �
Ŗ

r�1
pAr bBrq, (2.27)

where, e.g., for BTD, each factor tensor can be represented recursively
as Ar �

°R1
r1�1pAp1q

r1 �Bp1q
r1 q or Br �

°R2
r2�1 Ap2q

r2 �Bp2q
r2 .

Note that the 2Nth-order subtensors, Ar �Br and Ar bBr, have
the same elements, just arranged differently. For example, if X � A�B

312 Tensor Operations and Tensor Network Architectures

+
X

+

X
β ()A Bp p p

+

α ()A br r r

α ()A brr r

β ()cpA Bp
X

α ()A B Cr rr r

α ()A Brr r

X

α ()A Br rr

(1) (2) (3)()q q qb b bλq

p p

Figure 2.27: Conceptual model of the HOPTA generalized tensor network, illus-
trated for data tensors of different orders. For simplicity, we use the standard outer
(tensor) products, but conceptually nonlinear outer products (see Eq. (2.25) and
other tensor product operators (Kronecker, Hadamard) can also be employed. Each
component (core tensor), Ar, Br and/or Cr, can be further hierarchically decom-
posed using suitable outer products, so that the HOPTA models can be applied to
very high-order tensors.

2.3. Generalized Tensor Network Formats 313

and X1 � A b B, where A P RJ1�J2�����JN and B P RK1�K2�����KN ,
then xj1,j2,...,jN ,k1,k2,...,kN

� x1k1�K1pj1�1q,...,kN�KN pjN�1q.
The definition of the tensor Kronecker product in the KTD model

assumes that both core tensors, Ar and Br, have the same order. This
is not a limitation, given that vectors and matrices can also be treated
as tensors, e.g, a matrix of dimension I�J as is also a 3rd-order tensor
of dimension I � J � 1. In fact, from the BTD/KTD models, many
existing and new TDs/TNs can be derived by changing the structure
and orders of factor tensors, Ar and Br. For example:

• If Ar are rank-1 tensors of size I1 � I2 � � � � � IN , and Br are
scalars, @r, then (2.27) represents the rank-R CP decomposition;

• If Ar are rank-Lr tensors of size I1 � I2 � � � � � IR � 1� � � � � 1,
in the Kruskal (CP) format, and Br are rank-1 tensors of size
1 � � � � � 1 � IR�1 � � � � � IN , @r, then (2.27) expresses the
rank-(Lr � 1) BTD;

• If Ar and Br are expressed by KTDs, we arrive at the Nested Kro-
necker Tensor Decomposition (NKTD), a special case of which is
the Tensor Train (TT) decomposition. Therefore, the BTD model
in (2.27) can also be used for recursive TT-decompositions.

The generalized tensor network approach caters for a large variety of
tensor decomposition models, which may find applications in scientific
computing, signal processing or deep learning (see, eg., (De Lathauwer,
2011; Cichocki, 2013b, 2014; Phan et al., 2015b; Cohen and Shashua,
2016)).

In this monograph, we will mostly focus on the more established
Tucker and TT decompositions (and some of their extensions), due to
their conceptual simplicity, availability of stable and efficient algorithms
for their computation and the possibility to naturally extend these
models to more complex tensor networks. In other words, the Tucker
and TT models are considered here as simplest prototypes, which can
then serve as building blocks for more sophisticated tensor networks.

3
Constrained Tensor Decompositions: From
Two-way to Multiway Component Analysis

The component analysis (CA) framework usually refers to the applica-
tion of constrained matrix factorization techniques to observed mixed
signals in order to extract components with specific properties and/or
estimate the mixing matrix (Cichocki and Amari, 2003; Cichocki et al.,
2009; Comon and Jutten, 2010; De la Torre, 2012; Hyvärinen, 2013). In
the machine learning practice, to aid the well-posedness and uniqueness
of the problem, component analysis methods exploit prior knowledge
about the statistics and diversities of latent variables (hidden sources)
within the data. Here, by the diversities, we refer to different char-
acteristics, features or morphology of latent variables which allow us
to extract the desired components or features, for example, sparse or
statistically independent components.

3.1 Constrained Low-Rank Matrix Factorizations

Two-way Component Analysis (2-way CA), in its simplest form, can be
formulated as a constrained matrix factorization of typically low-rank,
in the form

X � AΛBT �E �
Ŗ

r�1
λr ar � br �E �

Ŗ

r�1
λr ar bT

r �E, (3.1)

where Λ � diagpλ1, . . . , λRq is an optional diagonal scaling matrix.
The potential constraints imposed on the factor matrices, A and/or B,

314

3.1. Constrained Low-Rank Matrix Factorizations 315

include orthogonality, sparsity, statistical independence, nonnegativity
or smoothness. In the bilinear 2-way CA in (3.1), X P RI�J is a known
matrix of observed data, E P RI�J represents residuals or noise, A �
ra1,a2, . . . ,aRs P RI�R is the unknown mixing matrix with R basis
vectors ar P RI , and depending on application, B � rb1,b2, . . . ,bRs
P RJ�R, is the matrix of unknown components, factors, latent variables,
or hidden sources, represented by vectors br P RJ (see Figure 3.2).

It should be noted that 2-way CA has an inherent symmetry. In-
deed, Eq. (3.1) could also be written as XT � BAT, thus interchanging
the roles of sources and mixing process.

Algorithmic approaches to 2-way (matrix) component analysis are
well established, and include Principal Component Analysis (PCA),
Robust PCA (RPCA), Independent Component Analysis (ICA), Non-
negative Matrix Factorization (NMF), Sparse Component Analysis
(SCA) and Smooth Component Analysis (SmCA) (Bach and Jordan,
2003; Cichocki et al., 2009; Bruckstein et al., 2009; Comon and Jutten,
2010; Kauppi et al., 2015; Yokota et al., 2016). These techniques have
become standard tools in blind source separation (BSS), feature extrac-
tion, and classification paradigms. The columns of the matrix B, which
represent different latent components, are then determined by specific
chosen constraints and should be, for example, (i) as statistically mu-
tually independent as possible for ICA; (ii) as sparse as possible for
SCA; (iii) as smooth as possible for SmCA; (iv) take only nonnegative
values for NMF.

Singular value decomposition (SVD) of the data matrix X P RI�J

is a special, very important, case of the factorization in Eq. (3.1), and
is given by

X � USVT �
Ŗ

r�1
σr ur � vr �

Ŗ

r�1
σr urvT

r , (3.2)

where U P RI�R and V P RJ�R are column-wise orthogonal matri-
ces and S P RR�R is a diagonal matrix containing only nonnegative
singular values σr in a monotonically non-increasing order.

According to the well known Eckart–Young theorem, the truncated
SVD provides the optimal, in the least-squares (LS) sense, low-rank

316 Multiway Component Analysis and Tensor Decompositions

matrix approximation1. The SVD, therefore, forms the backbone of
low-rank matrix approximations (and consequently low-rank tensor ap-
proximations).

Another virtue of component analysis comes from the ability to
perform simultaneous matrix factorizations

Xk � AkBT
k , pk � 1, 2, . . . ,Kq, (3.3)

on several data matrices, Xk, which represent linked datasets, subject
to various constraints imposed on linked (interrelated) component (fac-
tor) matrices. In the case of orthogonality or statistical independence
constraints, the problem in (3.3) can be related to models of group
PCA/ICA through suitable pre-processing, dimensionality reduction
and post-processing procedures (Esposito et al., 2005; Groves et al.,
2011; Cichocki, 2013a; Smith et al., 2014; Zhou et al., 2016b). The
terms “group component analysis” and “joint multi-block data analy-
sis” are used interchangeably to refer to methods which aim to identify
links (correlations, similarities) between hidden components in data.
In other words, the objective of group component analysis is to analyze
the correlation, variability, and consistency of the latent components
across multi-block datasets. The field of 2-way CA is maturing and has
generated efficient algorithms for 2-way component analysis, especially
for sparse/functional PCA/SVD, ICA, NMF and SCA (Bach and Jor-
dan, 2003; Cichocki and Amari, 2003; Comon and Jutten, 2010; Zhou
et al., 2012; Hyvärinen, 2013).

The rapidly emerging field of tensor decompositions is the next im-
portant step which naturally generalizes 2-way CA/BSS models and
algorithms. Tensors, by virtue of multilinear algebra, offer enhanced
flexibility in CA, in the sense that not all components need to be
statistically independent, and can be instead smooth, sparse, and/or
non-negative (e.g., spectral components). Furthermore, additional con-
straints can be used to reflect physical properties and/or diversities of
spatial distributions, spectral and temporal patterns. We proceed to
show how constrained matrix factorizations or 2-way CA models can

1(Mirsky, 1960) has generalized this optimality to arbitrary unitarily invariant
norms.

3.2. The CP Format 317

be extended to multilinear models using tensor decompositions, such
as the Canonical Polyadic (CP) and the Tucker decompositions, as il-
lustrated in Figures 3.1, 3.2 and 3.3.

3.2 The CP Format

The CP decomposition (also called the CANDECOMP, PARAFAC, or
Canonical Polyadic decomposition) decomposes an Nth-order tensor,
X P RI1�I2�����IN , into a linear combination of terms, bp1q

r � bp2q
r �

� � � � bpNq
r , which are rank-1 tensors, and is given by (Hitchcock, 1927;

Harshman, 1970; Carroll and Chang, 1970)

X �
Ŗ

r�1
λr bp1q

r � bp2q
r � � � � � bpNq

r

� Λ�1 Bp1q �2 Bp2q � � � �N BpNq

� JΛ; Bp1q,Bp2q, . . . ,BpNqK,

(3.4)

where λr are non-zero entries of the diagonal core tensor Λ P
RR�R�����R and Bpnq � rbpnq

1 ,bpnq
2 , . . . ,bpnq

R s P RIn�R are factor ma-
trices (see Figure 3.1 and Figure 3.2).

Via the Khatri–Rao products (see Table 2.1), the CP decomposition
can be equivalently expressed in a matrix/vector form as

Xpnq � BpnqΛpBpNq d � � � dBpn�1q dBpn�1q d � � � dBp1qqT (3.5)
� BpnqΛpBp1q dL � � � dL Bpn�1q dL Bpn�1q dL � � � dL BpNqqT

and

vecpXq � rBpNq dBpN�1q d � � � dBp1qs λ (3.6)
� rBp1q dL Bp2q dL � � � dL BpNqs λ,

where λ � rλ1, λ2, . . . , λRsT and Λ � diagpλ1, . . . , λRq is a diagonal
matrix.

The rank of a tensor X is defined as the smallest R for which the
CP decomposition in (3.4) holds exactly.

Algorithms to compute CP decomposition. In real world appli-
cations, the signals of interest are corrupted by noise, so that the CP

318 Multiway Component Analysis and Tensor Decompositions

(a) Standard block diagram for CP decomposition of a 3rd-order tensor

X A

J

I

K

()I R ()R R R ()R J

BT

C

Λ

+ +. . .
c1

b1

a1

cR

bR

aR

1λ λR

K

G C

A
BT

()R R K()I R ()R J

Cdiag() λ

(b) CP decomposition for a 4th-order tensor in the tensor network notation

I1

I4

I3
I2

X

=
I1

I2

I3

I4

R
R

R

R

B
(1)

B
(2)

B
(3)

B
(4)

Λ
~

Figure 3.1: Representations of the CP decomposition. The objective of the CP
decomposition is to estimate the factor matrices Bpnq P RIn�R and scaling coef-
ficients tλ1, λ1, . . . , λRu. (a) The CP decomposition of a 3rd-order tensor in the
form, X � Λ �1 A �2 B �3 C � °R

r�1 λr ar � br � cr � Gc �1 A �2 B, with
Gc � Λ �3 C. (b) The CP decomposition for a 4th-order tensor in the form
X � Λ �1 Bp1q �2 Bp2q �3 Bp3q �4 Bp4q � °R

r�1 λr bp1q
r � bp2q

r � bp3q
r � bp4q

r .

3.2. The CP Format 319

ΛX
br

TB

+ +

c1

a1

b1 b

cR

R

()R R ()R J
a1

b1

aR

bR++ ...

()I J

aR

R

R

X = A
ar

()I R

A
a br

r

()I R ()R R R ()R J

()K R

= TB

()I J K

X Λ

C cr

...

...

...

Figure 3.2: Analogy between a low-rank matrix factorization, X � AΛBT �°R
r�1 λr ar � br (top), and a simple low-rank tensor factorization (CP decomposi-

tion), X � Λ �1 A �2 B �3 C � °R
r�1 λr ar � br � cr (bottom).

decomposition is rarely exact and has to be estimated by minimizing
a suitable cost function. Such cost functions are typically of the Least-
Squares (LS) type, in the form of the Frobenius norm

J2pBp1q,Bp2q, . . . ,BpNqq � }X� JΛ; Bp1q,Bp2q, . . . ,BpNqK}2F , (3.7)

or Least Absolute Error (LAE) criteria (Vorobyov et al., 2005)

J1pBp1q,Bp2q, . . . ,BpNqq � }X� JΛ; Bp1q,Bp2q, . . . ,BpNqK}1. (3.8)

The Alternating Least Squares (ALS) based algorithms minimize
the cost function iteratively by individually optimizing each component
(factor matrix, Bpnq)), while keeping the other component matrices
fixed (Harshman, 1970; Kolda and Bader, 2009).

To illustrate the ALS principle, assume that the diagonal matrix Λ
has been absorbed into one of the component matrices; then, by taking
advantage of the Khatri–Rao structure in Eq. (3.5), the component
matrices, Bpnq, can be updated sequentially as

Bpnq Ð Xpnq

�ä
k�n

Bpkq

��æ
k�n

pBpkq TBpkqq
�:

. (3.9)

The main challenge (or bottleneck) in implementing ALS and Gra-
dient Decent (GD) techniques for CP decomposition lies therefore in

320 Multiway Component Analysis and Tensor Decompositions

Algorithm 1: Basic ALS for the CP decomposition of a
3rd-order tensor
Input: Data tensor X P RI�J�K and rank R
Output: Factor matrices A P RI�R, B P RJ�R, C P RK�R, and scaling

vector λ P RR

1: Initialize A,B,C
2: while not converged or iteration limit is not reached do
3: A Ð Xp1qpCdBqpCTCfBTBq:
4: Normalize column vectors of A to unit length (by computing the

norm of each column vector and dividing each element of a
vector by its norm)

5: B Ð Xp2qpCdAqpCTCfATAq:
6: Normalize column vectors of B to unit length
7: C Ð Xp3qpBdAqpBTBfCTCq:
8: Normalize column vectors of C to unit length,

store the norms in vector λ
9: end while

10: return A,B,C and λ.

multiplying a matricized tensor and Khatri–Rao product (of factor
matrices) (Phan et al., 2013a; Choi and Vishwanathan, 2014) and in
the computation of the pseudo-inverse of pR � Rq matrices (for the
basic ALS see Algorithm 1).

The ALS approach is attractive for its simplicity, and often provides
satisfactory performance for well defined problems with high SNRs
and well separated and non-collinear components. For ill-conditioned
problems, advanced algorithms are required which typically exploit
the rank-1 structure of the terms within CP decomposition to perform
efficient computation and storage of the Jacobian and Hessian of the
cost function (Phan et al., 2013c; Sorber et al., 2013; Phan et al.,
2015a). Implementation of parallel ALS algorithm over distributed
memory for very large-scale tensors was proposed in (Choi and
Vishwanathan, 2014; Karlsson et al., 2016).

Multiple random projections, tensor sketching and Giga-
Tensor. Most of the existing algorithms for the computation of CP

3.2. The CP Format 321

decomposition are based on the ALS or GD approaches, however,
these can be too computationally expensive for huge tensors. Indeed,
algorithms for tensor decompositions have generally not yet reached
the level of maturity and efficiency of low-rank matrix factorization
(LRMF) methods. In order to employ efficient LRMF algorithms to
tensors, we need to either: (i) reshape the tensor at hand into a set
of matrices using traditional matricizations, (ii) employ reduced ran-
domized unfolding matrices, or (iii) perform suitable random multi-
ple projections of a data tensor onto lower-dimensional subspaces. The
principles of the approaches (i) and (ii) are self-evident, while the ap-
proach (iii) employs a multilinear product of an Nth-order tensor and
pN �2q random vectors, which are either chosen uniformly from a unit
sphere or assumed to be i.i.d. Gaussian vectors (Kuleshov et al., 2015).

For example, for a 3rd-order tensor, X P RI1�I2�I3 , we can use the
set of random projections, X3̄ � X �̄3 ω3 P RI1�I2 , X2̄ � X �̄2 ω2 P
RI1�I3 and X1̄ � X �̄1 ω1 P RI2�I3 , where the vectors ωn P RIn ,
n � 1, 2, 3, are suitably chosen random vectors. Note that random pro-
jections in such a case are non-typical – instead of using projections for
dimensionality reduction, they are used to reduce a tensor of any order
to matrices and consequently transform the CP decomposition prob-
lem to constrained matrix factorizations problem, which can be solved
via simultaneous (joint) matrix diagonalization (De Lathauwer, 2006;
Chabriel et al., 2014). It was shown that even a small number of ran-
dom projections, such as OplogRq is sufficient to preserve the spectral
information in a tensor. This mitigates the problem of the dependence
on the eigen-gap2 that plagued earlier tensor-to-matrix reductions. Al-
though a uniform random sampling may experience problems for ten-
sors with spiky elements, it often outperforms the standard CP-ALS
decomposition algorithms.

Alternative algorithms for the CP decomposition of huge-scale
tensors include tensor sketching – a random mapping technique, which
exploits kernel methods and regression (Pham and Pagh, 2013; Wang
et al., 2015), and the class of distributed algorithms such as the

2In linear algebra, the eigen-gap of a linear operator is the difference between
two successive eigenvalues, where the eigenvalues are sorted in an ascending order.

322 Multiway Component Analysis and Tensor Decompositions

DFacTo (Choi and Vishwanathan, 2014) and the GigaTensor which is
based on Hadoop / MapReduce paradigm (Kang et al., 2012).

Constraints. Under rather mild conditions, the CP decomposition
is generally unique by itself (Kruskal, 1977; Sidiropoulos and Bro,
2000). It does not require additional constraints on the factor matrices
to achieve uniqueness, which makes it a powerful and useful tool for
tensor factroization. Of course, if the components in one or more
modes are known to possess some properties, e.g., they are known
to be nonnegative, orthogonal, statistically independent or sparse,
such prior knowledge may be incorporated into the algorithms to
compute CPD and at the same time relax uniqueness conditions.
More importantly, such constraints may enhance the accuracy and
stability of CP decomposition algorithms and also facilitate better
physical interpretability of the extracted components (Sidiropoulos,
2004; Dhillon, 2009; Sørensen et al., 2012; Kim et al., 2014; Zhou and
Cichocki, 2012b; Liavas and Sidiropoulos, 2015).

Applications. The CP decomposition has already been established as
an advanced tool for blind signal separation in vastly diverse branches
of signal processing and machine learning (Acar and Yener, 2009; Kolda
and Bader, 2009; Mørup, 2011; Anandkumar et al., 2014; Wang et al.,
2015; Tresp et al., 2015; Sidiropoulos et al., 2016). It is also routinely
used in exploratory data analysis, where the rank-1 terms capture es-
sential properties of dynamically complex datasets, while in wireless
communication systems, signals transmitted by different users corre-
spond to rank-1 terms in the case of line-of-sight propagation and there-
fore admit analysis in the CP format. Another potential application is
in harmonic retrieval and direction of arrival problems, where real or
complex exponentials have rank-1 structures, for which the use of CP
decomposition is quite natural (Sidiropoulos et al., 2000; Sidiropoulos,
2001; Sørensen and De Lathauwer, 2013).

3.3. The Tucker Tensor Format 323

3.3 The Tucker Tensor Format

Compared to the CP decomposition, the Tucker decomposition pro-
vides a more general factorization of an Nth-order tensor into a rela-
tively small size core tensor and factor matrices, and can be expressed
as follows:

X �
R1̧

r1�1
� � �

RŅ

rN�1
gr1r2���rN

�
bp1q
r1 � bp2q

r2 � � � � � bpNq
rN

	
� G�1 Bp1q �2 Bp2q � � � �N BpNq

� JG; Bp1q,Bp2q, . . . ,BpNqK, (3.10)

where X P RI1�I2�����IN is the given data tensor, G P RR1�R2�����RN

is the core tensor, and Bpnq � rbpnq
1 ,bpnq

2 , . . . ,bpnq
Rn
s P RIn�Rn are the

mode-n factor (component) matrices, n � 1, 2, . . . , N (see Figure 3.3).
The core tensor (typically, Rn In) models a potentially complex
pattern of mutual interaction between the vectors in different modes.
The model in (3.10) is often referred to as the Tucker-N model.

The CP and Tucker decompositions have long history. For recent
surveys and more detailed information we refer to (Kolda and Bader,
2009; Grasedyck et al., 2013; Comon, 2014; Cichocki et al., 2015b;
Sidiropoulos et al., 2016).

Using the properties of the Kronecker tensor product, the Tucker-N
decomposition in (3.10) can be expressed in an equivalent matrix and
vector form as

Xpnq � BpnqGpnqpBp1q bL � � � bL Bpn�1q bL Bpn�1q bL � � � bL BpNqqT
� BpnqGpnqpBpNq b � � � bBpn�1q bBpn�1q b � � � bBp1qqT,

(3.11)
X n¡ � pBp1q bL � � � bL Bpnqq G n¡pBpn�1q bL � � � bL BpNqqT

� pBpnq b � � � bBp1qq G n¡pBpNq bBpN�1q b � � � bBpn�1qqT,
(3.12)

vecpXq � rBp1q bL Bp2q bL � � � bL BpNqs vecpGq
� rBpNq bBpN�1q b � � � bBp1qs vecpGq, (3.13)

324 Multiway Component Analysis and Tensor Decompositions

where the multi-indices are ordered in a reverse lexicographic order
(little-endian).

Table 3.1 and Table 3.2 summarize fundamental mathematical rep-
resentations of CP and Tucker decompositions for 3rd-order and Nth-
order tensors.

The Tucker decomposition is said to be in an independent Tucker
format if all the factor matrices, Bpnq, are full column rank, while a
Tucker format is termed an orthonormal format, if in addition, all the
factor matrices, Bpnq � Upnq, are orthogonal. The standard Tucker
model often has orthogonal factor matrices.

Multilinear rank. The multilinear rank of an Nth-order tensor X P
RI1�I2�����IN corresponds to the N -tuple pR1, R2, . . . , RN q consisting of
the dimensions of the different subspaces. If the Tucker decomposition
(3.10) holds exactly it is mathematically defined as

rankMLpXq � trankpXp1qq, rankpXp2qq, . . . , rankpXpNqqu, (3.14)

with Xpnq P RIn�I1���In�1In�1���IN for n � 1, 2, . . . , N . Rank of the Tucker
decompositions can be determined using information criteria (Yokota
et al., 2017), or through the number of dominant eigenvalues when an
approximation accuracy of the decomposition or a noise level is given
(see Algorithm 8).

The independent Tucker format has the following important prop-
erties if the equality in (3.10) holds exactly (see, e.g., (Jiang et al.,
2016) and references therein):

1. The tensor (CP) rank of any tensor, X �
JG; Bp1q,Bp2q, . . . ,BpNqK P RI1�I2�����IN , and the rank of
its core tensor, G P RR1�R2�����RN , are exactly the same, i.e.,

rankCP pXq � rankCP pGq. (3.15)

2. If a tensor, X P RI1�I2�����IN � JG; Bp1q,Bp2q, . . . ,BpNqK,
admits an independent Tucker format with multilinear rank
tR1, R2, . . . , RNu, then

Rn ¤
N¹
p�n

Rp @n. (3.16)

3.3. The Tucker Tensor Format 325

(a) Standard block diagrams of Tucker (top) and Tucker-CP (bottom) de-
compositions for a 3rd-order tensor

B (1)X

J

I

K

+ . . .((c1

b1
a1

cR

bR
aR

1()I R 1 2 3(R R R

3()K R

2()R J

3()K R

G

R3
R1

R2

B (2) T

B (3)

B (1)

B(3)

B (2) T

)

=
r1 2 3r r

r1
b

r3
b

r2
b

g
, ,

r1 2 3r r , ,

(3)

(2)
(1)

=

= +

(b) The TN diagram for the Tucker and Tucker/CP decompositions of a 4th-
order tensor

R1

R2

R3

R4
I1

I2

I3

I4

B (1)

R
R

R

RI1

I2

I3

I4

ΛG

R1

R4

R3

R2B (2)

B (3)

B (4)

B (2)

B (4)

B (3)B (1) A (1)

A (2)

A (3)
A (4)

Figure 3.3: Illustration of the Tucker and Tucker-CP decompositions, where the
objective is to compute the factor matrices, Bpnq, and the core tensor, G. (a)
Tucker decomposition of a 3rd-order tensor, X � G �1 Bp1q �2 Bp2q �3 Bp3q. In
some applications, the core tensor can be further approximately factorized using
the CP decomposition as G � °R

r�1 ar � br � cr (bottom diagram), or alterna-
tively using TT/HT decompositions. (b) Graphical representation of the Tucker-CP
decomposition for a 4th-order tensor, X � G �1 Bp1q �2 Bp2q �3 Bp3q �4 Bp4q �
JG; Bp1q,Bp2q,Bp3q,Bp4qK � pΛ�1 Ap1q�2 Ap2q�3 Ap3q�4 Ap4qq�1 Bp1q�2 Bp2q�3
Bp3q �4 Bp4q � JΛ; Bp1qAp1q, Bp2qAp2q, Bp3qAp3q, Bp4qAp4qK.

326 Multiway Component Analysis and Tensor Decompositions

Moreover, without loss of generality, under the assumption R1 ¤
R2 ¤ � � � ¤ RN , we have

R1 ¤ rankCP pXq ¤ R2R3 � � �RN . (3.17)

3. If a data tensor is symmetric and admits an independent Tucker
format, X � JG; B,B, . . . ,BK P RI�I�����I , then its core ten-
sor, G P RR�R�����R, is also symmetric, with rankCP pXq �
rankCP pG).

4. For the orthonormal Tucker format, that is, X �
JG; Up1q,Up2q, . . . ,UpNqK P RI1�I2�����IN , with UpnqT Upnq �
I, @n, the Frobenius norms and the Schatten p-norms3 of the
data tensor, X , and its core tensor, G, are equal, i.e.,

}X}F � }G}F ,
}X}Sp � }G}Sp , 1 ¤ p 8.

Thus, the computation of the Frobenius norms can be performed
with an OpRN q complexity pR � maxtR1, . . . , RNuq, instead of
the usual order OpIN q complexity (typically R ! I).

Note that the CP decomposition can be considered as a special case
of the Tucker decomposition, whereby the cube core tensor has nonzero
elements only on the main diagonal (see Figure 3.1). In contrast to
the CP decomposition, the unconstrained Tucker decomposition is not
unique. However, constraints imposed on all factor matrices and/or core
tensor can reduce the indeterminacies inherent in CA to only column-
wise permutation and scaling, thus yielding a unique core tensor and
factor matrices (Zhou and Cichocki, 2012a).

The Tucker-N model, in which pN�Kq factor matrices are identity
matrices is called the Tucker-pK,Nq model. In the simplest scenario,

3The Schatten p-norm of an Nth-order tensor X is defined as the average of
the Schatten norms of mode-n unfoldings, i.e., }X}Sp � p1{Nq°N

n�1 }Xpnq}Sp and
}X}Sp � p°r σ

p
r q1{p, where σr is the rth singular value of the matrix X. For p � 1,

the Schatten norm of a matrix X is called the nuclear norm or the trace norm,
while for p � 0 the Schatten norm is the rank of X, which can be replaced by the
surrogate function log detpXXT � εIq, ε ¡ 0.

3.3. The Tucker Tensor Format 327

Table 3.1: Different forms of CP and Tucker representations of a 3rd-order tensor
X P RI�J�K , where λ � rλ1, λ2, . . . , λRsT, and Λ � diagtλ1, λ2, . . . , λRu.

CP Decomposition Tucker Decomposition

Scalar representation

xijk �
R°

r�1
λr ai r bj r ck r xijk �

R1°
r1�1

R2°
r2�1

R3°
r3�1

gr1 r2 r3 ai r1 bj r2 ck r3

Tensor representation, outer products

X �
R°

r�1
λr ar � br � cr X �

R1°
r1�1

R2°
r2�1

R3°
r3�1

gr1 r2 r3 ar1 � br2 � cr3

Tensor representation, multilinear products

X � Λ�1 A�2 B�3 C X � G�1 A�2 B�3 C
� JΛ; A, B, CK � JG; A, B, CK

Matrix representations

Xp1q � A Λ pBdL CqT Xp1q � A Gp1q pBbL CqT
Xp2q � B Λ pAdL CqT Xp2q � B Gp2q pAbL CqT
Xp3q � C Λ pAdL BqT Xp3q � C Gp3q pAbL BqT

Vector representation

vecpXq � pAdL BdL Cqλ vecpXq � pAbL BbL Cq vecpGq

Matrix slices Xk � Xp:, :, kq

Xk � A diagpλ1 ck,1, . . . , λR ck,RqBT Xk � A
�

R3°
r3�1

ckr3Gp:, :, r3q

BT

328 Multiway Component Analysis and Tensor Decompositions

Table 3.2: Different forms of CP and Tucker representations of an Nth-order tensor
X P RI1�I2�����IN .

CP Tucker
Scalar product

xi1,...,iN �
Ŗ

r�1

λr b
p1q
i1,r � � � bpNq

iN ,r xi1,...,iN �
R1̧

r1�1

� � �
RŅ

rN�1

gr1,...,rN b
p1q
i1,r1

� � � bpNq
iN ,rN

Outer product

X �
Ŗ

r�1

λr bp1q
r � � � � � bpNq

r X �
R1̧

r1�1

� � �
RŅ

rN�1

gr1,...,rN bp1q
r1 � � � � � bpNq

rN

Multilinear product

X � Λ �1 Bp1q �2 Bp2q � � � �N BpNq X � G �1 Bp1q �2 Bp2q � � � �N BpNq

X �
r
Λ; Bp1q,Bp2q, . . . ,BpNq

z
X �

r
G; Bp1q,Bp2q, . . . ,BpNq

z

Vectorization

vecpXq �
�

1ä
n�N

Bpnq

�
λ vecpXq �

�
1â

n�N

Bpnq

�
vecpGq

Matricization

Xpnq � BpnqΛ

�
1ä

m�N, m�n

Bpmq

�T

Xpnq � BpnqGpnq

�
1â

m�N, m�n

Bpmq

�T

X n¡ � p
1ä

m�n

BpmqqΛp
n�1ä

m�N

BpmqqT, X n¡ � p
1â

m�n

BpmqqG n¡p
n�1â

m�N

BpmqqT

Slice representation

Xp:, :, k3q � Bp1q rDk3Bp2q T Xp:, :, k3q � Bp1q rGk3Bp2q T, k3 � i3i4 � � � iN

rDk3 � diagpd̃11, . . . , d̃RRq P RR�R with entries d̃rr � λrb
p3q
i3,r � � � bpNq

iN ,r

rGk3 �
¸
r3

� � �
¸
rN

b
p3q
i3,r3

� � � bpNq
iN ,rN

G:,:,r3,...,rN is the sum of frontal slices.

3.3. The Tucker Tensor Format 329

for a 3rd-order tensor X P RI�J�K , the Tucker-(2,3) or simply Tucker-2
model, can be described as4

X � G�1 A�2 B�3 I � G�1 A�2 B, (3.18)

or in an equivalent matrix form

Xk � AGkBT, pk � 1, 2, . . . ,Kq, (3.19)

where Xk � Xp:, :, kq P RI�J and Gk � Gp:, :, kq P RR1�R2 are re-
spectively the frontal slices of the data tensor X and the core tensor
G P RR1�R2�R3 , and A P RI�R1 , B P RJ�R2 .
Generalized Tucker format and its links to TTNS model. For
high-order tensors, X P RI1,1�����I1,K1�I2,1�����IN,KN , the Tucker-N for-
mat can be naturally generalized by replacing the factor matrices,
Bpnq P RIn�Rn , by higher-order tensors Bpnq P RIn,1�In,2�����In,Kn�Rn ,
to give

X � JG; Bp1q,Bp2q, . . . ,BpNqK, (3.20)

where the entries of the data tensor are computed as

Xpi1, . . . , iN q �
R1̧

r1�1
� � �

RŅ

rN�1
Gpr1, . . . , rN qBp1qpi1, r1q � � �BpNqpiN , rN q,

and in � pin,1in,2 . . . in,Knq (Lee and Cichocki, 2016c).
Furthermore, the nested (hierarchical) form of such a generalized

Tucker decomposition leads to the Tree Tensor Networks State (TTNS)
model (Nakatani and Chan, 2013) (see Figure 2.15 and Figure 2.18),
with possibly a varying order of cores, which can be formulated as

X � JG1; Bp1q,Bp2q, . . . ,BpN1qK

G1 � JG2; Ap1,2q,Ap2,2q, . . . ,ApN2,2qK.

� � �
GP � JGP�1; Ap1,P�1q,Ap2,P�1q, . . . ,ApNP�1,P�1qK, (3.21)

4For a 3rd-order tensor, the Tucker-2 model is equivalent to the TT model. The
case where the factor matrices and the core tensor are non-negative is referred to as
the NTD-2 (Nonnegative Tucker-2 decomposition).

330 Multiway Component Analysis and Tensor Decompositions

where Gp P RR
ppq
1 �R

ppq
2 �����R

ppq
Np and Apnp,pq P R

R
pp�1q
lnp

�����R
pp�1q
mnp

�R
ppq
np ,

with p � 2, . . . , P � 1.
Note that some factor tensors, Apn,1q and/or Apnp,pq, can be identity

tensors which yield an irregular structure, possibly with a varying order
of tensors. This follows from the simple observation that a mode-n
product may have, e.g., the following form

X�n Bpnq � JX; I1, . . . , IIn�1 ,Bpnq, IIn�1 , . . . , IIN
K.

The efficiency of this representation strongly relies on an appropriate
choice of the tree structure. It is usually assumed that the tree
structure of TTNS is given or assumed a priori, and recent efforts aim
to find an optimal tree structure from a subset of tensor entries and
without any a priori knowledge of the tree structure. This is achieved
using so-called rank-adaptive cross-approximation techniques which
approximate a tensor by hierarchical tensor formats (Ballani and
Grasedyck, 2014; Ballani et al., 2014).

Operations in the Tucker format. If large-scale data tensors admit
an exact or approximate representation in their Tucker formats, then
most mathematical operations can be performed more efficiently using
the so obtained much smaller core tensors and factor matrices. Consider
the Nth-order tensors X and Y in the Tucker format, given by

X � JGX ; Xp1q, . . . ,XpNqK and Y � JGY ; Yp1q, . . . ,YpNqK, (3.22)

for which the respective multilinear ranks are tR1, R2, . . . , RNu and
tQ1, Q2, . . . , QNu, then the following mathematical operations can be
performed directly in the Tucker format5, which admits a significant
reduction in computational costs (Phan et al., 2013b, 2015b; Lee and
Cichocki, 2016c):

• The addition of two Tucker tensors of the same order and sizes

X�Y � JGX `GY ; rXp1q,Yp1qs, . . . , rXpNq,YpNqsK, (3.23)

where ` denotes a direct sum of two tensors, and rXpnq,Ypnqs P
RIn�pRn�Qnq, Xpnq P RIn�Rn and Ypnq P RIn�Qn , @n.

5Similar operations can be performed in the CP format, assuming that the core
tensors are diagonal.

3.3. The Tucker Tensor Format 331

• The Kronecker product of two Tucker tensors of arbitrary
orders and sizes

XbY � JGX bGY ; Xp1q bYp1q, . . . ,XpNq bYpNqK. (3.24)

• The Hadamard or element-wise product of two Tucker tensors
of the same order and the same sizes

XfY � JGX bGY ; Xp1q d1 Yp1q, . . . ,XpNq d1 YpNqK, (3.25)

where d1 denotes the mode-1 Khatri–Rao product, also called the
transposed Khatri–Rao product or row-wise Kronecker product.

• The inner product of two Tucker tensors of the same order and
sizes can be reduced to the inner product of two smaller tensors
by exploiting the Kronecker product structure in the vectorized
form, as follows

xX,Yy � vecpXqT vecpYq (3.26)

� vecpGXqT
�

Nâ
n�1

Xpnq T

��
Nâ
n�1

Ypnq

�
vecpGY q

� vecpGXqT
�

Nâ
n�1

XpnqT Ypnq

�
vecpGY q

� xJGX ; pXp1qT Yp1qq, . . . , pXpNqT YpNqqK,GY y.

• The Frobenius norm can be computed in a particularly simple
way if the factor matrices are orthogonal, since then all products
XpnqT Xpnq, @n, become the identity matrices, so that

}X}F � xX,Xy
� vec

�
JGX ; pXp1qT Xp1qq, . . . , pXpNqT XpNqqK

	T
vecpGXq

� vecpGXqT vecpGXq � }GX}F . (3.27)

• The N-D discrete convolution of tensors X P RI1�����IN and
Y P RJ1�����JN in their Tucker formats can be expressed as

Z � X �Y � JGZ ; Zp1q, . . . ,ZpNqK (3.28)
P RpI1�J1�1q�����pIN�JN�1q.

332 Multiway Component Analysis and Tensor Decompositions

If tR1, R2, . . . , RNu is the multilinear rank of X and
tQ1, Q2, . . . , QNu the multilinear rank Y, then the core tensor
GZ � GX bGY P RR1Q1�����RNQN and the factor matrices

Zpnq � Xpnq
d1 Ypnq P RpIn�Jn�1q�RnQn , (3.29)

where Zpnqp:, snq � Xpnqp:, rnq � Ypnqp:, qnq P RpIn�Jn�1q for
sn � rnqn � 1, 2, . . . , RnQn.

• Super Fast discrete Fourier transform (MATLAB functions
fftnpXq and fftpXpnq, rs, 1q) of a tensor in the Tucker format

FpXq � JGX ;FpXp1qq, . . . ,FpXpNqqK. (3.30)

Note that if the data tensor admits low multilinear rank approxi-
mation, then performing the FFT on factor matrices of relatively
small size Xpnq P RIn�Rn , instead of a large-scale data tensor, de-
creases considerably computational complexity. This approach is
referred to as the super fast Fourier transform in Tucker format.

3.4 Higher Order SVD (HOSVD) for Large-Scale Problems

The MultiLinear Singular Value Decomposition (MLSVD), also called
the higher-order SVD (HOSVD), can be considered as a special form of
the constrained Tucker decomposition (De Lathauwer et al., 2000a,b),
in which all factor matrices, Bpnq � Upnq P RIn�In , are orthogonal and
the core tensor, G � S P RI1�I2�����IN , is all-orthogonal (see Figure
3.4).

The orthogonality properties of the core tensor are defined through
the following conditions:

1. All orthogonality. The slices in each mode are mutually orthogo-
nal, e.g., for a 3rd-order tensor and its lateral slices

xS:,k,:S:,l,:y � 0, for k � l, (3.31)

2. Pseudo-diagonality. The Frobenius norms of slices in each mode
are decreasing with the increase in the running index, e.g., for a

3.4. Higher Order SVD (HOSVD) for Large-Scale Problems 333

3rd-order tensor and its lateral slices

}S:,k,:}F ¥ }S:,l,:}F , k ¥ l. (3.32)

These norms play a role similar to singular values in standard
matrix SVD.

In practice, the orthogonal matrices Upnq P RIn�Rn , with Rn ¤ In,
can be computed by applying both the randomized and standard trun-
cated SVD to the unfolded mode-n matrices, Xpnq � UpnqSnVpnqT P
RIn�I1���In�1In�1���IN . After obtaining the orthogonal matrices Upnq of
left singular vectors of Xpnq, for each n, the core tensor G � S can be
computed as

S � X�1 Up1q T �2 Up2q T � � � �N UpNq T, (3.33)

so that

X � S�1 Up1q �2 Up2q � � � �N UpNq. (3.34)

Due to the orthogonality of the core tensor S, its slices are also mutually
orthogonal.

Analogous to the standard truncated SVD, a large-scale data ten-
sor, X, can be approximated by discarding the multilinear singular
vectors and slices of the core tensor corresponding to small multilin-
ear singular values. Figure 3.4 and Algorithm 2 outline the truncated
HOSVD, for which any optimized matrix SVD procedure can be ap-
plied.

For large-scale tensors, the unfolding matrices, Xpnq P RIn�In̄ (In̄ �
I1 � � � InIn�1 � � � IN) may become prohibitively large (with In̄ " In), eas-
ily exceeding the memory of standard computers. Using a direct and
simple divide-and-conquer approach, the truncated SVD of an unfold-
ing matrix, Xpnq � UpnqSnVpnqT, can be partitioned into Q slices, as
Xpnq � rX1,n,X2,n, . . . ,XQ,ns � UpnqSnrVT

1,n,VT
2,n, . . . ,VT

Q,ns. Next,
the orthogonal matrices Upnq and the diagonal matrices Sn can be ob-
tained from the eigenvalue decompositions XpnqXT

pnq � UpnqS2
nUpnqT �°

q Xq,nXT
q,n P RIn�In , allowing for the terms Vq,n � XT

q,nUpnqS�1
n to

be computed separately. This enables us to optimize the size of the qth

334 Multiway Component Analysis and Tensor Decompositions

(a)

XI

J

=

R

U

ur

Eigenvector of XX
T

R

vr

Eigenvector of X X
T

Rank of XX
T

V
T

R

()I J ()I I ()I J ()J J

R

0

~

...
...

Singular
value

S
sr

0

0

(b)

U
(1)

1 1()I R 2 2()I R

3 3()I R

X U
(2)I1

I2

I3

I1

R1

R2

R3

I3

I2

I2
I1

1 2 3()I I I

S

R3

St

U(3)

R2R1

1 2 3()I I I

(c)

I1

I4
I3

I2

X

R1
R2

R3

R4

I1

I2

I3

I4

StU
(1)

U
(2)

U
(3)

U
(4)

Figure 3.4: Graphical illustration of the truncated SVD and HOSVD. (a) The ex-
act and truncated standard matrix SVD, X � USVT. (b) The truncated (approxi-
mative) HOSVD for a 3rd-order tensor calculated as X � St�1Up1q�2Up2q�3Up3q.
(c) Tensor network notation for the HOSVD of a 4th-order tensor X � St�1 Up1q�2
Up2q �3 Up3q �4 Up4q. All the factor matrices, Upnq P RIn�Rn , and the core tensor,
St � G P RR1�����RN , are orthogonal.

3.4. Higher Order SVD (HOSVD) for Large-Scale Problems 335

slice Xq,n P RIn�pIn̄{Qq so as to match the available computer memory.
Such a simple approach to compute matrices Upnq and/or Vpnq does
not require loading the entire unfolding matrices at once into computer
memory; instead the access to the datasets is sequential. For current
standard sizes of computer memory, the dimension In is typically less
than 10,000, while there is no limit on the dimension In̄ �

±
k�n Ik.

For very large-scale and low-rank matrices, instead of the standard
truncated SVD approach, we can alternatively apply the randomized
SVD algorithm, which reduces the original data matrix X to a relatively
small matrix by random sketching, i.e. through multiplication with a
random sampling matrix Ω (see Algorithm 3). Note that we explicitly
allow the rank of the data matrix X to be overestimated (that is, R̃ �
R�P , where R is a true but unknown rank and P is the over-sampling
parameter) because it is easier to obtain more accurate approximation
of this form. Performance of randomized SVD can be further improved
by integrating multiple random sketches, that is, by multiplying a data
matrix X by a set of random matrices Ωp for p � 1, 2, . . . , P and
integrating leading low-dimensional subspaces by applying a Monte
Carlo integration method (Chen et al., 2016).

Using special random sampling matrices, for instance, a sub-
sampled random Fourier transform, substantial gain in the execution
time can be achieved, together with the asymptotic complexity of
OpIJ logpRqq. Unfortunately, this approach is not accurate enough for
matrices for which the singular values decay slowly (Halko et al., 2011).

The truncated HOSVD can be optimized and implemented in sev-
eral alternative ways. For example, if Rn ! In, the truncated tensor
Z Ð X�1 Up1qT yields a smaller unfolding matrix Zp2q P RI2�R1I3���IN ,
so that the multiplication Zp2qZT

p2q can be faster in the next iterations
(Vannieuwenhoven et al., 2012; Austin et al., 2015).

Furthermore, since the unfolding matrices YT
pnq are typically very

“tall and skinny”, a huge-scale truncated SVD and other constrained
low-rank matrix factorizations can be computed efficiently based on the
Hadoop / MapReduce paradigm (Constantine et al., 2014; Constantine
and Gleich, 2011; Benson et al., 2014).

336 Multiway Component Analysis and Tensor Decompositions

Algorithm 2: Sequentially Truncated HOSVD (Van-
nieuwenhoven et al., 2012)
Input: Nth-order tensor X P RI1�I2�����IN and approximation

accuracy ε
Output: HOSVD in the Tucker format X̂ � JS; Up1q, . . . ,UpNqK,

such that }X� X̂}F ¤ ε
1: S Ð X
2: for n � 1 to N do
3: rUpnq,S,Vs � truncated_svdpSpnq, ε?

N
q

4: S Ð VS
5: end for
6: S Ð reshapepS, rR1, . . . , RN sq
7: return Core tensor S and orthogonal factor matrices

Upnq P RIn�Rn .

Algorithm 3: Randomized SVD (rSVD) for large-scale
and low-rank matrices with single sketch (Halko et al.,
2011)
Input: A matrix X P RI�J , desired or estimated rank R, and

oversampling parameter P or overestimated rank rR � R� P ,
exponent of the power method q (q � 0 or q � 1)

Output: An approximate rank- rR SVD, X � USVT, i.e., orthogonal
matrices U P RI� rR, V P RJ� rR and diagonal matrix S P R rR� rR with
singular values

1: Draw a random Gaussian matrix Ω P RJ� rR,
2: Form the sample matrix Y � pXXTqq XΩ P RI� rR

3: Compute a QR decomposition Y � QR
4: Form the matrix A � QTX P R rR�J

5: Compute the SVD of the small matrix A as A � pUSVT

6: Form the matrix U � QpU.

Low multilinear rank approximation is always well-posed, however,
in contrast to the standard truncated SVD for matrices, the truncated
HOSVD does not yield the best multilinear rank approximation, but
satisfies the quasi-best approximation property (De Lathauwer et al.,
2000a)

}X� JS; Up1q, . . . ,UpNqK} ¤
?
N}X�XBest}, (3.35)

3.4. Higher Order SVD (HOSVD) for Large-Scale Problems 337

Algorithm 4: Higher Order Orthogonal Iteration (HOOI)
(De Lathauwer et al., 2000b; Austin et al., 2015)
Input: Nth-order tensor X P RI1�I2�����IN (usually in Tucker/HOSVD

format)
Output: Improved Tucker approximation using ALS approach, with

orthogonal factor matrices Upnq

1: Initialization via the standard HOSVD (see Algorithm 2)
2: repeat
3: for n � 1 to N do
4: Z Ð X�p�n tUppqTu
5: C Ð ZpnqZT

pnq P RR�R

6: Upnq Ð leading Rn eigenvectors of C
7: end for
8: G Ð Z�N UpNqT

9: until the cost function p}X}2
F � }G}2

F q ceases to decrease
10: return JG; Up1q,Up2q, . . . ,UpNqK

where XBest is the best multilinear rank approximation of X, for a
specific tensor norm } � }.

When it comes to the problem of finding the best approximation,
the ALS type algorithm called the Higher Order Orthogonal Iteration
(HOOI) exhibits both the advantages and drawbacks of ALS algorithms
for CP decomposition. For the HOOI algorithms, see Algorithm 4 and
Algorithm 5. For more sophisticated algorithms for Tucker decompo-
sitions with orthogonality and nonnegativity constraints, suitable for
large-scale data tensors, see (Phan and Cichocki, 2011; Zhou et al.,
2012; Constantine et al., 2014; Jeon et al., 2016).

When a data tensor X is very large and cannot be stored in com-
puter memory, another challenge is to compute a core tensor G � S
directly, using the formula (3.33). Such computation is performed se-
quentially by fast matrix-by-matrix multiplications6, as illustrated in
Figure 3.5(a) and (b).

We have shown that for very large-scale problems, it is useful to
divide a data tensor X into small blocks Xrk1,k2,...,kN s. In a similar way,

6Efficient and parallel (state of the art) algorithms for multiplications of such
very large-scale matrices are proposed in (Li et al., 2015; Ballard et al., 2015a).

338 Multiway Component Analysis and Tensor Decompositions

Table 3.3: Basic multiway component analysis (MWCA)/Low-Rank Tensor Ap-
proximations (LRTA) and related multiway dimensionality reduction models. The
symbol X P RI1�I2�����IN denotes a noisy data tensor, while Y � G �1 Bp1q �2
Bp2q � � � �N BpNq is the general constrained Tucker model with the latent factor
matrices Bpnq P RIn�Rn and the core tensor G P RR1�R2�����RN . In the special
case of a CP decomposition, the core tensor is diagonal, G � Λ P RR�����R, so that
Y � °R

r�1 λrpbp1q
r � bp2q

r � � � � � bpNq
r q.

Cost Function Constraints

Multilinear (sparse) PCA (MPCA)

max
upnqr

X�̄1up1qr �̄2up2qr � � � �̄N upNq
r � γ

°N
n�1 }u

pnq
r }1

upnqT
r upnqr � 1, @pn, rq

upnqT
r upnqq � 0 for r � q

HOSVD/HOOI

minUpnq }X � G �1 Up1q �2 Up2q � � � �N UpNq}2F

UpnqT Upnq � IRn , @n

Multilinear ICA

minBpnq }X � G �1 Bp1q �2 Bp2q � � � �N BpNq}2F

Vectors of Bpnq statistically

as independent as possible

Nonnegative CP/Tucker decomposition

(NTF/NTD) (Cichocki et al., 2009)

minBpnq }X � G �1 Bp1q � � � �N BpNq}2F

�γ
°N

n�1
°Rn

rn�1 }b
pnq
rn }1

Entries of G and Bpnq, @n

are nonnegative

Sparse CP/Tucker decomposition

minBpnq }X � G �1 Bp1q � � � �N BpNq}2F

�γ
°N

n�1
°Rn

rn�1 }b
pnq
rn }1

Sparsity constraints

imposed on Bpnq

Smooth CP/Tucker decomposition

(SmCP/SmTD) (Yokota et al., 2016)

minBpnq }X � Λ �1 Bp1q � � � �N BpNq}2F

�γ
°N

n�1
°R

r�1 }Lbpnqr }2

Smoothness imposed

on vectors bpnqr

of Bpnq P RIn�R, @n

via a difference operator L

we can partition the orthogonal factor matrices UpnqT into the cor-
responding blocks of matrices UpnqT

rkn,pns
, as illustrated in Figure 3.5(c)

for 3rd-order tensors (Wang et al., 2005; Suter et al., 2013). For ex-
ample, the blocks within the resulting tensor Gpnq can be computed

3.4. Higher Order SVD (HOSVD) for Large-Scale Problems 339

Algorithm 5: HOOI using randomization for large-scale
data (Zhou et al., 2015)
Input: Nth-order tensor X P RI1�I2�����IN and multilinear rank

tR1, R2, . . . , RNu
Output: Approximative representation of a tensor in Tucker format,

with orthogonal factor matrices Upnq P RIn�Rn

1: Initialize factor matrices Upnq as random Gaussian matrices
Repeat steps (2)-(6) only two times:

2: for n � 1 to N do
3: Z � X�p�n tUppqTu
4: Compute Z̃pnq � ZpnqΩpnq P RIn�Rn , where Ωpnq P R

±
p�n Rp�Rn

is a random matrix drawn from Gaussian distribution
5: Compute Upnq as an orthonormal basis of Z̃pnq, e.g., by using QR

decomposition
6: end for
7: Construct the core tensor as

G � X�1 Up1q T �2 Up2q T � � � �N UpNq T

8: return X � JG; Up1q,Up2q, . . . ,UpNqK

Algorithm 6: Tucker decomposition with constrained fac-
tor matrices via 2-way CA /LRMF
Input: Nth-order tensor X P RI1�I2�����IN , multilinear rank

tR1, . . . , RNu and desired constraints imposed on factor matrices
Bpnq P RIn�Rn

Output: Tucker decomposition with constrained factor matrices Bpnq

using LRMF and a simple unfolding approach
1: Initialize randomly or via standard HOSVD (see Algorithm 2)
2: for n � 1 to N do
3: Compute specific LRMF or 2-way CA (e.g., RPCA, ICA, NMF) of

unfolding XT
pnq � ApnqBpnq T or Xpnq � BpnqApnq T

4: end for
5: Compute core tensor G � X�1 rBp1qs: �2 rBp2qs: � � � �N rBpNqs:

6: return Constrained Tucker decomposition X � JG,Bp1q, . . . ,BpNqK

sequentially or in parallel, as follows:

Gpnq
rk1,k2,...,qn,...,kN s �

Kņ

kn�1
Xrk1,k2,...,kn,...,kN s �n Upnq T

rkn,qns
. (3.36)

340 Multiway Component Analysis and Tensor Decompositions

(a) Sequential computation

I1

I2

I3I1 I2

R1

R1
R2

I2

I3

I2 I3
R1

R2

I3

R1

R3

I3 R1
R2

R3

X
...

G
(1)

G
(2)

U
(1)T G

(1)
U

(2)T G
(2) GU

(3)T

(1)T (2)T (3)T
1 2 3(())G X U U U

I3

...

R1 R2

(b) Fast matrix-by-matrix approach

R1

I1

I1

R1

2 3I I

X(1)
I1

I2

I3I1 I2

R1

R1

X

...

U(1)T G
(1)

I3

... U
(1)T G

(1)
(1)

(c) Divide-and-conquer approach

X

U[1,1] U[2,1] U[3,1]

U[1,2] U[2,2] U[3,2]
1

=

U
(1)T Z G=

(1)

1 2 3()I I I 1 1()R I 1 2 3()R I I

X[1,1,1] X[1,2,1]

X[2,1,1] X[2,2,1]

X[3,2,1]X[3,1,1]

X[1,1,2] X[1,2,2]

Z[1,1,1] Z[1,2,1]

Z[2,1,1] Z[2,2,1]

Z[1,1,2] Z[1,2,2]

z[
]

2,2,
2

Figure 3.5: Computation of a multilinear (Tucker) product for large-scale HOSVD.
(a) Standard sequential computing of multilinear products (TTM) G � S � pppX�1
Up1qTq �2 Up2qTq �3 Up3qTq. (b) Distributed implementation through fast matrix-
by-matrix multiplications. (c) An alternative method for large-scale problems using
the “divide and conquer” approach, whereby a data tensor, X, and factor matrices,
UpnqT, are partitioned into suitable small blocks: Subtensors Xrk1,k2,k3s

and block
matrices Up1qT

rk1,p1s
. The blocks of a tensor, Z � Gp1q � X�1 Up1qT, are computed as

Zrq1,k2,k3s
� °K1

k1�1 Xrk1,k2,k3s �1 Up1qT
rk1,q1s

(see Eq. (3.36) for a general case).

3.4. Higher Order SVD (HOSVD) for Large-Scale Problems 341

Applications. We have shown that the Tucker/HOSVD decomposi-
tion may be considered as a multilinear extension of PCA (Kroonen-
berg, 2008); it therefore generalizes signal subspace techniques and finds
application in areas including multilinear blind source separation, clas-
sification, feature extraction, and subspace-based harmonic retrieval
(Vasilescu and Terzopoulos, 2002; Haardt et al., 2008; Phan and Ci-
chocki, 2010; Lu et al., 2011). In this way, a low multilinear rank ap-
proximation achieved through Tucker decomposition may yield higher
Signal-to-Noise Ratio (SNR) than the SNR for the original raw data
tensor, which also makes Tucker decomposition a natural tool for signal
compression and enhancement.

It was recently shown that HOSVD can also perform simultane-
ous subspace selection (data compression) and K-means clustering,
both unsupervised learning tasks (Huang et al., 2008; Papalexakis
et al., 2013). This is important, as a combination of these meth-
ods can both identify and classify “relevant” data, and in this way
not only reveal desired information but also simplify feature extraction.

Anomaly detection using HOSVD. Anomaly detection refers to
the discrimination of some specific patterns, signals, outliers or features
that do not conform to certain expected behaviors, trends or properties
(Chandola et al., 2009; Fanaee-T and Gama, 2016). While such analy-
sis can be performed in different domains, it is most frequently based
on spectral methods such as PCA, whereby high dimensional data are
projected onto a lower-dimensional subspace in which the anomalies
may be identified more easier. The main assumption within such ap-
proaches is that the normal and abnormal patterns, which may be dif-
ficult to distinguish in the original space, appear significantly different
in the projected subspace. When considering very large datasets, since
the basic Tucker decomposition model generalizes PCA and SVD, it
offers a natural framework for anomaly detection via HOSVD, as illus-
trated in Figure 3.6. To handle the exceedingly large dimensionality,
we may first compute tensor decompositions for sampled (pre-selected)
small blocks of the original large-scale 3rd-order tensor, followed by
the analysis of changes in specific factor matrices Upnq. A simpler form

342 Multiway Component Analysis and Tensor Decompositions

I3

U(1)

1 1()I R 2 2()R I

3 3()I R

Xk

X

G

1 2 3()R R R

I1

I2

(2)T
kU

U(2)

U(2)TR3

R1

R2

Figure 3.6: Conceptual model for performing the HOSVD for a very large-scale
3rd-order data tensor. This is achieved by dividing the tensor into blocks Xk � G�1

Up1q�2Up2q
k �3Up3q, pk � 1, 2 . . . ,Kq. It assumed that the data tensor X P RI1�I2�I3

is sampled by sliding the block Xk from left to right (with an overlapping sliding
window). The model can be used for anomaly detection by fixing the core tensor
and some factor matrices while monitoring the changes along one or more specific
modes (in our case mode two). Tensor decomposition is then first performed for a
sampled (pre-selected) small block, followed by the analysis of changes in specific
smaller–dimensional factor matrices Upnq.

is straightforwardly obtained by fixing the core tensor and some fac-
tor matrices while monitoring the changes along one or more specific
modes, as the block tensor moves from left to right as shown in Figure
3.6.

3.5 Tensor Sketching Using Tucker Model

The notion of sketches refers to replacing the original huge matrix
or tensor by a new matrix or tensor of a significantly smaller size or
compactness, but which approximates well the original matrix/tensor.
Finding such sketches in an efficient way is important for the analysis
of big data, as a computer processor (and memory) is often incapable
of handling the whole data-set in a feasible amount of time. For these
reasons, the computation is often spread among a set of processors
which for standard “all-in-one” SVD algorithms, are unfeasible.

Given a very large-scale tensor X , a useful approach is to compute
a sketch tensor Z or set of sketch tensors Zn that are of significantly
smaller sizes than the original one.

There exist several matrix and tensor sketching approaches: sparsi-
fication, random projections, fiber subset selections, iterative sketching

3.5. Tensor Sketching Using Tucker Model 343

techniques and distributed sketching. We review the main sketching
approaches which are promising for tensors.
1. Sparsification generates a sparser version of the tensor which, in
general, can be stored more efficiently and admit faster multiplications
by factor matrices. This is achieved by decreasing the number on non-
zero entries and quantizing or rounding up entries. A simple technique
is element-wise sparsification which zeroes out all sufficiently small el-
ements (below some threshold) of a data tensor, keeps all sufficiently
large elements, and randomly samples the remaining elements of the
tensor with sample probabilities proportional to the square of their
magnitudes (Nguyen et al., 2015).
2. Random Projection based sketching randomly combines fibers of
a data tensor in all or selected modes, and is related to the concept
of a randomized subspace embedding, which is used to solve a vari-
ety of numerical linear algebra problems (see (Tropp et al., 2016) and
references therein).
3. Fiber subset selection, also called tensor cross approximation
(TCA), finds a small subset of fibers which approximates the entire data
tensor. For the matrix case, this problem is known as the Column/Row
Subset Selection or CUR Problem which has been thoroughly investi-
gated and for which there exist several algorithms with almost match-
ing lower bounds (Mahoney, 2011; Desai et al., 2016; Ghashami et al.,
2016).

3.5.1 Tensor Sketching via Multiple Random Projections

The random projection framework has been developed for computing
structured low-rank approximations of a data tensor from (random)
linear projections of much lower dimensions than the data tensor itself
(Caiafa and Cichocki, 2015; Tropp et al., 2016). Such techniques have
many potential applications in large-scale numerical multilinear algebra
and optimization problems.

Notice that for an Nth-order tensor X P RI1�I2�����IN , we can com-
pute the following sketches

Z � X�1 Ω1 �2 Ω2 � � � �N ΩN (3.37)

344 Multiway Component Analysis and Tensor Decompositions

(a)
ZR3

R2

I1
I1

I2

I3

I3
R3

I2

R2

Z
I1

R1

Z

R1

I2 R3

R1

R2

I3
Z

R1

R2
R3

Ω2

Ω3
Ω1

X

X X

= =I3
R3

Ω3

=
I1

R1
Ω1

I2

R2

Ω2

I3
R3

Ω3
I1

R1
Ω1

I2

R2

Ω2

=

X

X X

X

1

3

2

(b)

.

XR1

R2

Rn-1

Rn+1

RN

In

=
1

2
-1n

N

+1nI1

I2 In-1

In+1

IN

Zn

R1

R2

Rn-1

Rn+1

RN

In

Ω

Ω

Ω

Ω

Ω

Ω ΩXZn n-1 n+1Ω ΩN N1 1 n-1 n+1

. ..

.. . ..

. ..

=

X
R1

R2
Rn

RN

.

I1

I2
In

IN
1

N

2

Ω

Ω

Ω

Z
R1

R2 Rn

RN

Z X

.

Ωn

Ω1 ΩN N1 Ω2 2
...

. .

..

. . .

. ..

Figure 3.7: Illustration of tensor sketching using random projections of a data
tensor. (a) Sketches of a 3rd-order tensor X P RI1�I2�I3 given by Z1 � X�2 Ω2 �3
Ω3 P RI1�R2�R3 , Z2 � X �1 Ω1 �3 Ω3 P RR1�I2�R3 , Z3 � X �1 Ω1 �2 Ω2 P
RR1�R2�I3 , and Z � X �1 Ω1 �2 Ω2 �3 Ω3 P RR1�R2�R3 . (b) Sketches for an
Nth-order tensor X P RI1�����IN .

3.5. Tensor Sketching Using Tucker Model 345

and

Zn � X�1 Ω1 � � � �n�1 Ωn�1 �n�1 Ωn�1 � � � �N ΩN , (3.38)

for n �, 1, 2, . . . , N , where Ωn P RRn�In are statistically independent
random matrices with Rn ! In, usually called test (or sensing) matri-
ces.

A sketch can be implemented using test matrices drawn from var-
ious distributions. The choice of a distribution leads to some tradeoffs
(Tropp et al., 2016), especially regarding (i) the costs of randomization,
computation, and communication to generate the test matrices; (ii) the
storage costs for the test matrices and the sketch; (iii) the arithmetic
costs for sketching and updates; (iv) the numerical stability of recon-
struction algorithms; and (v) the quality of a priori error bounds. The
most important distributions of random test matrices include:

• Gaussian random projections which generate random ma-
trices with standard normal distribution. Such matrices usually
provide excellent performance in practical scenarios and accurate
a priori error bounds.

• Random matrices with orthonormal columns that span
uniformly distributed random subspaces of dimensions Rn. Such
matrices behave similar to Gaussian case, but usually exhibit even
better numerical stability, especially when Rn are large.

• Rademacher and super-sparse Rademacher random pro-
jections that have independent Rademacher entries which take
the values �1 with equal probability. Their properties are similar
to standard normal test matrices, but exhibit some improvements
in the cost of storage and computational complexity. In a special
case, we may use ultra sparse Rademacher test matrices, whereby
in each column of a test matrix independent Rademacher random
variables are placed only in very few uniformly random locations
determined by a sampling parameter s; the remaining entries are
set to zero. In an extreme case of maximum sparsity, s � 1, and
each column of a test matrix has exactly only one nonzero entry.

346 Multiway Component Analysis and Tensor Decompositions

• Subsampled randomized Fourier transforms based on test
matrices take the following form

Ωn � PnFnDn, (3.39)

where Dn are diagonal square matrices with independent
Rademacher entries, Fn are discrete cosine transform (DCT) or
discrete Fourier transform (DFT) matrices, and entries of the
matrix Pn are drawn at random from a uniform distribution.

Example. The concept of tensor sketching via random projections is
illustrated in Figure 3.7 for a 3rd-order tensor and for a general case
of Nth-order tensors. For a 3rd-order tensor with volume (number of
entries) I1I2I3 we have four possible sketches which are subtensors of
much smaller sizes, e.g., I1R2R3, with Rn ! In, if the sketching is
performed along mode-2 and mode-3, or R1R2R3, if the sketching is
performed along all three modes (Figure 3.7(a) bottom right). From
these subtensors we can reconstruct any huge tensor if it has low a
multilinear rank (lower than tR1, R2, . . . , Rnu).

In more general scenario, it can be shown (Caiafa and Cichocki,
2015) that the Nth order tensor data tensor X with sufficiently low-
multilinear rank can be reconstructed perfectly from the sketch tensors
Zn, for n � 1, 2, . . . , N , as follows

X̂ � Z�1 Bp1q �2 Bp2q � � � �N BpNq, (3.40)

where Bpnq � rZnspnqZ:
pnq for n � 1, 2, . . . , N (for more detail see the

next section).

3.5.2 Matrix/Tensor Cross-Approximation (MCA/TCA)

Huge-scale matrices can be factorized using the Matrix Cross-
Approximation (MCA) method, which is also known under the names
of Pseudo-Skeleton or CUR matrix decompositions (Goreinov et al.,
1997b,a; Mahoney et al., 2008; Mahoney and Drineas, 2009; Oseledets
and Tyrtyshnikov, 2010; Bebendorf, 2011; Bebendorf et al., 2015;
Khoromskij and Veit, 2016). The main idea behind the MCA is to
provide reduced dimensionality of data through a linear combination

3.5. Tensor Sketching Using Tucker Model 347

X C U R

�

J

I

()�I C ()�R J()�C R

Figure 3.8: Principle of the matrix cross-approximation which decomposes a huge
matrix X into a product of three matrices, whereby only a small-size core matrix U
needs to be computed.

of only a few “meaningful” components, which are exact replicas of
columns and rows of the original data matrix. Such an approach is
based on the fundamental assumption that large datasets are highly
redundant and can therefore be approximated by low-rank matrices,
which significantly reduces computational complexity at the cost of a
marginal loss of information.

The MCA method factorizes a data matrix X P RI�J as (Goreinov
et al., 1997a,b) (see Figure 3.8)

X � CUR �E, (3.41)

where C P RI�C is a matrix constructed from C suitably selected
columns of the data matrix X, matrix R P RR�J consists of R appro-
priately selected rows of X, and matrix U P RC�R is calculated so as
to minimize the norm of the error E P RI�J .

A simple modification of this formula, whereby the matrix U is ab-
sorbed into either C or R, yields the so-called CR matrix factorization
or Column/Row Subset selection:

X � CR̃ � C̃R (3.42)

for which the bases can be either the columns, C, or rows, R, while
R̃ � UR and C̃ � CU.

For dimensionality reduction, C ! J and R ! I, and the columns
and rows of X should be chosen optimally, in the sense of providing a

348 Multiway Component Analysis and Tensor Decompositions

C

RU

1 2 3()I P P 1 3 2()P P I
2 3 1 3 1 2()P P P P P P

...

...
3 1 2()I P P...T

X

T

P2P3

P1

P3P1
P2

R

I2

I1

I3

W

C

Figure 3.9: The principle of the tensor cross-approximation (TCA) algo-
rithm, illustrated for a large-scale 3rd-order tensor X � U �1 C �2 R �3 T �
JU; C,R,TK, where U � W�1 W:

p1q �2 W:
p2q �3 W:

p3q � JW; W:
p1q,W

:
p2q,W

:
p3qK P

RP2P3�P1P3�P1P2 and W P RP1�P2�P3 . For simplicity of illustration, we assume
that the selected fibers are permuted, so as to become clustered as subtensors,
C P RI1�P2�P3 , R P RP1�I2�P3 and T P RP1�P2�I3 .

high “statistical leverage” and the best low-rank fit to the data matrix,
while at the same time minimizing the cost function }E}2F . For a given
set of columns, C, and rows, R, the optimal choice for the core matrix
is U � C:XpR:qT. This requires access to all the entries of X and
is not practical or feasible for large-scale data. In such cases, a prag-
matic choice for the core matrix would be U � W:, where the matrix
W P RR�C is composed from the intersections of the selected rows
and columns. It should be noted that for rankpXq ¤ mintC,Ru the
cross-approximation is exact. For the general case, it has been proven
that when the intersection submatrix W is of maximum volume7, the
matrix cross-approximation is close to the optimal SVD solution. The
problem of finding a submatrix with maximum volume has exponen-
tial complexity, however, suboptimal matrices can be found using fast
greedy algorithms (Wang and Zhang, 2013; Mikhalev and Oseledets,
2015; Rakhuba and Oseledets, 2015; Anderson et al., 2015).

The concept of MCA can be generalized to tensor cross-
approximation (TCA) (see Figure 3.9) through several approaches, in-
cluding:

7The volume of a square submatrix W is defined as | detpWq|.

3.5. Tensor Sketching Using Tucker Model 349

(a)

1 1()I P 2 2()P I1 2 3()P P P

3 3()I P

B
(1)

B
(2)T

B
(3)

=

1 2 3()I I I

X
I3

I1

I2

T

W R

C

R

W

P3

P1

P2

(b)

XI1

I2

I3
UP P2 3

I2

P P1 3

R

C T I3I1

W
P P2 3

P2

C T
I1

P3

P P1 2

B
(3)

I3

W(1)
+ W(3)

+

P P1 3

R

W(2)
+

P1

B
(2)

B
(1)

W

I2

I3I1
B

(1) B
(3)

B
(2)

P P1 2

P1

P2

P3

I2

Figure 3.10: The Tucker decomposition of a low multilinear rank 3rd-order
tensor using the cross-approximation approach. (a) Standard block diagram. (b)
Transformation from the TCA in the Tucker format, X � U �1 C �2 R �3 T,
into a standard Tucker representation, X � W �1 Bp1q �2 Bp2q �3 Bp3q �
JW; CW:

p1q,RW:
p2q,TW:

p3qK, with a prescribed core tensor W.

350 Multiway Component Analysis and Tensor Decompositions

• Applying the MCA decomposition to a matricized version of the
tensor data (Mahoney et al., 2008);

• Operating directly on fibers of a data tensor which admits a low-
rank Tucker approximation, an approach termed the Fiber Sam-
pling Tucker Decomposition (FSTD) (Caiafa and Cichocki, 2010,
2013, 2015).

Real-life structured data often admit good low-multilinear rank ap-
proximations, and the FSTD provides such a low-rank Tucker decom-
position which is practical as it is directly expressed in terms of a
relatively small number of fibers of the data tensor.

For example, for a 3rd-order tensor, X P RI1�I2�I3 , for which an
exact rank-pR1, R2, R3q Tucker representation exists, the FSTD selects
Pn ¥ Rn, n � 1, 2, 3, indices in each mode; this determines an inter-
section subtensor, W P RP1�P2�P3 , so that the following exact Tucker
representation can be obtained (see Figure 3.10)

X � JU; C,R,TK, (3.43)

where the core tensor is computed as U � G � JW; W:
p1q,W

:
p2q,W

:
p3qK,

while the factor matrices, C P RI1�P2P3 ,R P RI2�P1P3 ,T P RI3�P1P2 ,
contain the fibers which are the respective subsets of the columns C,
rows R and tubes T. An equivalent Tucker representation is then given
by

X � JW; CW:
p1q,RW:

p2q,TW:
p3qK. (3.44)

Observe that for N � 2, the TCA model simplifies into the MCA
for a matrix case, X � CUR, for which the core matrix is U �
JW; W:

p1q,W
:
p2qK � W:WW: � W:.

For a general case of an Nth-order tensor, we can show (Caiafa and
Cichocki, 2010) that a tensor, X P RI1�I2�����IN , with a low multilinear
rank tR1, R2, . . . , RNu, where Rn ¤ In, @n, can be fully reconstructed
via the TCA FSTD, X � JU; Cp1q,Cp2q, . . . ,CpNqK, using only N factor
matrices Cpnq P RIn�Pn pn � 1, 2, . . . , Nq, built up from the fibers of the
data and core tensors, U � G � JW; W:

p1q,W
:
p2q, . . . ,W

:
pNqK, under

the condition that the subtensor W P RP1�P2�����PN with Pn ¥ Rn, @n,
has the multilinear rank tR1, R2, . . . , RNu.

3.6. Multiway Component Analysis (MWCA) 351

The selection of a minimum number of suitable fibers depends upon
a chosen optimization criterion. A strategy which requires access to
only a small subset of entries of a data tensor, achieved by selecting
the entries with maximum modulus within each single fiber, is given
in (Caiafa and Cichocki, 2010). These entries are selected sequentially
using a deflation approach, thus making the tensor cross-approximation
FSTD algorithm suitable for the approximation of very large-scale but
relatively low-order tensors (including tensors with missing fibers or
entries).

It should be noted that an alternative efficient way to estimate
subtensors W,C,R and T is to apply random projections as follows

W � Z � X�1 Ω1 �2 Ω2 �3 Ω3 P RP1�P2�P3 ,

C � Z1 � X�2 Ω2 �3 Ω3 P RI1�P2�P3 ,

R � Z2 � X�1 Ω1 �3 Ω3 P RP1�I2�P3 ,

T � Z3 � X�1 Ω1 �2 Ω2 P RP1�P2�I3 , (3.45)

where Ωn P RPn�In with Pn ¥ Rn for n � 1, 2, 3 are indepen-
dent random matrices. We explicitly assume that the multilinear rank
tP1, P2, . . . , PNu of approximated tensor to be somewhat larger than a
true multilinear rank tR1, R2, . . . , RNu of target tensor, because it is
easier to obtain an accurate approximation in this form.

3.6 Multiway Component Analysis (MWCA)

3.6.1 Multilinear Component Analysis Using Constrained Tucker
Decomposition

The great success of 2-way component analyses (PCA, ICA, NMF,
SCA) is largely due to the existence of very efficient algorithms for
their computation and the possibility to extract components with a
desired physical meaning, provided by the various flexible constraints
exploited in these methods. Without these constraints, matrix factor-
izations would be less useful in practice, as the components would have
only mathematical but not physical meaning.

Similarly, to exploit the full potential of tensor factoriza-
tion/decompositions, it is a prerequisite to impose suitable constraints

352 Multiway Component Analysis and Tensor Decompositions

on the desired components. In fact, there is much more flexibility for
tensors, since different constraints can be imposed on the matrix fac-
torizations in every mode n a matricized tensor Xpnq (see Algorithm 6
and Figure 3.11).

Such physically meaningful representation through flexible mode-
wise constraints underpins the concept of multiway component analysis
(MWCA). The Tucker representation of MWCA naturally accommo-
dates such diversities in different modes. Besides the orthogonality,
alternative constraints in the Tucker format include statistical inde-
pendence, sparsity, smoothness and nonnegativity (Vasilescu and Ter-
zopoulos, 2002; Cichocki et al., 2009; Zhou and Cichocki, 2012a; Ci-
chocki et al., 2015b) (see Table 3.3).

The multiway component analysis (MWCA) based on the Tucker-N
model can be computed directly in two or three steps:

1. For each mode n pn � 1, 2, . . . , Nq perform model reduction and
matricization of data tensors sequentially, then apply a suitable
set of 2-way CA/BSS algorithms to the so reduced unfolding ma-
trices, X̃pnq. In each mode, we can apply different constraints and
a different 2-way CA algorithms.

2. Compute the core tensor using, e.g., the inversion formula, Ĝ �
X �1 Bp1q: �2 Bp2q: � � � �N BpNq:. This step is quite important
because core tensors often model the complex links among the
multiple components in different modes.

3. Optionally, perform fine tuning of factor matrices and the core
tensor by the ALS minimization of a suitable cost function,
e.g., }X� JG; Bp1q, . . . ,BpNqK}2F , subject to specific imposed con-
straints.

3.6.2 Analysis of Coupled Multi-block Matrix/Tensors – Linked
Multiway Component Analysis (LMWCA)

We have shown that TDs provide natural extensions of blind source
separation (BSS) and 2-way (matrix) Component Analysis to multi-
way component analysis (MWCA) methods.

3.6. Multiway Component Analysis (MWCA) 353

I

J

K

I ...
J JX(1)

X(2)

U1

(SVD)

1V

X(:,:,)k

...
T

K ...
I IX(:, :)j, X(3)

A3

(SCA)

3
T

...J

K K

A2

(ICA)

1
T

(,:,:)X i

1

X

S

=

2
T

1R

2R

3R

B

B

B
...

...

Figure 3.11: Multiway Component Analysis (MWCA) for a third-order tensor via
constrained matrix factorizations, assuming that the components are: orthogonal in
the first mode, statistically independent in the second mode and sparse in the third
mode.

In addition, TDs are suitable for the coupled multiway analysis of
multi-block datasets, possibly with missing values and corrupted by
noise. To illustrate the simplest scenario for multi-block analysis, con-
sider the block matrices, Xpkq P RI�J , which need to be approximately
jointly factorized as

Xpkq � AGpkqBT, pk � 1, 2, . . . ,Kq, (3.46)

where A P RI�R1 and B P RJ�R2 are common factor matrices and
Gpkq P RR1�R2 are reduced-size matrices, while the number of data
matrices K can be huge (hundreds of millions or more matrices). Such
a simple model is referred to as the Population Value Decomposition
(PVD) (Crainiceanu et al., 2011). Note that the PVD is equivalent
to the unconstrained or constrained Tucker-2 model, as illustrated in
Figure 3.12. In a special case with square diagonal matrices, Gpkq, the
model is equivalent to the CP decomposition and is related to joint
matrix diagonalization (De Lathauwer, 2006; Tichavský and Yeredor,
2009; Chabriel et al., 2014). Furthermore, if A � B then the PVD
model is equivalent to the RESCAL model (Nickel et al., 2016).

Observe that the PVD/Tucker-2 model is quite general and flexible,
since any high-order tensor, X P RI1�I2�����IN (with N ¡ 3), can be

354 Multiway Component Analysis and Tensor Decompositions

Algorithm 7: Population Value Decomposition (PVD)
with orthogonality constraints
Input: A set of matrices Xk P RI�J , for k � 1, . . . ,K (typically,

K " maxtI, Ju)
Output: Factor matrices A P RI�R1 , B P RJ�R2 and Gk P RR1�R2 ,

with orthogonality constraints ATA � IR1 and BTB � IR2

1: for k � 1 to K do
2: Perform truncated SVD, Xk � UkSkVT

k , using R largest singular
values

3: end for
4: Construct short and wide matrices:

U � rU1S1, . . . ,UKSKs P RI�KR and
V � rV1S1, . . . ,VKSKs P RJ�KR

5: Perform SVD (or QR) for the matrices U and V
Obtain common orthogonal matrices A and B as left-singular
matrices of U and V, respectively

6: for k � 1 to K do
7: Compute Gk � ATXkB
8: end for

reshaped and optionally permuted into a “skinny and tall” 3rd-order
tensor, rX P RJ � J � K , with e.g., I � I1, J � I2 and K � I3I4 � � � IN ,
for which PVD/Tucker-2 Algorithm 8 can be applied.

As previously mentioned, various constraints, including sparsity,
nonnegativity or smoothness can be imposed on the factor matrices, A
and B, to obtain physically meaningful and unique components.

A simple SVD/QR based algorithm for the PVD with orthogonality
constraints is presented in Algorithm 7 (Crainiceanu et al., 2011; Con-
stantine et al., 2014; Wang et al., 2016). However, it should be noted
that this algorithm does not provide an optimal solution in the sense
of the absolute minimum of the cost function,

°K
k�1 }Xk �AGkBT}2F ,

and for data corrupted by Gaussian noise, better performance can be
achieved using the HOOI-2 given in Algorithm 4, for N � 3. An im-
proved PVD algorithm referred to as Tucker-2 algorithm is given in
Algorithm 8 (Phan et al., 2016).
Linked MWCA. Consider the analysis of multi-modal high-
dimensional data collected under the same or very similar conditions,

3.6. Multiway Component Analysis (MWCA) 355

(a)

…
()I J× ()I R1× ()R R× ()R J×

G

G(2) (2)

G(K) (K)

1 2 2

A

A

A

TB

TB

TB
… … …

(b)

X

()I J× ×K

A
R2

R1 G

K

TB

()R J2×()R R1 2× ×K()I R1×

Figure 3.12: Concept of the Population Value Decomposition (PVD). (a) Principle
of simultaneous multi-block matrix factorizations. (b) Equivalent representation of
the PVD as the constrained or unconstrained Tucker-2 decomposition, X � G �1
A �2 B. The objective is to find the common factor matrices, A, B and the core
tensor, G P RR1�R2�K .

for example, a set of EEG and MEG or EEG and fMRI signals recorded
for different subjects over many trials and under the same experimental
configurations and mental tasks. Such data share some common latent
(hidden) components but can also have their own independent fea-
tures. As a result, it is advantageous and natural to analyze such data

356 Multiway Component Analysis and Tensor Decompositions

Algorithm 8: Orthogonal Tucker-2 decomposition with a
prescribed approximation accuracy (Phan et al., 2016)
Input: A 3rd-order tensor X P RI�J�K (typically, K " maxtI, Ju)

and estimation accuracy ε
Output: A set of orthogonal matrices A P RI�R1 , B P RJ�R2 and core

tensor G P RR1�R2�K , which satisfies the constraint
}X�G�1 A�B}2

F ¤ ε2 , s.t, ATA � IR1 and BTB � IR2 .
1: Initialize A � II P RI�I , R1 � I
2: while not converged or iteration limit is not reached do
3: Compute the tensor Zp1q � X�1 AT P RR1�J�K

4: Compute EVD of a small matrix Q1 � Zp1q
p2qZ

p1q T
p2q P RJ�J as

Q1 � B diag pλ1, � � � , λR2q BT, such that°R2
r2�1 λr2 ¥ }X}2

F � ε2 ¥ °R2�1
r2�1 λr2

5: Compute tensor Zp2q � X�2 BT P RI�R2�K

6: Compute EVD of a small matrix Q2 � Zp2q
p1qZ

p2q T
p1q P RI�I as

Q2 � A diag pλ1, . . . , λR1q AT, such that°R1
r1�1 λr1 ¥ }X}2

F � ε2 ¥ °R1�1
r1�1 λr1

7: end while
8: Compute the core tensor G � X�1 AT �2 BT

9: return A,B and G.

in a linked way instead of treating them independently. In such a sce-
nario, the PVD model can be generalized to multi-block matrix/tensor
datasets (Cichocki, 2013a; Zhou et al., 2016a,b).

The linked multiway component analysis (LMWCA) for multi-block
tensor data can therefore be formulated as a set of approximate simul-
taneous (joint) Tucker-p1, Nq decompositions of a set of data tensors,
Xpkq P RI

pkq
1 �I

pkq
2 �����I

pkq
N , with Ipkq1 � I1 for k � 1, 2, . . . ,K, in the form

(see Figure 3.13)

Xpkq � Gpkq �1 Bp1,kq, pk � 1, 2, . . .Kq (3.47)

where each factor (component) matrix, Bp1,kq � rBp1q
C , Bp1,kq

I s P
RI1�Rk , comprises two sets of components: (1) Components Bp1q

C P
RI1�C (with 0 ¤ C ¤ Rk), @k, which are common for all the avail-
able blocks and correspond to identical or maximally correlated com-
ponents, and (2) components Bp1,kq

I P RI1�pRk�Cq, which are different

3.6. Multiway Component Analysis (MWCA) 357

X
(1)

X
()K B

(1,)K

. . .

. . .
I1

B
(1,2)

X
(2)I1

I1

I3
(1)

I3
(2)

I3
()K

I2
(1)

I2
()K

I2
(2)

BC
(1)

BI

(1,1)

BC
(1)

BI

(1,2)

BI

(1,)K
BC

(1)

G
(1)

G
(K)

B
(1,1)

G(2)

Figure 3.13: Linked Multiway Component Analysis (LMWCA) for coupled 3rd-
order data tensors Xp1q, . . . ,XpKq; these can have different dimensions in every
mode, except for the mode-1 for which the size is I1 for all Xpkq. Linked Tucker-1 de-
compositions are then performed in the form Xpkq � Gpkq�1 Bp1,kq, where partially
correlated factor matrices are Bp1,kq � rBp1q

C ,Bp1,kq
I s P RI1�Rk , pk � 1, 2, . . . ,Kq.

The objective is to find the common components, Bp1q
C P RI1�C , and individual

components, Bp1,kq
I P RI1�pRk�Cq, where C ¤ mintR1, . . . , RKu is the number of

common components in mode-1.

independent processes for each block, k, these can be, for example,
latent variables independent of excitations or stimuli/tasks. The ob-
jective is therefore to estimate the common (strongly correlated) com-
ponents, Bp1q

C , and statistically independent (individual) components,
Bp1,kq
I (Cichocki, 2013a).

358 Multiway Component Analysis and Tensor Decompositions

(a)

A G=
(1) G(2) G(3) G(-1)N

G(2) G(3)

B G=
()N

G(-1)N
B G=

()NA G=
(1)

=
I1 I2 I3 IN-1 IN

J1 J2 J3 JN-1
JN

...I1

I2 In

IN

=IJ2 Jn

JN

X...

I3

...
...

...

J3

Y
J1

=I1 2

(b)

...I1

I2 In

IN

J =I1 1

J2 Jn

JN

X...

I3

...
...

...

J3

Y

Figure 3.14: Conceptual models of generalized Linked Multiway Component Anal-
ysis (LMWCA) applied to the cores of high-order TNs. The objective is to find a
suitable tensor decomposition which yields the maximum number of cores that are
as much correlated as possible. (a) Linked Tensor Train (TT) networks. (b) Linked
Hierarchical Tucker (HT) networks with the correlated cores indicated by ellipses in
broken lines.

3.6. Multiway Component Analysis (MWCA) 359

If Bpn,kq � Bpnq
C P RIn�Rn for a specific mode n (in our case n � 1),

and under the additional assumption that the block tensors are of the
same order and size, the problem simplifies into generalized Common
Component Analysis or tensor Population Value Decomposition (PVD)
and can be solved by concatenating all data tensors along one mode,
followed by constrained Tucker or CP decompositions (Phan and Ci-
chocki, 2010).

In a more general scenario, when Cn Rn, we can unfold each data
tensor Xpkq in the common mode, and perform a set of simultaneous
matrix factorizations, e.g., Xpkq

p1q � Bp1q
C Ap1,kq

C � Bp1,kq
I Ap1,kq

I , through
solving the constrained optimization problems

min
Ķ

k�1
}Xpkq

p1q �Bp1q
C Ap1,kq

C �Bp1,kq
I Ap1,kq

I }F

� P pBp1q
C q, s.t. Bp1q T

C Bp1,kq
I � 0 @k,

(3.48)

where the symbol P denotes the penalty terms which impose addi-
tional constraints on the common components, Bp1q

C , in order to ex-
tract as many common components as possible. In the special case of
orthogonality constraints, the problem can be transformed into a gen-
eralized eigenvalue problem. The key point is to assume that common
factor submatrices, Bp1q

C , are present in all data blocks and hence re-
flect structurally complex latent (hidden) and intrinsic links between
the data blocks. In practice, the number of common components, C, is
unknown and should be estimated (Zhou et al., 2016a).

The linked multiway component analysis (LMWCA) model com-
plements currently available techniques for group component analysis
and feature extraction from multi-block datasets, and is a natural ex-
tension of group ICA, PVD, and CCA/PLS methods (see (Cichocki,
2013a; Zhao et al., 2013a; Zhou et al., 2016a,b) and references therein).
Moreover, the concept of LMWCA can be generalized to tensor net-
works, as illustrated in Figure 3.14.

360 Multiway Component Analysis and Tensor Decompositions

3.7 Nonlinear Tensor Decompositions – Infinite Tucker

The Infinite Tucker model and its modification, the Distributed Infi-
nite Tucker (DinTucker), generalize the standard Tucker decomposition
to infinitely dimensional feature spaces using kernel and Bayesian ap-
proaches (Tang et al., 2013; Xu et al., 2012; Zhe et al., 2016).

Consider the classic Tucker-N model of an Nth-order tensor X P
RI1�����IN , given by

X � G�1 Bp1q �2 Bp2q � � � �N BpNq

� JG; Bp1q,Bp2q, . . . ,BpNqK (3.49)

in its vectorized version

vecpXq � pBp1q bL � � � bL BpNqq vecpGq.
Furthermore, assume that the noisy data tensor is modeled as

Y � X�E, (3.50)

where E represents the tensor of additive Gaussian noise. Using the
Bayesian framework and tensor-variate Gaussian processes (TGP) for
Tucker decomposition, a standard normal prior can be assigned over
each entry, gr1,r2,...,rN , of an Nth-order core tensor, G P RR1�����RN , in
order to marginalize out G and express the probability density function
of tensor X (Chu and Ghahramani, 2009; Xu et al., 2012; Zhe et al.,
2016) in the form

p
�
X |Bp1q, . . . ,BpNq

	
� N

�
vecpXq; 0,Cp1q bL � � � bL CpNq

	
� exp

��1
2}JX; pCp1qq�1{2, . . . , pCpNqq�1{2K}2F

�
p2πqI{2±N

n�1 |Cpnq|�I{p2Inq
(3.51)

where I �±n In and Cpnq � Bpnq Bpnq T P RIn�In for n � 1, 2, . . . , N .
In order to model unknown, complex, and potentially nonlinear in-

teractions between the latent factors, each row, b̄pnq
in

P R1�Rn , within
Bpnq, is replaced by a nonlinear feature transformation Φpb̄pnq

in
q using

the kernel trick (Zhao et al., 2013b), whereby the nonlinear covari-
ance matrix Cpnq � kpBpnq, Bpnqq replaces the standard covariance

3.7. Nonlinear Tensor Decompositions – Infinite Tucker 361

matrix, BpnqBpnq T. Using such a nonlinear feature mapping, the origi-
nal Tucker factorization is performed in an infinite feature space, while
Eq. (3.51) defines a Gaussian process (GP) on a tensor, called the
Tensor-variate GP (TGP), where the inputs come from a set of factor
matrices tBp1q, . . . ,BpNqu � tBpnqu.

For a noisy data tensor Y, the joint probability density function is
given by

ppY,X, tBpnquq � pptBpnquq ppX | tBpnquq ppY|Xq. (3.52)

To improve scalability, the observed noisy tensor Y can be split
into K subtensors tY1, . . . ,YKu, whereby each subtensor Yk is sam-
pled from its own GP based model with factor matrices, tB̃pnq

k u �
tB̃p1q

k , . . . , B̃pNq
k u. The factor matrices can then be merged via a prior

distribution

pptB̃pnq
k u|tBpnquq �

N¹
n�1

ppB̃pnq
k |Bpnqq

�
N¹
n�1
N pvecpB̃pnq

k q|vecpBpnqqq, λIq, (3.53)

where λ ¡ 0 is a variance parameter which controls the similarity
between the corresponding factor matrices. The above model is referred
to as DinTucker (Zhe et al., 2016).

The full covariance matrix, Cp1q b � � � bCpNq P R
±

n In�
±

n In , may
have a prohibitively large size and can be extremely sparse. For such
cases, an alternative nonlinear tensor decomposition model has been
recently developed, which does not, either explicitly or implicitly, ex-
ploit the Kronecker structure of covariance matrices (Cichocki et al.,
2015a). Within this model, for each tensor entry, xi1,...,iN � xi, with
i � pi1, i2, . . . , iN q, an input vector bi is constructed by concatenating
the corresponding row vectors of factor (latent) matrices, Bpnq, for all
N modes, as

bi � rb̄p1q
i1
, . . . , b̄pNq

iN
s P R1�

°N
n�1 Rn . (3.54)

We can formalize an (unknown) nonlinear transformation as

xi � fpbiq � fprb̄p1q
i1
, . . . , b̄pNq

iN
sq (3.55)

362 Multiway Component Analysis and Tensor Decompositions

for which a zero-mean multivariate Gaussian distribution is determined
by BS � tbi1 , . . . ,biM u and fS � tfpbi1q, . . . , fpbiM qu. This allows us
to construct the following probability function

p
�
fS |tBpnqu

	
� N pfS |0, kpBS , BSqq , (3.56)

where kp�, �q is a nonlinear covariance function which can be ex-
pressed as kpbi,bjq � kpprb̄p1q

i1
, . . . , b̄pNq

iN
sq, prb̄p1q

j1
, . . . , b̄pNq

jN
sqq and S �

ri1, . . . , iM s.
In order to assign a standard normal prior over the factor matrices,

tBpnqu, we assume that for selected entries, x � rxi1 , . . . , xiM s, of a
tensor X, the noisy entries, y � ryi1 , . . . , yiM s, of the observed tensor
Y, are sampled from the following joint probability model

ppy,x, tBpnquq (3.57)

�
N¹
n�1
N pvecpBpnqq|0, Iq N px|0, kpBS , BSqq N py|x, β�1Iq,

where β represents noise variance.
These nonlinear and probabilistic models can be potentially applied

for data tensors or function-related tensors comprising large number of
entries, typically with millions of non-zero entries and billions of zero
entries. Even if only nonzero entries are used, exact inference of the
above nonlinear tensor decomposition models may still be intractable.
To alleviate this problem, a distributed variational inference algorithm
has been developed, which is based on sparse GP, together with an effi-
cient MapReduce framework which uses a small set of inducing points
to break up the dependencies between random function values (Zhe
et al., 2016; Titsias, 2009).

4
Tensor Train Decompositions: Graphical

Interpretations and Algorithms

Efficient implementation of the various operations in tensor train (TT)
formats requires compact and easy-to-understand mathematical and
graphical representations (Cichocki, 2013b, 2014). To this end, we
next present mathematical formulations of the TT decompositions and
demonstrate their advantages in both theoretical and practical scenar-
ios.

4.1 Tensor Train Decomposition – Matrix Product State

The tensor train (TT/MPS) representation of an Nth-order data ten-
sor, X P RI1�I2�����IN , can be described in several equivalent forms (see
Figures 4.1, 4.2 and Table 4.1) listed below:

1. The entry-wise scalar form, given by

xi1,i2,...,iN �
R1,R2,...,RN�1¸
r1, r2,...,rN�1�1

g
p1q
1, i1, r1 g

p2q
r1, i2, r2

� � � gpNq
rN�1, iN ,1.

(4.1)

2. The slice representation (see Figure 2.19) in the form

xi1,i2,...,iN � Gp1q
i1

Gp2q
i2
� � �GpNq

iN
, (4.2)

where the slice matrices are defined as
Gpnq
in

� Gpnqp:, in, :q P RRn�1�Rn , in � 1, 2, . . . , In

363

364 Tensor Train Decompositions

(a)

R1 R2

I2 I4

G
(2)

G
(3)

G
(1)

G
(4)

R3

I1 I3

I1

R1

I2

R2
R3

I4

R3R2R1

1

(1)
rg 1 2

(2)
,r rg 2 3

(3)
,r rg

3

(4)
rg

1 2 2()R I R 2 3 3()R I R
3

1 1(1)I R (R)I 13 4

I

(b)

1 1()I R 1 2 2()R I R 2 3 3()R I R 3 4(1)R I

I1

R1

R2

I 2

R3

I 3

I 4

(1)
G

(2)
G

(3)
G

(4)
G

R1 R2

Figure 4.1: TT decomposition of a 4th-order tensor, X, for which the TT
rank is R1 � 3, R2 � 4, R3 � 5. (a) (Upper panel) Representation of the
TT via a multilinear product of the cores, X � Gp1q �1 Gp2q �1 Gp3q �1

Gp4q � xxGp1q,Gp2q,Gp3q,Gp4qyy, and (lower panel) an equivalent representation
via the outer product of mode-2 fibers (sum of rank-1 tensors) in the form,
X � °R1

r1�1
°R2

r2�1
°R3

r3�1
°R4

r4�1pgp1qr1 � gp2qr1, r2 � gp3qr2, r3 � gp4qr3 q. (b) TT de-
composition in a vectorized form represented via strong Kronecker products of block
matrices, x � rGp1q |b| rGp2q |b| rGp3q |b| rGp4q P RI1I2I3I4 , where the block matrices are
defined as rGpnq P RRn�1In�Rn , with block vectors gpnqrn�1, rn P RIn�1, n � 1, . . . , 4
and R0 � R4 � 1.

4.1. Tensor Train Decomposition – Matrix Product State 365

(a)

I1

I2

IN...

1 2 NI = I I I
I3

X

~~x

(b)

...

...

1 1(1)I R 1 2 2()R I R

R1 R2 RN-1

I2 In INI1

G
(2)

G
()n

G
(1)

G
()N

R2

R1

I2

Rn-1

IN
RN-1

1()n nnR I R 1(1)NNR I

R1

I1

...

Rn

1 1 1 1 1Rn-1

Rn

In

...

......

...

(c)

(1)
G

1 1()I R 1 2 2()R I R

2(1)I
(2)

G
()n

G
()N

G

I1

R1

(1)nI
(1)NI

R2

...

1(1)I

...

...

...

...

...

...

...

......

1()n nnR I R 1(1)NNR I

...

Rn

...R1

Figure 4.2: TT/MPS decomposition of an Nth-order data tensor, X, for which
the TT rank is tR1, R2, . . . , RN�1u. (a) Tensorization of a huge-scale vector, x P RI ,
into an Nth-order tensor, X P RI1�I2�����IN . (b) The data tensor can be represented
exactly or approximately via a tensor train (TT/MPS), consisting of 3rd-order cores
in the form X � Gp1q �1 Gp2q �1 � � � �1 GpNq � xxGp1q,Gp2q, . . . ,GpNqyy, where
Gpnq P RRn�1�In�Rn for n � 1, 2, . . . , N with R0 � RN � 1. (c) Equivalently, using
the strong Kronecker products, the TT tensor can be expressed in a vectorized form,
x � rGp1q |b| rGp2q |b| � � � |b| rGpNq P RI1I2���IN , where the block matrices are defined
as rGpnq P RRn�1In�Rn , with blocks gpnqrn�1, rn P RIn�1.

366 Tensor Train Decompositions

Table 4.1: Equivalent representations of the Tensor Train decomposition (MPS
with open boundary conditions) approximating an Nth-order tensor X P
RI1�I2�����IN . It is assumed that the TT rank is rT T � tR1, R2, . . . , RN�1u, with
R0 � RN � 1.

Tensor representation: Multilinear products of TT-cores

X � Gp1q �1 Gp2q �1 � � � �1 GpNq P RI1�I2�����IN

with the 3rd-order cores Gpnq P RRn�1�In�Rn , pn � 1, 2, . . . , Nq

Tensor representation: Outer products

X �
R1,R2,...,RN�1¸

r1, r2,...,rN�1�1
gp1q1,r1

� gp2qr1, r2
� � � � � gpN�1q

rN�2, rN�1
� gpNq

rN�1, 1

where gpnqrn�1, rn � Gpnqprn�1, :, rnq P RIn are fiber vectors.

Vector representation: Strong Kronecker products

x � rGp1q |b| rGp2q |b| � � � |b| rGpNq P RI1I2���IN , where

rGpnq P RRn�1In�Rn are block matrices with blocks gpnqrn�1,rn P RIn

Scalar representation

x i1,i2,...,iN
�

R1,R2,...,RN�1¸
r1,r2,...,rN�1�1

g
p1q
1, i1, r1

g
p2q
r1, i2, r2

� � � gpN�1q
rN�2, iN�1, rN�1

g
pNq
rN�1, iN ,1

where gpnqrn�1, in, rn
are entries of a 3rd-order core Gpnq P RRn�1�In�Rn

Slice (MPS) representation

x i1, i2,...,iN
� Gp1q

i1
Gp2q

i2
� � � GpNq

iN
, where

Gpnq
in

� Gpnqp:, in, :q P RRn�1�Rn are lateral slices of Gpnq P RRn�1�In�Rn

4.1. Tensor Train Decomposition – Matrix Product State 367

Table 4.2: Equivalent representations of the Tensor Chain (TC) decomposition
(MPS with periodic boundary conditions) approximating an Nth-order tensor X P
RI1�I2�����IN . It is assumed that the TC rank is rT C � tR1, R2, . . . , RN�1, RNu.

Tensor representation: Trace of multilinear products of cores

X � Tr pGp1q �1 Gp2q �1 � � � �1 GpNqq P RI1�I2�����IN

with the 3rd-order cores Gpnq P RRn�1�In�Rn , R0 � RN , n � 1, 2, . . . , N

Tensor/Vector representation: Outer/Kronecker products

X �
R1,R2,...,RN¸

r1, r2,...,rN�1
gp1qrN , r1

� gp2qr1, r2
� � � � � gpNq

rN�1, rN
P RI1�I2�����IN

x �
R1,R2,...,RN¸

r1, r2,...,rN�1
gp1qrN , r1

bL gp2qr1, r2
bL � � � bL gpNq

rN�1, rN
P RI1I2���IN

where gpnqrn�1, rn P RIn are fiber vectors within Gpnqprn�1, :, rnq P RIn

Vector representation: Strong Kronecker products

x �
RŅ

rN�1
p rGp1q

rN
|b| rGp2q |b| � � � |b| rGpN�1q |b| rGpNq

rN
q P RI1 I2���IN where

rGpnq P RRn�1 In�Rn are block matrices with blocks gpnqrn�1, rn P RIn ,

rGp1q
rN P RI1�R1 is a matrix with blocks (columns) gp1qrN , r1 P RI1 ,

rGpNq
rN P RRN�1 IN�1 is a block vector with blocks gpNq

rN�1, rN P RIN

Scalar representations

x i1, i2,...,iN
� trpGp1q

i1
Gp2q

i2
� � �GpNq

iN
q �

RŅ

rN�1
pgp1qT

rN , i1, : G
p2q
i2

� � �GpN�1q
iN�1

gpNq
:, iN , rN

q

where gp1qrN , i1, : � Gp1qprN , i1, :q P RR1 , gpNq
:, iN , rN

� GpNqp:, iN , rN q P RRN�1

368 Tensor Train Decompositions

with Gpnq
in

being the inth lateral slice of the core Gpnq P
RRn�1�In�Rn , n � 1, 2, . . . , N and R0 � RN � 1.

3. The (global) tensor form, based on multilinear products (contrac-
tion) of cores (see Figure 4.1(a)) given by

X � Gp1q �1 Gp2q �1 � � � �1 GpN�1q �1 GpNq

� xxGp1q,Gp2q, . . . ,GpN�1q,GpNqyy, (4.3)

where the 3rd-order cores1 Gpnq P RRn�1�In�Rn , n � 1, 2, . . . , N
and R0 � RN � 1 (see also Figure 4.2(b)).

4. The tensor form, expressed as a sum of rank-1 tensors (see Figure
4.1(a))

X �
R1,R2,...,RN�1¸
r1, r2,...,rN�1�1

gp1q1, r1 � gp2qr1, r2 � � � � � gpN�1q
rN�2, rN�1 � gpNq

rN�1, 1,

(4.4)
where gpnqrn�1,rn � Gpnqprn�1, :, rnq P RIn are mode-2 fibers, n �
1, 2, . . . , N and R0 � RN � 1.

5. A vector form, expressed by Kronecker products of the fibers

x �
R1,R2,...,RN�1¸
r1,r2,...,rN�1�1

gp1q1, r1 bL gp2qr1, r2 bL

� � � bL gpN�1q
rN�2, rN�1 bL gpNq

rN�1, 1, (4.5)

where x � vecpXq P RI1I2���IN .

6. An alternative vector form, produced by strong Kronecker prod-
ucts of block matrices (see Figure 4.1(b)) and Figure 4.2(c)),
given by

x � rGp1q |b| rGp2q |b| � � � |b| rGpNq, (4.6)
where the block matrices rGpnq P RRn�1In�Rn , for n � 1, 2, . . . , N ,
consist of blocks gpnqrn�1,rn P RIn�1, n � 1, 2, . . . , N , with R0 �

1Note that the cores Gp1q and GpNq are now two-dimensional arrays (matrices),
but for a uniform representation, we assume that these matrices are treated as 3rd-
order cores of sizes 1 � I1 �R1 and RN�1 � IN � 1, respectively.

4.2. Matrix TT Decomposition – Matrix Product Operator 369

RN � 1, and the symbol |b| denotes the strong Kronecker prod-
uct.

Analogous relationships can be established for Tensor Chain (i.e.,
MPS with PBC (see Figure 2.19(b)) and summarized in Table 4.2.

4.2 Matrix TT Decomposition – Matrix Product Operator

The matrix tensor train, also called the Matrix Product Operator
(MPO) with open boundary conditions (TT/MPO), is an impor-
tant TN model which first represents huge-scale structured matrices,
X P RI�J , as 2Nth-order tensors, X P RI1�J1�I2�J2����IN�JN , where
I � I1I2 � � � IN and J � J1J2 � � � JN (see Figures 4.3, 4.4 and Table
4.3). Then, the matrix TT/MPO converts such a 2Nth-order tensor
into a chain (train) of 4th-order cores2. It should be noted that the
matrix TT decomposition is equivalent to the vector TT, created by
merging all index pairs pin, jnq into a single index ranging from 1 to
InJn, in a reverse lexicographic order.

Similarly to the vector TT decomposition, a large scale 2Nth-order
tensor, X P RI1�J1�I2�J2�����IN�JN , can be represented in a TT/MPO
format via the following mathematical representations:

1. The scalar (entry-wise) form

xi1,j1,...,iN ,jN �
R1̧

r1�1

R2̧

r2�1
� � �

RN�1¸
rN�1�1

g
p1q
1, i1,j1,r1 g

p2q
r1, i2, j2, r2

� � � gpN�1q
rN�2, iN�1, jN�1, rN�1

g
pNq
rN�1, iN , jN , 1. (4.7)

2. The slice representation

xi1,j1,...,iN ,jN � Gp1q
i1,j1

Gp2q
i2,j2

� � �GpNq
iN ,jN

, (4.8)

where Gpnq
in,jn

� Gpnqp:, in, jn, :q P RRn�1�Rn are slices of the
cores Gpnq P RRn�1�In�Jn�Rn , n � 1, 2, . . . , N and R0 � RN �
1.

2The cores Gp1q and GpNq are in fact three-dimensional arrays, however for uni-
form representation, we treat them as 4th-order cores of sizes 1 � I1 � J1 �R1 and
RN�1 � IN � JN � 1.

370 Tensor Train Decompositions

3. The compact tensor form based on multilinear products (Figure
4.4(b))

X � Gp1q �1 Gp2q �1 � � � �1 GpNq

� xxGp1q,Gp2q, . . . ,GpNqyy, (4.9)

where the TT-cores are defined as Gpnq P RRn�1�In�Jn�Rn , n �
1, 2, . . . , N and R0 � RN � 1.

4. A matrix form, based on strong Kronecker products of block ma-
trices (Figures 4.3(b) and 4.4(c))

X � rGp1q |b| rGp2q |b| � � � |b| rGpNq P RI1���IN � J1���JN , (4.10)

where rGpnq P RRn�1In�RnJn are block matrices with blocks
Gpnq
rn�1,rn P RIn�Jn and the number of blocks is Rn�1 � Rn. In

a special case, when the TT ranks Rn � 1, @n, the strong Kro-
necker products simplify into standard (left) Kronecker products.

The strong Kronecker product representation of a TT is probably
the most comprehensive and useful form for displaying tensor trains in
their vector/matrix form, since it allows us to perform many operations
using relatively small block matrices.
Example. For two matrices (in the TT format) expressed via the
strong Kronecker products, A � Ãp1q |b| Ãp2q |b| � � � |b| ÃpNq and B �
B̃p1q |b| B̃p2q |b| � � � |b| B̃pNq, their Kronecker product can be efficiently
computed as AbL B � Ãp1q |b| � � � |b| ÃpNq |b| B̃p1q |b| � � � |b| B̃pNq. Fur-
thermore, if the matrices A and B have the same mode sizes3, then
their linear combination, C � αA � βB can be compactly expressed
as (Oseledets, 2011; Kazeev et al., 2013a,b)

C � rÃp1q B̃p1qs |b|
�
Ãp2q 0

0 B̃p2q

�
|b| � � � |b|

�
ÃpN�1q 0

0 B̃pN�1q

�
|b|
�
αÃpNq

βB̃pNq

�
.

Consider its reshaped tensor C � xxCp1q,Cp2q, . . . ,CpNqyy in the TT
format; then its cores Cpnq P RRn�1�In�Jn�Rn , n � 1, 2, . . . , N can be

3Note that, wile original matrices A P RI1���IN�J1���JN and B P RI1���IN�J1���JN

must have the same mode sizes, the corresponding core tenors, Apnq �P
RRA

n�1�In�Jn�RA
n and Bpnq �P RRB

n�1�In�Jn�RB
n , may have arbitrary mode sizes.

4.2. Matrix TT Decomposition – Matrix Product Operator 371

(a)

R1 R2 R3

I2 I3 I4I1

G(2) G(3)

I2

R2

R3

R3

G(1) G(4)J1

I1

R1

I3

1
1RI2

R2

R3

I3

J2 J3 J4

J1

J2

J2

J3

J3
J4

I4

(1×I × J ×R)111 (R ×I × J ×R) 1 2 2 2 (R ×I × J ×R) 2 3 3 3 (R ×I × J ×1) 3 4 4

1 1

I2

R2J2

R3

I3

J3

R3

I3

J3

R2

(b)

(1)
G

(2)
G

(3)
G

(4)
G

(I × J)11
(I × J)22 (I × J)33

(I × J)44

(I × R J)111 (R I × R J)1 2 22 (R I × R J)2 3 33 (R I × J)3 4 4

Figure 4.3: TT/MPO decomposition of a matrix, X P RI�J , reshaped as an
8th-order tensor, X P RI1�J1�����I4�J4 , where I � I1I2I3I4 and J � J1J2J3J4. (a)
Basic TT representation via multilinear products (tensor contractions) of cores X �
Gp1q �1 Gp2q �1 Gp3q �1 Gp4q, with Gpnq P RRn�1�In�Rn for R1 � 3, R2 � 4, R3 �
5, R0 � R4 � 1. (b) Representation of a matrix or a matricized tensor via strong Kro-
necker products of block matrices, in the form X � rGp1q |b| rGp2q |b| rGp3q |b| rGp4q P
RI1I2I3I4 � J1J2J3J4 .

372 Tensor Train Decompositions

(a)

I1 I2

I
N

J1

J2J
N

...

�X1 2 N
I = I I I�

1 2 N
J = J J J�

(b)

I2

R2J2
...I1

R1
J1

1R

R1 R2
J1I1

G
(2)

G
()n

G
(1)

G
()N

I2 InJ2
IN JN

Rn-1 Rn
Jn

INJN

... ...

I2

J2
...

...

...

...

...

RN-1

Jn
In

Jn
In

Rn

Rn-1 RN-1

1 1 1(1)I J R 1 2 2 2()R I J R 1()n n nnR I J R 1(1)N NNR I J

1 1111

(c)

1 1 1()I R J 1 2 2 2()R I R J

(1)
G

(2)
G

()n
G

()N
G

...

...

...

...

...

...

...

...
...

()N NI J

1()n n nnR I R J 1()N NNR I J

... ... RN-1

R1

2 2()I J ()n nI J1 1()I J

...

Figure 4.4: Representations of huge matrices by “linked” block matrices. (a)
Tensorization of a huge-scale matrix, X P RI�J , into a 2Nth-order tensor X P
RI1�J2�����IN�JN . (b) The TT/MPO decomposition of a huge matrix, X, expressed
by 4th-order cores, Gpnq P RRn�1�In�Jn�Rn . (c) Alternative graphical representa-
tion of a matrix, X P RI1I2���IN � J1J2���JN , via strong Kronecker products of block
matrices rGpnq P RRn�1 In � Rn Jn for n � 1, 2, . . . , N with R0 � RN � 1.

4.2. Matrix TT Decomposition – Matrix Product Operator 373

Table 4.3: Equivalent forms of the matrix Tensor Train decomposition (MPO with
open boundary conditions) for a 2Nth-order tensor X P RI1�J1�I2�J2�����IN�JN . It
is assumed that the TT rank is tR1, R2, . . . , RN�1u, with R0 � RN � 1.

Tensor representation: Multilinear products (tensor contractions)

X � Gp1q �1 Gp2q �1 � � � �1 GpN�1q �1 GpNq

with 4th-order cores Gpnq P RRn�1�In�Jn�Rn , pn � 1, 2, . . . , Nq

Tensor representation: Outer products

X �
R1,R2,...,RN�1¸
r1,r2,...,rN�1�1

Gp1q
1, r1

� Gp2q
r1, r2

� � � � � GpN�1q
rN�2, rN�1

� GpNq
rN�1, 1

where Gpnq
rn�1, rn P RIn�Jn are blocks of rGpnq P RRn�1In�RnJn

Matrix representation: Strong Kronecker products

X � rGp1q |b| rGp2q |b| � � � |b| rGpNq P RI1���IN � J1���JN

where rGpnq P RRn�1In�RnJn are block matrices with blocks

Gpnqprn�1, :, :, rnq

Scalar representation

xi1,j1,i2,j2,...,iN ,jN
�

R1,R2,...,RN�1¸
r1,r2,...,rN�1�1

g
p1q
1,i1, j1, r1

g
p2q
r1, i2, j2, r2

� � � gpNq
rN�1, iN , jN ,1

where gpnqrn�1, in, jn, rn
are entries of a 4th-order core

Gpnq P RRn�1�In�Jn�Rn

Slice (MPS) representation

xi1,j1,i2,j2,...,iN ,jN
� Gp1q

i1,j1
Gp2q

i2,j2
� � �GpNq

iN ,jN
where

Gpnq
in, jn

� Gpnqp:, in, jn, :q P RRn�1�Rn are slices of Gpnq P RRn�1�In�Jn�Rn

374 Tensor Train Decompositions

expressed through their unfolding matrices, Cpnq
 n¡ P RRn�1In�RnJn , or

equivalently by the lateral slices, Cpnq
in,jn

P RRn�1�Rn , as follows

Cpnq
in,jn

�
�
Apnq
in,jn

0
0 Bpnq

in,jn

�
, n � 2, 3, . . . , N � 1, (4.11)

while for the border cores

Cp1q
i1,j1

�
�
Ap1q
i1,j1

Bp1q
i1,j1

�
, CpNq

iN ,jN
�
�
α ApNq

iN ,jN

β BpNq
iN ,jN

�
(4.12)

for in � 1, 2, . . . , In, jn � 1, 2, . . . , JN , n � 1, 2, . . . , N .
Note that the various mathematical and graphical representations

of TT/MPS and TT/MPO can be used interchangeably for different
purposes or applications. With these representations, all basic mathe-
matical operations in TT format can be performed on the constitutive
block matrices, even without the need to explicitly construct core
tensors (Oseledets, 2011; Dolgov, 2014).

Remark. In the TT/MPO paradigm, compression of large matrices is
not performed by global (standard) low-rank matrix approximations,
but by low-rank approximations of block-matrices (submatrices) ar-
ranged in a hierarchical (linked) fashion. However, to achieve a low-rank
TT and consequently a good compression ratio, ranks of all the corre-
sponding unfolding matrices of a specific structured data tensor must
be low, i.e., their singular values must rapidly decrease to zero. While
this is true for many structured matrices, unfortunately in general, this
assumption does not hold.

4.3 Links Between CP, BTD Formats and TT/TC Formats

It is important to note that any specific TN format can be converted
into the TT format. This very useful property is next illustrated for
two simple but important cases which establish links between the CP
and TT and the BTD and TT formats.

4.3. Links Between CP, BTD Formats and TT/TC Formats 375

(a)

R R
I2 INI1

G(2) GG(1) G()N
R R

IN-1

R

1

R

R

I2 IN-1 INI1
(1×I ×R)1 (R×I ×R)2 (R×I ×R)N-1 (R×I ×1)N

A

A A(N-1)(2)

(1) A
(N) R

(N-1)

R

R

1

1 1 1 1

(b)

I2

R
J2

I1

R
J1

1 1 1

R R

J1
I1

G
(2)

G

G
(1)

G
()N

I2 IJ2
IN JN

R

J

INJN

...

...

...

...

...

...

...

...
...

... ...

I2

J2

...

...

...

...

... ...

R

J

I

J

I

R

R
R

R

R

(N-1)

N-1 N-1

R

N-1

N-1

N-1

N-1

1

(R×I ×J ×R)N-1 N-1 (R×I ×J ×1)N N(R×I ×J ×R)2 2(1×I ×J ×R)1 1

(I ×RJ)1 1 (RI ×RJ)22 (RI ×RJ)N-1 N-1 (RI ×J)N N

(I ×J)N N

(I ×J)N-1 N-1
(I ×J)22

(I ×J)1 1

Figure 4.5: Links between the TT format and other tensor network formats. (a)
Representation of the CP decomposition for an Nth-order tensor, X � I�1 Ap1q�2
Ap2q � � ��N ApNq, in the TT format. (b) Representation of the BTD model given by
Eqs. (4.15) and (4.16) in the TT/MPO format. Observe that the TT-cores are very
sparse and the TT ranks are tR,R, . . . , Ru. Similar relationships can be established
straightforwardly for the TC format.

376 Tensor Train Decompositions

1. A tensor in the CP format, given by

X �
Ŗ

r�1
ap1qr � ap2qr � � � � � apNq

r , (4.13)

can be straightforwardly converted into the TT/MPS format as
follows. Since each of the R rank-1 tensors can be represented in
the TT format of TT rank p1, 1, . . . , 1q, using formulas (4.11) and
(4.12), we have

X �
Ŗ

r�1
xxap1qTr ,ap2qTr , . . . ,apNqT

r yy (4.14)

� xxGp1q,Gp2q, . . . ,GpN�1q,GpNqyy,
where the TT-cores Gpnq P RR�In�R have diagonal lateral slices
Gpnqp:, in, :q � Gpnq

in
� diagpain,1, ain,2, . . . , ain,Rq P RR�R for n �

2, 3, . . . , N � 1 and Gp1q � Ap1q P RI1�R and GpNq � ApNq T P
RR�IN (see Figure 4.5(a)).

2. A more general Block Term Decomposition (BTD) for a 2Nth-
order data tensor

X �
Ŗ

r�1
pAp1q

r �Ap2q
r � � � � �ApNq

r q P RI1�J1�����IN�JN (4.15)

with full rank matrices, Apnq
r P RIn�Jn , @r, can be converted into

a matrix TT/MPO format, as illustrated in Figure 4.5(b).
Note that (4.15) can be expressed in a matricized (unfolding)
form via strong Kronecker products of block diagonal matrices
(see formulas (4.11)), given by

X �
Ŗ

r�1
pAp1q

r bL Ap2q
r bL � � � bL ApNq

r q (4.16)

� rGp1q |b| rGp2q |b| � � � |b| rGpNq P RI1���IN � J1����JN ,

with the TT rank, Rn � R for n � 1, 2, . . . N�1, and the block di-
agonal matrices, rGpnq � diagpApnq

1 ,Apnq
2 , . . . ,Apnq

R q P RRIn�RJn ,
for n � 2, 3, . . . , N � 1, while rGp1q � rAp1q

1 ,Ap1q
2 , . . . ,Ap1q

R s P

4.4. Quantized Tensor Train (QTT) – Blessing of Dimensionality 377

RI1�RJ1 is a row block matrix, and rGpNq �

����
ApNq

1
...

ApNq
R

���� P RRIN�JN

a column block matrix (see Figure 4.5(b)).

Several algorithms exist for decompositions in the form (4.15) and
(4.16) (Salmi et al., 2009; Batselier et al., 2015; Batselier and Wong,
2015). In this way, TT/MPO decompositions for huge-scale structured
matrices can be constructed indirectly.

4.4 Quantized Tensor Train (QTT) – Blessing of Dimension-
ality

The procedure of creating a higher-order tensor from lower-order orig-
inal data is referred to as tensorization, while in a special case where
each mode has a very small size 2, 3 or 4, it is referred to as quan-
tization. In addition to vectors and matrices, lower-order tensors can
also be reshaped into higher-order tensors. By virtue of quantization,
low-rank TN approximations with high compression ratios can be ob-
tained, which is not possible to achieve with original raw data formats.
(Oseledets, 2010; Khoromskij, 2011a).

Therefore, the quantization can be considered as a special form of
tensorization where size of each mode is very small, typically 2 or 3.
The concept of quantized tensor networks (QTN) was first proposed
in (Oseledets, 2010) and (Khoromskij, 2011a), whereby low-size
3rd-order cores are sparsely interconnected via tensor contractions.
The so obtained model often provides an efficient, highly compressed,
and low-rank representation of a data tensor and helps to mitigate the
curse of dimensionality, as illustrated below.

Example. The quantization of a huge vector, x P RI , I � 2K , can
be achieved through reshaping to give a p2 � 2 � � � � � 2q tensor X
of order K, as illustrated in Figure 4.6. For structured data such a
quantized tensor, X, often admits low-rank TN approximation, so that
a good compression of a huge vector x can be achieved by enforcing
the maximum possible low-rank structure on the tensor network. Even

378 Tensor Train Decompositions

I=2
6

(64 1)

(2 2 2 2 2 2)

. .
 .

2 2 2 2 2 2

2 2

2

2

2
2=

G
(1)

G
(2)

G
(3)

G
(4)

G
(5)

G
(6)

TT

Figure 4.6: Concept of tensorization/quantization of a large-scale vector into a
higher-order quantized tensor. In order to achieve a good compression ratio, we
need to apply a suitable tensor decomposition such as the quantized TT (QTT)
using 3rd-order cores, X � Gp1q �1 Gp2q �1 � � � �1 Gp6q.

more generally, an Nth-order tensor, X P RI1�����IN , with In � qKn ,
can be quantized in all modes simultaneously to yield a pq�q�� � ��qq
quantized tensor of higher-order and with small value of q.

Example. Since large-scale tensors (even of low-order) cannot be
loaded directly into the computer memory, our approach to this prob-
lem is to represent the huge-scale data by tensor networks in a dis-
tributed and compressed TT format, so as to avoid the explicit re-
quirement for unfeasible large computer memory.

In the example shown in Figure 4.7, the tensor train of a huge
3rd-order tensor is expressed by the strong Kronecker products of
block tensors with relatively small 3rd-order tensor blocks. The
QTT is mathematically represented in a distributed form via strong
Kronecker products of block 5th-order tensors. Recall that the strong
Kronecker product of two block core tensors, rGpnq P RRn�1In�RnJn�Kn

and rGpn�1q P RRnIn�1�Rn�1Jn�1�Kn�1 , is defined as the block tensor,
C � rGpnq |b| rGpn�1q P RRn�1InIn�1�Rn�1JnJn�1�KnKn�1 , with 3rd-
order tensor blocks, Crn�1,rn�1 � °Rn

rn�1 Gpnq
rn�1,rn bL Gpn�1q

rn,rn�1 P
RInIn�1�JnJn�1�KnKn�1 , where Gpnq

rn�1,rn P RIn�Jn�Kn and

4.4. Quantized Tensor Train (QTT) – Blessing of Dimensionality 379

Gpn�1q
rn,rn�1 P RIn�1�Jn�1�Kn�1 are the block tensors of rGpnq andrGpn�1q, respectively.

In practice, a fine (q � 2, 3, 4) quantization is desirable to cre-
ate as many virtual (additional) modes as possible, thus allowing for
the implementation of efficient low-rank tensor approximations. For
example, the binary encoding (q � 2) reshapes an Nth-order ten-
sor with p2K1 � 2K2 � � � � � 2KN q elements into a tensor of order
pK1 � K2 � � � � � KN q, with the same number of elements. In other
words, the idea is to quantize each of the n “physical” modes (dimen-
sions) by replacing them with Kn “virtual” modes, provided that the
corresponding mode sizes, In, are factorized as In � In,1In,2 � � � In,Kn .
This, in turn, corresponds to reshaping the nth mode of size In into
Kn modes of sizes In,1, In,2, . . . , In,Kn .

The TT decomposition applied to quantized tensors is referred to
as the QTT, Quantics-TT or Quantized-TT, and was first introduced
as a compression scheme for large-scale matrices (Oseledets, 2010), and
also independently for more general settings.

The attractive properties of QTT are:

1. Not only QTT ranks are typically small (usually, below 20) but
they are also almost independent4 of the data size (even for
I � 250), thus providing a logarithmic (sub-linear) reduction of
storage requirements from OpIN q to OpNR2 logqpIqq which is re-
ferred to as super-compression (Khoromskij, 2011a; Kazeev and
Khoromskij, 2012; Kazeev et al., 2013a; Dolgov and Khoromskij,
2013; Dolgov et al., 2014). Comparisons of the storage complexity
of various tensor formats are given in Table 4.4.

2. Compared to the TT decomposition (without quantization), the
QTT format often represents deep structures in the data by in-
troducing “virtual” dimensions or modes. For data which exhibit
high degrees of structure, the high compressibility of the QTT ap-
proximation is a consequence of the better separability properties
of the quantized tensor.

4At least uniformly bounded.

380 Tensor Train Decompositions

(a)

I1

I2

I
N

J1

J2

J
N

K1

K2

K
N

...
�

X

1 2 N
K = K K K�

1 2 N
I = I I I�

1 2 N
J = J J J�

(b)

R1 R2

K1
I1

1 1 1 1()I J K R 1 2 2 2 2()R I J K R 2 1 1 1 1)(N N N N NR I J K R
1()N N NNR I J K

G
(2)

G
(-1)N

G
(1)

G
()N

J1

I2 IN-1K2
J2

R1

R2 RN-1

RN-2R1

G
(2)

G
(-1)N

G
(1)

G
()N

IN
JN

KN

RN-2 RN-1

...

......

...

...

... ...

... ...

...

... ...

1 1 1 1()I R J K 1 2 2 2 2()R I R J K

~~~~

...

JN-1

KN-1

RN-1

2 1 1 1 1)( N N N N NR I R J K 1( )N N NNR I J K

1 1 1( )I J K 2 2 2( )I J K 1 1 1( )N N NI J K ( )N N NI J K

...

...

...

...

Figure 4.7: Tensorization/quantization of a huge-scale 3rd-order tensor into
a higher order tensor and its TT representation. (a) Example of tensoriza-
tion/quantization of a 3rd-order tensor, X P RI�J�K , into a 3Nth-order tensor,
assuming that the mode sizes can be factorized as, I � I1I2 � � � IN , J � J1J2 � � � JN

and K � K1K2 � � �KN . (b) Decomposition of the high-order tensor via a general-
ized Tensor Train and its representation by the strong Kronecker product of block
tensors as X � rGp1q |b| rGp2q |b| � � � |b| rGpNq P RI1���IN�J1���JN�K1���KN , where each
block rGpnq P RRn�1In�RnJn�Kn is also a 3rd-order tensor of size pIn � Jn �Knq,
for n � 1, 2, . . . , N with R0 � RN � 1. In the special case when J � K � 1, the
model simplifies into the standard TT/MPS model.



4.4. Quantized Tensor Train (QTT) – Blessing of Dimensionality 381

Table 4.4: Storage complexities of tensor decomposition models for an Nth-order
tensor, X P RI1�I2�����IN , for which the original storage complexity is OpIN q,
where I � maxtI1, I2, . . . , INu, while R is the upper bound on the ranks of
tensor decompositions considered, that is, R � maxtR1, R2, . . . , RN�1u or R �
maxtR1, R2, . . . , RNu.

1. Full (raw) tensor format OpIN q
2. CP OpNIRq
3. Tucker OpNIR�RN q
4. TT/MPS OpNIR2q
5. TT/MPO OpNI2R2q
6. Quantized TT/MPS (QTT) OpNR2 logqpIqq
7. QTT+Tucker OpNR2 logqpIq �NR3q
8. Hierarchical Tucker (HT) OpNIR�NR3q

3. The fact that the QTT ranks are often moderate or even low5

offers unique advantages in the context of big data analyt-
ics (see (Khoromskij, 2011a,b; Kazeev et al., 2013a) and refer-
ences therein), together with high efficiency of multilinear alge-
bra within the TT/QTT algorithms which rests upon the well-
posedness of the low-rank TT approximations.

The ranks of the QTT format often grow dramatically with data size,
but with a linear increase in the approximation accuracy. To overcome
this problem, Dolgov and Khoromskij proposed the QTT-Tucker for-
mat (Dolgov and Khoromskij, 2013) (see Figure 4.8), which exploits
the TT approximation not only for the Tucker core tensor, but also
for the factor matrices. This model naturally admits distributed com-
putation, and often yields bounded ranks, thus avoiding the curse of
dimensionality.

5The TT/QTT ranks are constant or growing linearly with respect to the tensor
order N and are constant or growing logarithmically with respect to the dimension
of tensor modes I.



382 Tensor Train Decompositions

(a) In

In
An An,1 An,2 An K,Rn,1

In,1 In,2 In K,

~ ~
R Rnn

(b)

- - -

- - -

G
(1)

G
(N-1)

RN -1 G
( )N

R1 R2 RN-1 RN

A1 A2 AN -1 AN

I1 I2 IN-1 IN

R1
R2

- - - -- -- -

RN -1

I1,1
A1,1 A2,1 AN -1,1 AN ,1

I2,1 IN -1,1 IN ,1

R1
R2

I1,K I2,K IN K-1, I

A1,K A2,K
A A

R1 R2 RN- 1 RN

G
(2)

G
(1)

G
(2)

G G
( )N

I1 I2 IN...

...

(N-2)

N K,

N K-1, N K,

RN

RN

Figure 4.8: The QTT-Tucker or alternatively QTC-Tucker (Quantized Tensor-
Chain-Tucker) format. (a) Distributed representation of a matrix An P RIn�R̂n

with a very large value of In via QTT, by tensorization to a high-order quantized
tensor, followed by QTT decomposition. (b) Distributed representation of a large-
scale Tucker-N model, X � G �1 A1 � A2 � � � �N AN , via a quantized TC model
in which the core tensor G P RR̂1�R̂2�����R̂N and optionally all large-scale factor
matrices An (n � 1, 2, . . . , N) are represented by MPS models (for more detail see
(Dolgov and Khoromskij, 2013)).



4.5. Basic Operations in TT Formats 383

The TT/QTT tensor networks have already found application in
very large-scale problems in scientific computing, such as in eigenanal-
ysis, super-fast Fourier transforms, and in solving huge systems of large
linear equations (see (Dolgov and Khoromskij, 2013; Huckle et al., 2013;
Dolgov et al., 2014; Wahls et al., 2014; Kressner et al., 2014a; Kressner
and Uschmajew, 2016) and references therein).

4.5 Basic Operations in TT Formats

For big tensors in their TT formats, basic mathematical operations,
such as the addition, inner product, computation of tensor norms,
Hadamard and Kronecker product, and matrix-by-vector and matrix-
by-matrix multiplications can be very efficiently performed using block
(slice) matrices of individual (relatively small size) core tensors.

Consider two Nth-order tensors in the TT format

X � xxXp1q,Xp2q, . . . ,XpNqyy P RI1�I2�����IN

Y � xxYp1q,Yp2q, . . . ,YpNqyy P RI1�I2�����IN ,

for which the TT ranks are rX � tR1, R2, . . . , RN�1u and
rY � tR̃1, R̃2, . . . , R̃N�1u. The following operations can then be
performed directly in the TT formats.

Tensor addition. The sum of two tensors

Z � X�Y � xxZp1q,Zp2q, . . . ,ZpNqyy P RI1�I2�����IN (4.17)

has the TT rank rZ � rX � rY and can be expressed via lateral slices
of the cores Z P RRn�1�In�Rn as

Zpnq
in

�
�
Xpnq
in

0
0 Ypnq

in

�
, n � 2, 3, . . . , N � 1. (4.18)

For the border cores, we have

Zp1q
i1

�
�
Xp1q
i1

Yp1q
i1

�
, ZpNq

iN
�
�

XpNq
iN

YpNq
iN

�
(4.19)



384 Tensor Train Decompositions

for in � 1, 2, . . . , In, n � 1, 2, . . . , N .

Hadamard product. The computation of the Hadamard (element-
wise) product, Z � XfY, of two tensors, X and Y, of the same order
and the same size can be performed very efficiently in the TT format
by expressing the slices of the cores, Z P RRn�1�In�Rn , as

Zpnq
in

� Xpnq
in

bYpnq
in
, n � 1, . . . , N, in � 1, . . . , In. (4.20)

This increases the TT ranks for the tensor Z to at most RnR̃n,
n � 1, 2, . . . , N , but the associated computational complexity can be
reduced from being exponential in N , OpIN q, to being linear in both
I and N , OpINpRR̃q2qq.

Super fast Fourier transform of a tensor in the TT format (MAT-
LAB functions: fftnpXq and fftpXpnq, rs, 2q) can be computed as

FpXq � xxFpXp1qq,FpXp2qq, . . . ,FpXpNqqyy
� FpXp1qq �1 FpXp2qq �1 � � � �1 FpXpNqq. (4.21)

It should be emphasized that performing computation of the FFT on
relatively small core tensors Xpnq P RRn�1�In�Rn reduces dramatically
computational complexity under condition that a data tensor admits
low-rank TT approximation. This approach is referred to as the super
fast Fourier transform (SFFT) in TT format. Wavelets, DCT, and other
linear integral transformations admit a similar form to the SFFT in
(4.21), for example, for the wavelet transform in the TT format, we
have

WpXq � xxWpXp1qq,WpXp2qq, . . . ,WpXpNqqyy
�WpXp1qq �1WpXp2qq �1 � � � �1WpXpNqq. (4.22)

The N-D discrete convolution in a TT format of tensors X P
RI1�����IN with TT rank tR1, R2, . . . , RN�1u and Y P RJ1�����JN with
TT rank tQ1, Q2, . . . , QN�1u can be computed as

Z � X �Y (4.23)
� xxZp1q,Zp2q, . . . ,ZpNqyy P RpI1�J1�1q�pI2�J2�1q�����pIN�JN�1q,



4.5. Basic Operations in TT Formats 385

with the TT-cores given by

Zpnq � Xpnq
d2 Ypnq P RpRn�1Qn�1q�pIn�Jn�1q�pRnQnq, (4.24)

or, equivalently, using the standard convolution Zpnqpsn�1, :, snq �
Xpnqprn�1, :, rnq �Ypnqpqn�1, :, qnq P RpIn�Jn�1q for sn � 1, 2, . . . , RnQn
and n � 1, 2, . . . , N , R0 � RN � 1.

Inner product. The computation of the inner (scalar, dot) product
of two Nth-order tensors, X � xxXp1q,Xp2q, . . . ,XpNqyy P RI1�I2�����IN

and Y � xxYp1q,Yp2q, . . . ,YpNqyy P RI1�I2�����IN , is given by

xX,Yy � xvecpXq, vecpYqy (4.25)

�
I1̧

i1�1
� � �

IŅ

iN�1
xi1...in yi1���iN

and has the complexity of OpIN q in the raw tensor format. In TT for-
mats, the inner product can be computed with the reduced complexity
of only OpNIpR2R̃ � RR̃2qq when the inner product is calculated by
moving TT-cores from left to right and performing calculations on
relatively small matrices, Sn � Xpnq �1,2

1,2 pYpnq �1 Sn�1q P RRn� rRn for
n � 1, 2, . . . , N . The results are then sequentially multiplied by the
next core Ypn�1q (see Algorithm 9).

Computation of the Frobenius norm. In a similar way, we can
efficiently compute the Frobenius norm of a tensor, }X}F �

axX,Xy,
in the TT format. For the so-called n-orthogonal6 TT format, it is easy
to show that

}X}F � }Xpnq}F . (4.26)

Matrix-by-vector multiplication. Consider a huge-scale matrix
equation (see Figure 4.9 and Figure 4.10)

Ax � y, (4.27)
6An Nth-order tensor X � xxXp1q,Xp2q . . . ,XpNqyy in the TT format is called

n-orthogonal if all the cores to the left of the core Xpnq are left-orthogonalized and
all the cores to the right of the core Xpnq are right-orthogonalized (see Part 2 for
more detail).



386 Tensor Train Decompositions

Algorithm 9: Inner product of two large-scale tensors in
the TT Format (Oseledets, 2011; Dolgov, 2014)
Input: Nth-order tensors, X � xxXp1q,Xp2q, . . . ,XpNqyy P RI1�I2�����IN

and Y � xxYp1q,Yp2q, . . . ,YpNqyy P RI1�I2�����IN in TT formats, with
TT-cores X P RRn�1�In�Rn and Y P R rRn�1�In� rRn and
R0 � rR0 � RN � rRN � 1

Output: Inner product xX,Yy � vecpXqTvecpYq
1: Initialization S0 � 1
2: for n � 1 to N do
3: Zpnq

p1q � Sn�1Ypnq
p1q P RRn�1�In

rRn

4: Sn � Xpnq T
 2¡ Zpnq

 2¡ P RRn� rRn

5: end for
6: return Scalar xX,Yy � SN P RRN� rRN � R, with RN � rRN � 1

where A P RI�J , x P RJ and y P RI are represented approximately in
the TT format, with I � I1I2 � � � IN and J � J1J2 � � � JN . As shown in
Figure 4.9(a), the cores are defined as Apnq P RPn�1�In�Jn�Pn , Xpnq P
RRn�1�Jn�Rn and Ypnq P RQn�1�In�Qn .

Upon representing the entries of the matrix A and vectors x and y
in their tensorized forms, given by

A �
P1,P2,...,PN�1¸
p1,p2,...,pN�1�1

Ap1q
1,p1 � Ap2q

p1,p2 � � � � � ApNq
pN�1,1

X �
R1,R2,...,RN�1¸
r1,r2,...,rN�1�1

xp1qr1 � xp2qr1,r2 � � � � � xpNq
rN�1 (4.28)

Y �
Q1,Q2,...,QN�1¸
q1,q2,...,qN�1�1

yp1qq1 � yp2qq1,q2 � � � � � ypNq
qN�1 ,

we arrive at a simple formula for the tubes of the tensor Y, in the form

ypnqqn�1,qn
� ypnqrn�1 pn�1, rn pn

� Apnq
pn�1, pn

xpnqrn�1, rn
P RIn ,

with Qn � PnRn for n � 1, 2, . . . , N .



4.5. Basic Operations in TT Formats 387

(a)

J1

I1

J2

I2

J

I

JN

IN

I1 I2 I IN

・・・ ・・・

・・・ ・・・

・・・ ・・・

X

A

Y

n

n

n

~= ~=

R2R1

J1 J2

Rn

Jn JN

Rn-1{x

P2P1 PnPn-1
A{ A( )NA( )nA(2)A(1)

X(1) X(2) X( )n X( )N

I1 I2 In IN

Q2Q1

I1 I2

Qn

In IN

Qn-1{y Y(1) Y(2) Y( )n Y( )N

(b)

J1

I1

J2

I2

J

I

JN

IN

I1 I2 I IN

・・・ ・・・

・・・ ・・・

・・・ ・・・

X

A

Y

n

n

n

~= ~=

R2R1

J1 J2

Rn

Jn JN

Rn-1{x

P2P1 PnPn-1
A{ A( )NA( )nA(2)A(1)

X(1) X(2) X( )n X( )N

I1 I2 In IN

Q2Q1

I1 I2

Qn

In IN

Qn-1{y Y(1) Y(2) Y( )n Y( )N

Figure 4.9: Linear systems represented by arbitrary tensor networks (left) and
TT networks (right) for (a) Ax � y and (b) AX � Y.



388 Tensor Train Decompositions

(a)

I 1

J1

I 2

J2

I n

Jn

IN

JN

Y

A

X

・・・ ・・・

・・・ ・・・

Q2Q1

I1 I2

Qn

In IN

Qn-1{y

P2P1 PnPn-1

J1 J2 Jn JN

A

R2R1 RnRn-1
x

Y(1)

{

{ X(1) X(2) X( )n X( )N

Y(2) Y( )n Y( )N

A( )NA( )nA(2)A(1)

T

(b)

J1

J1

I1

J2

J2

I2

Jn

Jn

In

JN

IN

X

A

A

X

・・・ ・・・ JN

・・・ ・・・

・・・ ・・・

R2R1

J1 J2

Rn

Jn JN

Rn-1{x

P2P1 PnPn-1

J1 J2 Jn JN

A

R2R1 RnRn-1
x

T

{

{ X(1) X(2) X( )n X( )N

A( )NA( )nA(2)A(1)

X(1) X(2) X( )n X( )N

P2P1 PnPn-1
A

T

{ A( )NA( )nA(2)A(1)

I1 I2 In IN

Figure 4.10: Representation of typical cost functions by arbitrary TNs and by
TT networks: (a) J1pxq � yTAx and (b) J2pxq � xTATAx. Note that tensors A,
X and Y can be, in general, approximated by any TNs that provide good low-rank
representations.

Furthermore, by representing the matrix A and vectors x, y via the
strong Kronecker products

A � Ãp1q |b| Ãp2q |b| � � � |b| ÃpNq

x � X̃p1q |b| X̃p2q |b| � � � |b| X̃pNq (4.29)
y � Ỹp1q |b| Ỹp2q |b| � � � |b| ỸpNq,

with Ãpnq P RPn�1In�JnPn , X̃pnq P RRn�1Jn�Rn and Ỹpnq P
RQn�1In�Qn , we can establish a simple relationship

Ỹpnq � Ãpnq |
| X̃pnq P RRn�1 Pn�1 In�Rn Pn , n � 1, . . . , N, (4.30)



4.5. Basic Operations in TT Formats 389

A
B

=

C=A B

A11 A12

A21 A22

B11

B21

B31

A11 11B
A11 21B
A11 31B

A12 11B
A12 21B
A12 31B

A21 11B
A21 21B
A21 31B

A22 11B
A22 21B
A22 31B

( )I J ( )J K ( )I K
1 2( )P I P J 1 2( )R J R K 1 1 2 2( )P R I P R K

B12

B22

B32

A11 12B
A11 22B
A11 32B

A12 12B
A12 22B
A12 32B

A21 12B
A21 22B
A21 32B

A22 12B
A22 22B
A22 32B

Figure 4.11: Graphical illustration of the C product of two block matrices.

where the operator |
| represents the C (Core) product of two block
matrices.

The C product of a block matrix Apnq P RPn�1In�PnJn with blocks
Apnq
pn�1,pn P RIn�Jn , and a block matrix Bpnq P RRn�1Jn�RnKn , with

blocks Bpnq
rn�1,rn P RJn�Kn , is defined as Cpnq � Apnq |
| Bpnq P

RQn�1In�QnKn , the blocks of which are given by Cpnq
qn�1,qn �

Apnq
pn�1,pnBpnq

rn�1,rn P RIn�Kn , where qn � pnrn, as illustrated in Fig-
ure 4.11.

Note that, equivalently to Eq. (4.30), for Ax � y, we can use a
slice representation, given by

Ypnq
in

�
Jņ

jn�1
pApnq

in,jn
bL Xpnq

jn
q, (4.31)

which can be implemented by fast matrix-by matrix multiplication al-
gorithms (see Algorithm 10). In practice, for very large scale data, we
usually perform TT core contractions (MPO-MPS product) approxi-
mately, with reduced TT ranks, e.g., via the “zip-up” method proposed
by (Stoudenmire and White, 2010).

In a similar way, the matrix equation

Y � AX, (4.32)

where A P RI�J , X P RJ�K , Y P RI�K , with I � I1I2 � � � IN ,
J � J1J2 � � � JN and K � K1K2 � � �KN , can be represented in TT



390 Tensor Train Decompositions

Table 4.5: Basic operations on tensors in TT formats, where X � Xp1q �1 Xp2q �1

� � � �1 XpNq P RI1�I2�����IN , Y � Yp1q �1 Yp2q �1 � � � �1 YpNq P RJ1�J2�����JN , and
Z � Zp1q �1 Zp2q �1 � � � �1 ZpNq P RK1�K2�����KN .

Operation TT-cores

Z � X � Y �
�
Xp1q `2 Yp1q

	
�1

�
Xp2q `2 Yp2q

	
�1 � � � �1

�
XpNq `2 YpNq

	

Zpnq � Xpnq `2 Ypnq, with TT core slices Zpnq
in

� Xpnq
in

` Ypnq
in
, pIn � Jn � Kn, @nq

Z � X ` Y �
�
Xp1q ` Yp1q

	
�1

�
Xp2q ` Yp2q

	
�1 � � � �1

�
XpNq ` YpNq

	

Z � X f Y �
�
Xp1q d2 Yp1q

	
�1

�
Xp2q d2 Yp2q

	
�1 � � � �1

�
XpNq d2 YpNq

	

Zpnq � Xpnq d2 Ypnq, with TT core slices Zpnq
in

� Xpnq
in

b Ypnq
in
, pIn � Jn � Kn, @nq

Z � X b Y �
�
Xp1q b Yp1q

	
�1

�
Xp2q b Yp2q

	
�1 � � � �1

�
XpNq b YpNq

	

Zpnq � Xpnq b Ypnq, with TT core slices Zpnq
kn

� Xpnq
in

b Ypnq
jn

(kn � injn)

Z � X � Y � pXp1q d2 Yp1qq �1 � � � �1 pXpNq d2 YpNqq

Zpnq � Xpnq d2 Ypnq P RpRn�1Qn�1q�pIn�Jn�1q�pRnQnq, with vectors

Zpnqpsn�1, :, snq � Xpnqprn�1, :, rnq � Ypnqpqn�1, :, qnq P RpIn�Jn�1q

for sn � 1, 2, . . . , RnQn and n � 1, 2, . . . , N , R0 � RN � 1.

Z � X �n A � Xp1q �1 � � � �1 Xpn�1q �1
�
Xpnq �2 A

	
�1 Xpn�1q �1 � � � �1 XpNq

z � xX,Yy � Zp1q �1 Zp2q �1 � � � �1 ZpNq � Zp1qZp2q � � �ZpNq

Zpnq �
�
Xpnq d2 Ypnq

	
�21In �

°
in

Xpnq
in

b Ypnq
in

pIn � Jn, @nq



4.5. Basic Operations in TT Formats 391

Table 4.6: Basic operations in the TT format expressed via the strong Kro-
necker and C products of block matrices, where A � rAp1q |b| rAp2q |b| � � � |b| rApNq,
B � rBp1q |b| rBp2q |b| � � � |b| rBpNq, x � rXp1q |b| rXp2q |b| � � � |b| rXpNq, y �rYp1q |b| rYp2q |b| � � � |b| rYpNq and the block matrices rApnq P RRA

n�1In�JnRA
n , rBpnq P

RRB
n�1Jn�KnRB

n , rXpnq P RRx
n�1In�Rx

n , rYpnq P RR
y
n�1In�R

y
n .

Operation Block matrices of TT-cores
Z � A � B

�
� rAp1q rBp1q

�
|b|
�rAp2q 0

0 rBp2q

�
|b| � � � |b|

�rApN�1q 0
0 rBpN�1q

�
|b|
�rApNqrBpNq

�

Z � A b B � rAp1q |b| � � � |b| rApNq |b| rBp1q |b| � � � |b| rBpNq

z � xTy � xx,yy �
�rXp1q |
| rYp1q

	
|b| � � � |b|

�rXpNq |
| rYpNq
	

rZpnq � rXpnq |
| rYpnq P RRx
n�1R

y
n�1�Rx

nR
y
n , with core slices Zpnq � °in

Xpnq
in

b Ypnq
in

z � Ax �
�rAp1q |
| rXp1q

	
|b| � � � |b|

�rApNq |
| rXpNq
	

rZpnq � rApnq �1 rXpnq, with blocks (vectors)

zpnqsn�1,sn � Apnq

rA
n�1,rA

n
xpnqrx

n�1,rx
n

(sn � rA
n rx

nq

Z � AB �
�rAp1q |
| rBp1q

	
|b| � � � |b|

�rApNq |
| rBpNq
	

rZpnq � rApnq |
| rBpnq, with blocks

Zpnq
sn�1, sn � Apnq

rA
n�1,rA

n
Bpnq

rB
n�1,rB

n
(sn � rA

n rB
n )

z � xTAx � xx,Axy
�
�rXp1q |
| rAp1q |
| rXp1q

	
|b| � � � |b|

�rXpNq |
| rApNq |
| rXpNq
	

rZpnq � rXpnq |
| rApnq |
| rXpnq P RRx
n�1RA

n�1Rx
n�1�Rx

nRA
n Rx

n , with blocks (entries)

z
pnq
sn�1,sn �

B
xpnqrx

n�1,rx
n
,Apnq

rA
n�1,rA

n
xpnq

r
y
n�1,r

y
n

F
(sn � rx

n rA
n r

y
nq



392 Tensor Train Decompositions

Algorithm 10: Computation of a Matrix-by-Vector Prod-
uct in the TT Format
Input: Matrix A P RI�J and vector x P RJ in their respective

TT format
A � xxAp1q,Ap2q, . . . ,ApNqyy P RI1�J1�I2�J2�����IN�JN ,
and X � xxXp1q,Xp2q, . . . ,XpNqyy P RJ1�J2�����JN ,
with TT-cores
Xpnq P RRn�1�Jn�Rn and Apnq P RR

A
n�1�In�In�RA

n

Output: Matrix by vector product y � Ax in the TT format
Y � xxYp1q,Yp2q, . . . ,YpNqyy P RI1�I2�����IN , with cores
Ypnq P RR

Y
n�1�Jn�RY

n

1: for n � 1 to N do
2: for in � 1 to In do
3: Ypnq

in
� °Jn

jn�1

�
Apnq
in,jn

bL Xpnq
jn

	
4: end for
5: end for
6: return Vector y P RI1I2���IN in the TT format

Y � xxYp1q,Yp2q, . . . ,YpNqyy

formats. This is illustrated in Figure 4.9(b) for the corresponding TT-
cores defined as

Apnq P RPn�1�In�Jn�Pn

Xpnq P RRn�1�Jn�Kn�Rn

Ypnq P RQn�1�In�Kn�Qn .

It is straightforward to show that when the matrices, A P RI�J

and X P RJ�K , are represented in their TT formats, they can
be expressed via a strong Kronecker product of block matrices as
A � Ãp1q |b| Ãp2q |b| � � � |b| ÃpNq and X � X̃p1q |b| X̃p2q |b| � � � |b| X̃pNq,
where the factor matrices are Ãpnq P RPn�1 In�Jn Pn and X̃pnq P
RRn�1 Jn�Kn Rn . Then, the matrix Y � AX can also be expressed
via the strong Kronecker products, Y � Ỹp1q |b| � � � |b| ỸpNq, where
Ỹpnq � Ãpnq |
| X̃pnq P RQn�1 In�Kn Qn , pn � 1, 2, . . . , Nq, with blocks
Ỹpnq
qn�1, qn � Ãpnq

pn�1, pnX̃pnq
rn�1, rn , where Qn � Rn Pn, qn � pnrn, @n.



4.6. Algorithms for TT Decompositions 393

Similarly, a quadratic form, z � xTAx, for a huge symmetric matrix
A, can be computed by first computing (in TT formats), a vector
y � Ax, followed by the inner product xTy.

Basic operations in the TT format are summarized in Table 4.5,
while Table 4.6 presents these operations expressed via strong Kro-
necker and C products of block matrices of TT-cores. For more ad-
vanced and sophisticated operations in TT/QTT formats, see (Kazeev
et al., 2013a,b; Lee and Cichocki, 2016c).

4.6 Algorithms for TT Decompositions

We have shown that a major advantage of the TT decomposition
is the existence of efficient algorithms for an exact representation
of higher-order tensors and/or their low-rank approximate represen-
tations with a prescribed accuracy. Similarly to the quasi-best ap-
proximation property of the HOSVD, the TT approximation pX �
xxpXp1q

, pXp2q
, . . . , pXpNqyy P RI1�I2�����IN (with core tensors denoted by

Xpnq � Gpnq), obtained by the TT-SVD algorithm, satisfies the follow-
ing inequality

}X� pX}22 ¤ N�1̧

n�1

Iņ

j�Rn�1

σ2
j pX n¡q, (4.33)

where the `2-norm of a tensor is defined via its vectorization and
σjpX n¡q denotes the jth largest singular value of the unfolding matrix
X n¡ (Oseledets, 2011).

The two basic approaches to perform efficiently TT decompositions
are based on: (1) low-rank matrix factorizations (LRMF), and (2) con-
strained Tucker-2 decompositions.

4.6.1 Sequential SVD/LRMF Algorithms

The most important algorithm for the TT decomposition is the TT-
SVD algorithm (see Algorithm 11) (Vidal, 2003; Oseledets and Tyr-
tyshnikov, 2009), which applies the truncated SVD sequentially to the
unfolding matrices, as illustrated in Figure 4.12. Instead of SVD, alter-
native and efficient LRMF algorithms can be used (Corona et al., 2015),



394 Tensor Train Decompositions

I1

I2 I3

I4

I5
Reshape I1 I3 I4 I5I2

X

tSVD I1 R1
U1 S1R1 I3 I4 I5I2

V1
T

Reshape MR1 I3 I4 I5I2
2

I RU
2

2
2R1

SR I3 I4 I5
VT

2
2 2

...

I RU
4

4R R3 4
S VT

4 4 I5

I1

R1
X

(1)
R2

I2

X
(2)

R3

I3

X
(3)

R4

I4

X
(4)

I5

X
(5)

M  =X (1)1

4

tSVD

tSVD

Reshape

=

=

I1

R1
X

(1)

I1

R1
X

(1)

I1

R1
X

(1)
R2R1

I2

X
(2)

R3R2

I3

X
(3)

Figure 4.12: The TT-SVD algorithm for a 5th-order data tensor using truncated
SVD. Instead of the SVD, any alternative LRMF algorithm can be employed, such
as randomized SVD, RPCA, CUR/CA, NMF, SCA, ICA. Top panel: A 6th-order
tensor X of size I1 � I2 � � � � � I5 is first reshaped into a long matrix M1 of size
I1 � I2 � � � I5. Second panel: The tSVD is performed to produce low-rank matrix
factorization, with I1 � R1 factor matrix U1 and the R1 � I2 � � � I5 matrix S1VT

1 ,
so that M1 � U1S1VT

1 . Third panel: the matrix U1 becomes the first core core
Xp1q P R1�I1�R1 , while the matrix S1VT

1 is reshaped into the R1I2 � I3I4I5 matrix
M2. Remaining panels: Perform tSVD to yield M2 � U2S2VT

2 , reshape U2 into an
R1�I2�R2 core Xp2q and repeat the procedure until all the five cores are extracted
(bottom panel). The same procedure applies to higher order tensors of any order.

see also Algorithm 12). For example, in (Oseledets and Tyrtyshnikov,
2010) a new approximate formula for TT decomposition is proposed,
where an Nth-order data tensor X is interpolated using a special form
of cross-approximation. In fact, the TT-Cross-Approximation is analo-
gous to the TT-SVD algorithm, but uses adaptive cross-approximation
instead of the computationally more expensive SVD. The complexity



4.6. Algorithms for TT Decompositions 395

Algorithm 11: TT-SVD Decomposition using truncated
SVD (tSVD) or randomized SVD (rSVD) (Vidal, 2003;
Oseledets, 2011)

Input: Nth-order tensor X P RI1�I2�����IN and approximation accuracy ε
Output: Approximative representation of a tensor in the TT formatpX � xx pXp1q

, pXp2q
, . . . , pXpNqyy, such that }X � pX}F ¤ ε

1: Unfolding of tensor X in mode-1 M1 � Xp1q
2: Initialization R0 � 1
3: for n � 1 to N � 1 do
4: Perform tSVD rUn,Sn,Vns � tSVDpMn, ε{

?
N � 1q

5: Estimate nth TT rank Rn � sizepUn, 2q
6: Reshape orthogonal matrix Un into a 3rd-order corepXpnq � reshapepUn, rRn�1, In, Rnsq
7: Reshape the matrix Vn into a matrix

Mn�1 � reshape
�
SnVT

n , rRnIn�1,
±N

p�n�2 Ips
	

8: end for
9: Construct the last core as pXpNq � reshapepMN , rRN�1, IN , 1sq
10: return xx pXp1q

, pXp2q
, . . . , pXpNqyy.

of the cross-approximation algorithms scales linearly with the order N
of a data tensor.

4.6.2 Tucker-2/PVD Algorithms for Large-scale TT Decomposi-
tions

The key idea in this approach is to reshape any Nth-order data tensor,
X P RI1�I2�����IN with N ¡ 3, into a suitable 3rd-order tensor, e.g.,rX P RI1 �IN � I2���IN�1 , in order to apply the Tucker-2 decomposition
as follows (see Algorithm 8 and Figure 4.13(a))

rX � Gp2,N�1q �1 Xp1q �2 XpNq � Xp1q �1 Gp2,N�1q �1 XpNq, (4.34)

which, by using frontal slices of the involved tensors, can also be ex-
pressed in the matrix form

Xk1 � Xp1qGk1XpNq, k1 � 1, 2, . . . , I2 � � � IN�1. (4.35)

Such representations allow us to compute the tensor, Gp2,N�1q, the
first TT-core, Xp1q, and the last TT-core, XpNq. The procedure can



396 Tensor Train Decompositions

Algorithm 12: TT Decomposition using any efficient
LRMF

Input: Tensor X P RI1�I2�����IN and the approximation accuracy ε
Output: Approximate tensor representation in the TT formatpX � xx pXp1q

, pXp2q
, . . . , pXpNqyy

1: Initialization R0 � 1
2: Unfolding of tensor X in mode-1 as M1 � Xp1q
3: for n � 1 to N � 1 do
4: Perform LRMF, e.g., CUR, RPCA, ...

rAn,Bns � LRMFpMn, εq, i.e., Mn � AnBT
n

5: Estimate nth TT rank, Rn � sizepAn, 2q
6: Reshape matrix An into a 3rd-order core, aspXpnq � reshape pAn, rRn�1, In, Rnsq
7: Reshape the matrix Bn into the pn� 1qth unfolding matrix

Mn�1 � reshape
�
BT

n , rRnIn�1,
±N

p�n�2 Ips
	

8: end for
9: Construct the last core as pXpNq � reshapepMN , rRN�1, IN , 1sq
10: return TT-cores: xx pXp1q

, pXp2q
, . . . , pXpNqyy.

be repeated sequentially for reshaped tensors rGn � Gpn�1,N�nq for
n � 1, 2, . . ., in order to extract subsequent TT-cores in their matricized
forms, as illustrated in Figure 4.13(b). See also the detailed step-by-step
procedure shown in Figure 4.13(c).

Such a simple recursive procedure for TT decomposition can be
used in conjunction with any efficient algorithm for Tucker-2/PVD de-
compositions or the nonnegative Tucker-2 decomposition (NTD-2) (see
also Section 3).

4.6.3 Tensor Train Rounding – TT Recompression

Mathematical operations in TT format produce core tensors with ranks
which are not guaranteed to be optimal with respect to the desired
approximation accuracy. For example, matrix-by-vector or matrix-by-
matrix products considerably increase the TT ranks, which quickly
become computationally prohibitive, so that a truncation or low-rank
TT approximations are necessary for mathematical tractability. To this
end, the TT–rounding (also called truncation or recompression) may be
used as a post-processing procedure to reduce the TT ranks. The TT



4.6. Algorithms for TT Decompositions 397

(a)

=

X (1) X (N)RN-1

...

I
I

K  =1

2
I N-1

K   =1 

INGXk1 k
R1

I1

...

...

I1

IN

2
N-1{ ...

...

1

I

...

R1

RN-1

{
X-
~ G-

(2,N-1)
= G-2

(b)

=

X(n)

...

I

I

K  =n

Gk
R

...

...
I

n+
1

N-n

{ ...

...

{
Rpp

IRn-1 n IRn-1 n

n

<2> Rn

...

I

I
n+

1
Rp-1 X (p)

<1>

Rp-1
n

G G- -
~

n n+1

K  =n

N-n
I Rpp

(c)
I1

I2 I3

I4

I5

X

I1
MReshape 1 I

PVD or Tucker2 I1 R1
A1 R4R1

G 2 I

Reshape I1 R1
A1 R1

I3

G 2I2 I

PVD or Tucker2 I 1 RA1 I RA
21

2R1 RR2
G 3 R RI IR

Reshape

I1

R1
X

(1)
R

I2

X
(2)

2 R

I

X
(3)

I4

X
(4)

I

X
(5)

R

I2 I4

I2 I4

5R4

4R4 R4 I5

2

I3

3 3 4 4 4 5

3

3 5

4

5

I3

I3

B5
T

B5
T

B4
T B5

T

=

~

Figure 4.13: TT decomposition based on the Tucker-2/PVD model. (a) Extraction
of the first and the last core. (b) The procedure can be repeated sequentially for
reshaped 3rd-order tensors Gn (for n � 2, 3, . . . and p � N � 1, N � 2, . . .). (c)
Illustration of a TT decomposition for a 5th-order data tensor, using an algorithm
based on sequential Tucker-2/PVD decompositions.



398 Tensor Train Decompositions

Algorithm 13:TT Rounding (Recompression) (Oseledets,
2011)
Input: Nth-order tensor X � xxXp1q,Xp2q, . . . ,XpNqyy P RI1�I2�����IN ,

in a TT format with an overestimated TT rank,
rT T � tR1, R2, . . . , RN�1u, and TT-cores X P RRn�1�In�Rn ,
absolute tolerance ε, and maximum rank Rmax

Output: Nth-order tensor pX with a reduced TT rank; the cores are
rounded (reduced) according to the input tolerance ε and/or ranks
bounded by Rmax, such that }X� pX}F ¤ ε }X}F

1: Initialization pX � X and δ � ε{?N � 1
2: for n � 1 to N � 1 do
3: QR decomposition Xpnq

 2¡ � QnR, with Xpnq
 2¡ P RRn�1In�Rn

4: Replace cores Xpnq
 2¡ � Qn and Xpn�1q

 1¡ Ð RXpn�1q
 1¡ , with

Xpn�1q
 1¡ P RRn�In�1Rn�1

5: end for
6: for n � N to 2 do
7: Perform δ-truncated SVD Xpnq

 1¡ � U diagtσuVT

8: Determine minimum rank pRn�1 such that
°

r¡Rn�1
σ2

r ¤ δ2}σ}2

9: Replace cores pXpn�1q
 2¡ Ð pXpn�1q

 2¡ pU diagtpσu and pXpnq
 1¡ � pVT

10: end for
11: return Nth-order tensorpX � xxpXp1q

, pXp2q
, . . . , pXpNqyy P RI1�I2�����IN ,

with reduced cores pXpnq P R pRn�1�In� pRn

rounding algorithms are typically implemented via QR/SVD with the
aim to approximate, with a desired prescribed accuracy, the TT core
tensors, Gpnq � Xpnq, by other core tensors with minimum possible
TT-ranks (see Algorithm 13). Note that TT rounding is mathemati-
cally the same as the TT-SVD, but is more efficient owing to the to
use of TT format.

The complexity of TT-rounding procedures is only OpNIR3q, since
all operations are performed in TT format which requires the SVD to
be computed only for a relatively small matricized core tensor at each
iteration. A similar approach has been developed for the HT format
(Grasedyck, 2010; Grasedyck et al., 2013; Kressner and Tobler, 2014;
Espig et al., 2012).



4.6. Algorithms for TT Decompositions 399

4.6.4 Orthogonalization of Tensor Train Network

The orthogonalization of core tensors is an essential procedure in many
algorithms for the TT formats (Oseledets, 2011; Holtz et al., 2012;
Dolgov et al., 2014; Dolgov, 2014; Kressner et al., 2014a; Steinlechner,
2015, 2016).

For convenience, we divide a TT network, which represents a ten-
sor pX � xxpXp1q

, pXp2q
, . . . , pXpNqyy P RI1�I2�����IN , into sub-trains. In

this way, a large-scale task is replaced by easier-to-handle sub-tasks,
whereby the aim is to extract a specific TT core or its slices from the
whole TT network. For this purpose, the TT sub-trains can be defined
as follows

pX n � xxpXp1q
, pXp2q

, . . . , pXpn�1qyy P RI1�I2�����In�1�Rn�1 (4.36)pX¡n � xxpXpn�1q
, pXpn�2q

, . . . , pXpNqyy P RRn�In�1�����IN (4.37)

while the corresponding unfolding matrices, also called interface matri-
ces, are defined by

pX¤n P RI1I2���In�Rn , pX¡n P RRn�In�1���IN . (4.38)

The left and right unfolding of the cores are defined as

pXpnq
L � pXpnq

 2¡ P RRn�1In�Rn and pXpnq
R � Xpnq

 1¡ P RRn�1�InRn .

The n-orthogonality of tensors. An Nth-order tensor in a TT
format pX � xxpXp1q

, . . . , pXpNqyy, is called n-orthogonal with 1 ¤ n ¤ N ,
if

ppXpmq
L qT pXpmq

L � IRm , m � 1, . . . , n� 1 (4.39)pXpmq
R ppXpmq

R qT � IRm�1 , m � n� 1, . . . , N. (4.40)

The tensor is called left-orthogonal if n � N and right-orthogonal if
n � 1.

When considering the nth TT core, it is usually assumed that
all cores to the left are left-orthogonalized, and all cores to the



400 Tensor Train Decompositions

Algorithm 14: Left-orthogonalization, right-orthog-
onalization and n-orthogonalization of a tensor in the
TT format
Input: Nth-order tensor pX � xxpXp1q

, pXp2q
, . . . , pXpNqyy P RI1�I2�����IN ,

with TT cores pXpnq P RRn�1�In�Rn and R0 � RN � 1
Output: Cores pXp1q

, . . . , pXpn�1q
become left-orthogonal, while the

remaining cores are right-orthogonal, except for the core pXpnq

1: for m � 1 to n� 1 do
2: Perform the QR decomposition rQ,Rs Ð qrppXpmq

L q for the
unfolding cores pXpmq

L P RRm�1Im�Rm

3: Replace the cores pXpmq
L Ð Q and pXpm�1q Ð pXpm�1q �1 R

4: end for
5: for m � N to n� 1 do
6: Perform QR decomposition rQ,Rs Ð qrpppXpmq

R qTq for the
unfolding cores ppXpmq

R q P RRm�1�ImRm ,
7: Replace the cores: Gpmq

R Ð QT and pXpm�1q Ð pXpm�1q �3 RT

8: end for
9: return Left-orthogonal TT cores with ppXpmq

L qT pXpmq
L � IRm

for
m � 1, 2, . . . , n� 1 and right-orthogonal cores pXpmq

R ppXpmq
R qT � IRm�1

for m � N,N � 1, . . . , n� 1.

right are right-orthogonalized. Notice that if a TT tensor7, pX, is n-
orthogonal then the “left” and “right” interface matrices have orthonor-
mal columns and rows, that is

ppX nqT pX n � IRn�1 ,
pX¡n ppX¡nqT � IRn . (4.41)

A tensor in a TT format can be orthogonalized efficiently using recur-
sive QR and LQ decompositions (see Algorithm 14). From the above
definition, for n � N the algorithms perform left-orthogonalization and
for n � 1 right-orthogonalization of the whole TT network.

7By a TT-tensor we refer to as a tensor represented in the TT format.



4.6. Algorithms for TT Decompositions 401

4.6.5 Improved TT Decomposition Algorithm – Alternating Single
Core Update (ASCU)

Finally, we next present an efficient algorithm for TT decomposition,
referred to as the Alternating Single Core Update (ASCU), which se-
quentially optimizes a single TT-core tensor while keeping the other
TT-cores fixed in a manner similar to the modified ALS (Phan et al.,
2016).

Assume that the TT-tensor pX � xxpXp1q
, pXp2q

, . . . , pXpNqyy is left-
and right-orthogonalized up to pXpnq, i.e., the unfolding matrices pXpkq

 2¡

for k � 1, . . . , n � 1 have orthonormal columns, and pXpmq

p1q for m �
n � 1, . . . , N have orthonormal rows. Then, the Frobenius norm of
the TT-tensor pX is equivalent to the Frobenius norm of pXpnq, that
is, }pX}2F � }pXpnq}2F , so that the Frobenius norm of the approximation
error between a data tensor X and its approximate representation in
the TT format pX can be written as

JpXpnqq � }X� pX}2F (4.42)
� }X}2F � }pX}2F � 2xX, pXy
� }X}2F � }pXpnq}2F � 2xCpnq, pXpnqy
� }X}2F � }Cpnq}2F � }Cpnq � pXpnq}2F , n � 1, . . . , N,

where Cpnq P RRn�1�In�Rnrepresents a tensor contraction of X and pX
along all modes but the mode-n, as illustrated in Figure 4.14. The Cpnq

can be efficiently computed through left contractions along the first
pn � 1q-modes and right contractions along the last pN � mq-modes,
expressed as

L n � pX n

n�1 X, Cpnq � L n �N�n

pX¡n
. (4.43)

The symbols 
n and �m stand for the tensor contractions between two
Nth-order tensors along their first n modes and last m � N�n modes,
respectively.

The optimization problem in (4.42) is usually performed subject to
the following constraint

}X� pX}2F ¤ ε2 (4.44)



402 Tensor Train Decompositions

such that the TT-rank of pX is minimum.
Observe that the constraint in (4.44) for left- and right-

orthogonalized TT-cores is equivalent to the set of sub-constraints

}Cpnq � pXpnq}2F ¤ ε2
n n � 1, . . . , N, (4.45)

whereby the nth core Xpnq P RRn�1�In�Rn should have minimum ranks
Rn�1 and Rn. Furthermore, ε2

n � ε2 � }X}2F � }Cpnq}2F is assumed
to be non-negative. Finally, we can formulate the following sequential
optimization problem

min pRn�1 �Rnq ,
s.t. }Cpnq � pXpnq}2F ¤ ε2

n, n � 1, 2, . . . , N. (4.46)

By expressing the TT-core tensor pXpnq as a TT-tensor of three
factors, i.e., in a Tucker-2 format given by

pXpnq � An �1 X̃pnq �1 Bn ,

the above optimization problem with the constraint (4.45) reduces to
performing a Tucker-2 decomposition (see Algorithm 8). The aim is to
compute An, Bn (orthogonal factor matrices) and a core tensor X̃pnq

which approximates tensor Cpnq with a minimum TT-rank-pR̃n�1, R̃nq,
such that

}Cpnq �An �1 X̃pnq �1 Bn}2F ¤ ε2
n ,

where An P RRn�1�R̃n�1 and Bn P RR̃n�Rn , with R̃n�1 Ð Rn�1 and
R̃n Ð Rn.

Note that the new estimate of X is still of Nth-order because the
factor matrices An and Bn can be embedded into pXpn�1q and pXpn�1q

as followspX � pXp1q �1 � � � �1 ppXpn�1q �1 Anq �1 X̃pnq �1 pBn �1 pXpn�1qq
�1 � � � �1 pXpNq

.

In this way, the three TT-cores pXpn�1q, pXpnq and pXpn�1q are updated.
Since An and BT

n have respectively orthonormal columns and rows,



4.6. Algorithms for TT Decompositions 403

In

X(1) ( -1)n ( +1)nX( )n

In+1 INI1 In-1

〉 X X X(N)

X

･･･ ･･･

R1 Rn-1 Rn Rn+1

C ( )n

L<nX <n X >n

RN-1

〉 〉 〉 〉 〉

〉

Figure 4.14: Illustration of the contraction of tensors in the Alternating Single
Core Update (ASCU) algorithm (see Algorithm 15). All the cores to the left of Xpnq

are left-orthogonal and all cores to its right are right-orthogonal.

the newly adjusted cores ppXpn�1q�1 Anq and pBn�1 pXpn�1qq obey the
left- and right-orthogonality conditions. Algorithm 15 outlines such a
single-core update algorithm based on the Tucker-2 decomposition. In
the pseudo-code, the left contracted tensor L n is computed efficiently
through a progressive contraction in the form (Schollwöck, 2011; Hubig
et al., 2015)

L n � pXpn�1q 
2 L pn�1q, (4.47)

where L 1 � X.
Alternatively, instead of adjusting the two TT ranks, Rn�1 and Rn,

of pXpnq, we can update only one rank, either Rn�1 or Rn, corresponding
to the right-to-left or left-to-right update order procedure. Assuming
that the core tensors are updated in the left-to-right order, we need to
find pXpnq which has a minimum rank-Rn and satisfies the constraints

}Cpnq � pXpnq �1 Bn}2F ¤ ε2
n, n � 1, . . . , N.

This problem reduces to the truncated SVD of the mode-t1, 2u matri-
cization of Cpnq with an accuracy ε2

n, that is

rCpnqs 2¡ � Un Σ VT
n ,



404 Tensor Train Decompositions

Algorithm 15: The Alternating Single-Core Update
Algorithm (two-sides rank adjustment) (Phan et al.,
2016)
Input: Data tensor X P RI1�I2�����IN and approximation accuracy ε
Output: TT-tensor pX � pXp1q �1 pXp2q �1 � � � �1 pXpNq

of minimum
TT-rank such that }X� pX}2

F ¤ ε2

1: Initialize pX � xxpXp1q
, pXp2q

, . . . , pXpNqyy
2: repeat
3: for n � 1, 2, . . . , N � 1 do
4: Compute contracted tensor Cpnq � L n �N�n

pX¡n

5: Solve a Tucker-2 decomposition
}Cpnq �An �1 pXpnq �1 Bn}2

F ¤ ε2 � }X}2
F � }Cpnq}2

F

6: Adjust adjacent corespXpn�1q Ð pXpn�1q �1 An, pXpn�1q Ð Bn �1 pXpn�1q

7: Perform left-orthogonalization of pXpnq

8: Update left-side contracted tensors
L n Ð AT

n �1 L n, L pn�1q Ð pXpnq 
2 L n

9: end for
10: for n � N,N � 1, . . . , 2 do
11: Compute contracted tensor Cpnq � L n �N�n

pX¡n

12: Solve a constrained Tucker-2 decomposition
}Cpnq �An �1 pXpnq �1 Bn}2

F ¤ ε2 � }X}2
F � }Cpnq}2

F

13: pXpn�1q Ð pXpn�1q �1 An, pXpn�1q Ð Bn �1 pXpn�1q

14: Perform right-orthogonalization of pXpnq

15: end for
16: until a stopping criterion is met
17: return xxpXp1q

, pXp2q
, . . . , pXpNqyy.

where Σ � diagpσn,1, . . . , σn,R�
n
q. Here, for the new optimized rank R�

n,
the following holds

R�
ņ

r�1
σ2
n,r ¥ }X}2F � ε2 ¡

R�
n�1¸
r�1

σ2
n,r . (4.48)

The core tensor pXpnq is then updated by reshaping Un to an order-3
tensor of size Rn�1�In�R�

n, while the core pXpn�1q needs to be adjusted



4.6. Algorithms for TT Decompositions 405

Algorithm 16: The Alternating Single-Core Update
Algorithm (one-side rank adjustment) (Phan et al., 2016)

Input: Data tensor X P RI1�I2�����IN and approximation accuracy ε
Output: TT-tensor pX � pXp1q �1 pXp2q �1 � � � �1 pXpNq

of minimum
TT-rank such that }X� pX}2

F ¤ ε2

1: Initialize TT-cores pXpnq
, @n

2: repeat
3: for n � 1, 2, . . . , N � 1 do
4: Compute the contracted tensor Cpnq � L n �N�n

pX¡n

5: Truncated SVD:
}rCpnqs 2¡ �U Σ VT}2

F ¤ ε2 � }X}2
F � }Cpnq}2

F

6: Update pXpnq � reshapepU, Rn�1 � In �Rnq
7: Adjust adjacent core pXpn�1q Ð pΣ VTq �1 pXpn�1q

8: Update left-side contracted tensors
L pn�1q Ð pXpnq 
2 L n

9: end for
10: for n � N,N � 1, . . . , 2 do
11: Compute contracted tensor Cpnq � L n �N�n

pX¡n

12: Truncated SVD:
}rCpnqsp1q �U Σ VT}2

F ¤ ε2 � }X}2
F � }Cpnq}2

F ;

13: pXpnq � reshapepVT, Rn�1 � In �Rnq
14: pXpn�1q Ð pXpn�1q �1 pU Σq
15: end for
16: until a stopping criterion is met
17: return xxpXp1q

, pXp2q
, . . . , pXpNqyy.

accordingly as

pXpn�1q� � Σ VT
n �1 pXpn�1q

. (4.49)

When the algorithm updates the core tensors in the right-to-left order,
we update pXpnq by using the R�

n�1 leading right singular vectors of the
mode-1 matricization of Cpnq, and adjust the core pXpn�1q accordingly,



406 Tensor Train Decompositions

that is,

rCpnqsp1q � Un Σ VT
npXpnq� � reshapepVT

n , rR�
n�1, In, RnsqpXpn�1q� � pXpn�1q �1 pUn Σq . (4.50)

To summarise, the ASCU method performs a sequential update of one
core and adjusts (or rotates) another core. Hence, it updates two cores
at a time (for detail see Algorithm 16).

The ASCU algorithm can be implemented in an even more efficient
way, if the data tensor X is already given in a TT format (with a
non-optimal TT ranks for the prescribed accuracy). Detailed MATLAB
implementations and other variants of the TT decomposition algorithm
are provided in (Phan et al., 2016).



5
Discussion and Conclusions

In Part 1 of this monograph, we have provided a systematic and
example-rich guide to the basic properties and applications of ten-
sor network methodologies, and have demonstrated their promise as
a tool for the analysis of extreme-scale multidimensional data. Our
main aim has been to illustrate that, owing to the intrinsic compres-
sion ability that stems from the distributed way in which they rep-
resent data and process information, TNs can be naturally employed
for linear/multilinear dimensionality reduction. Indeed, current appli-
cations of TNs include generalized multivariate regression, compressed
sensing, multi-way blind source separation, sparse representation and
coding, feature extraction, classification, clustering and data fusion.

With multilinear algebra as their mathematical backbone, TNs have
been shown to have intrinsic advantages over the flat two-dimensional
view provided by matrices, including the ability to model both strong
and weak couplings among multiple variables, and to cater for multi-
modal, incomplete and noisy data.

In Part 2 of this monograph we introduce a scalable framework
for distributed implementation of optimization algorithms, in order to
transform huge-scale optimization problems into linked small-scale op-
timization sub-problems of the same type. In that sense, TNs can be
seen as a natural bridge between small-scale and very large-scale opti-
mization paradigms, which allows for any efficient standard numerical
algorithm to be applied to such local optimization sub-problems.

407



408 Discussion and Conclusions

Although research on tensor networks for dimensionality reduction
and optimization problems is only emerging, given that in many mod-
ern applications, multiway arrays (tensors) arise, either explicitly or
indirectly, through the tensorization of vectors and matrices, we fore-
see this material serving as a useful foundation for further studies on a
variety of machine learning problems for data of otherwise prohibitively
large volume, variety, or veracity. We also hope that the readers will
find the approaches presented in this monograph helpful in advanc-
ing seamlessly from numerical linear algebra to numerical multilinear
algebra.



Acknowledgements

The authors wish to express their sincere gratitude to the anony-
mous reviewers for their very constructive comments. We also appreci-
ate the deep insight of Prof Anthony Constantinides (Imperial Col-
lege London), Dr Tatsuya Yokota (Nagoya Institute of Technology,
Japan), and Dr Vladimir Lucic (Barclays and Imperial College Lon-
don), and useful suggestions of Dr Kim Batselier (University of Hong
Kong) and Claudius Hubig (Ludwig-Maximilians-University, Munich),
and help with the artwork and numerous mathematical details of Zhe
Sun (RIKEN BSI), and Alexander Stott, Thiannithi Thanthawaritthi-
sai and Sithan Kanna (Imperial College London). The work by I. Os-
eledets was supported by the Russian Science Foundation grant 14-11-
00659, and work by D. Mandic was partially supported by the EPSRC,
grant EP/K025643/1.

409



References

E. Acar and B. Yener. Unsupervised multiway data analysis: A literature
survey. IEEE Transactions on Knowledge and Data Engineering, 21:6–20,
2009.

I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki. Rigorous results on valence-
bond ground states in antiferromagnets. Physical Review Letters, 59(7):799,
1987.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor
decompositions for learning latent variable models. Journal of Machine
Learning Research, 15:2773–2832, 2014.

D. Anderson, S. Du, M. Mahoney, C. Melgaard, K. Wu, and M. Gu. Spec-
tral gap error bounds for improving CUR matrix decomposition and the
Nyström method. In Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics, pages 19–27, 2015.

W. Austin, G. Ballard, and T. G. Kolda. Parallel tensor compression for
large-scale scientific data. arXiv preprint arXiv:1510.06689, 2015.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. The
Journal of Machine Learning Research, 3:1–48, 2003.

M. Bachmayr, R. Schneider, and A. Uschmajew. Tensor networks and hi-
erarchical tensors for the solution of high-dimensional partial differential
equations. Foundations of Computational Mathematics, pages 1–50, 2016.

B. W. Bader and T. G. Kolda. MATLAB tensor toolbox version 2.6, February
2015. URL http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/.

410

http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/


References 411

J. Ballani and L. Grasedyck. Tree adaptive approximation in the hierarchical
tensor format. SIAM Journal on Scientific Computing, 36(4):A1415–A1431,
2014.

J. Ballani, L. Grasedyck, and M. Kluge. A review on adaptive low-rank
approximation techniques in the hierarchical tensor format. In Extraction of
Quantifiable Information from Complex Systems, pages 195–210. Springer,
2014.

G. Ballard, A. R. Benson, A. Druinsky, B. Lipshitz, and O. Schwartz. Improv-
ing the numerical stability of fast matrix multiplication algorithms. arXiv
preprint arXiv:1507.00687, 2015a.

G. Ballard, A. Druinsky, N. Knight, and O. Schwartz. Brief announcement:
Hypergraph partitioning for parallel sparse matrix-matrix multiplication.
In Proceedings of the 27th ACM on Symposium on Parallelism in Algo-
rithms and Architectures, pages 86–88. ACM, 2015b.

G. Barcza, Ö. Legeza, K. H. Marti, and M. Reiher Quantum information
analysis of electronic states at different molecular structures. In Physical
Review A, 83(1):012508, 2011.

K. Batselier and N. Wong. A constructive arbitrary-degree Kronecker product
decomposition of tensors. arXiv preprint arXiv:1507.08805, 2015.

K. Batselier, H. Liu, and N. Wong. A constructive algorithm for decomposing
a tensor into a finite sum of orthonormal rank-1 terms. SIAM Journal on
Matrix Analysis and Applications, 36(3):1315–1337, 2015.

M. Bebendorf. Adaptive cross-approximation of multivariate functions. Con-
structive Approximation, 34(2):149–179, 2011.

M. Bebendorf, C. Kuske, and R. Venn. Wideband nested cross approximation
for Helmholtz problems. Numerische Mathematik, 130(1):1–34, 2015.

R. E. Bellman. Adaptive Control Processes. Princeton University Press,
Princeton, NJ, 1961.

P. Benner, V. Khoromskaia, and B. N. Khoromskij. A reduced basis approach
for calculation of the Bethe–Salpeter excitation energies by using low-rank
tensor factorisations. Molecular Physics, 114(7-8):1148–1161, 2016.

A. R. Benson, J. D. Lee, B. Rajwa, and D. F. Gleich. Scalable methods
for nonnegative matrix factorizations of near-separable tall-and-skinny ma-
trices. In Proceedings of Neural Information Processing Systems (NIPS),
pages 945–953, 2014. URL http://arxiv.org/abs/1402.6964.

D. Bini. Tensor and border rank of certain classes of matrices and the fast
evaluation of determinant inverse matrix and eigenvalues. Calcolo, 22(1):
209–228, 1985.

http://arxiv.org/abs/1402.6964


412 References

M. Bolten, K. Kahl, and S. Sokolović. Multigrid methods for tensor structured
Markov chains with low rank approximation. SIAM Journal on Scientific
Computing, 38(2):A649–A667, 2016. URL http://adsabs.harvard.edu/
abs/2016arXiv160506246B.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multi-
pliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

A. Bruckstein, D. Donoho, and M. Elad. From sparse solutions of systems of
equations to sparse modeling of signals and images. SIAM Review, 51(1):
34–81, 2009.

H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269,
2004.

C. Caiafa and A. Cichocki. Generalizing the column-row matrix decompo-
sition to multi-way arrays. Linear Algebra and its Applications, 433(3):
557–573, 2010.

C. Caiafa and A. Cichocki. Computing sparse representations of multidimen-
sional signals using Kronecker bases. Neural Computaion, 25(1):186–220,
2013.

C. Caiafa and A. Cichocki. Stable, robust, and super–fast reconstruction of
tensors using multi-way projections. IEEE Transactions on Signal Process-
ing, 63(3):780–793, 2015.

J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidi-
mensional scaling via an N-way generalization of “Eckart-Young” decom-
position. Psychometrika, 35(3):283–319, 1970.

V. Cevher, S. Becker, and M. Schmidt. Convex optimization for big data:
Scalable, randomized, and parallel algorithms for big data analytics. IEEE
Signal Processing Magazine, 31(5):32–43, 2014.

G. Chabriel, M. Kleinsteuber, E. Moreau, H. Shen, P. Tichavský, and A. Yere-
dor. Joint matrix decompositions and blind source separation: A survey of
methods, identification, and applications. IEEE Signal Processing Maga-
zine, 31(3):34–43, 2014.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 41(3):15, 2009.

T.-L. Chen, D. D. Chang, S.-Y. Huang, H. Chen, C. Lin, and W. Wang. Inte-
grating multiple random sketches for singular value decomposition. arXiv
e-prints, 2016.

http://adsabs.harvard.edu/abs/2016arXiv160506246B
http://adsabs.harvard.edu/abs/2016arXiv160506246B


References 413

H. Cho, D. Venturi, and G. E. Karniadakis. Numerical methods for high-
dimensional probability density function equations. Journal of Computa-
tional Physics, 305:817–837, 2016.

J. H. Choi and S. Vishwanathan. DFacTo: Distributed factorization of tensors.
In Advances in Neural Information Processing Systems, pages 1296–1304,
2014.

W. Chu and Z. Ghahramani. Probabilistic models for incomplete multi-
dimensional arrays. In JMLR Workshop and Conference Proceedings Vol-
ume 5: AISTATS 2009, volume 5, pages 89–96. Microtome Publishing (pa-
per) Journal of Machine Learning Research, 2009.

A. Cichocki. Tensor decompositions: A new concept in brain data analysis?
arXiv preprint arXiv:1305.0395, 2013a.

A. Cichocki. Era of big data processing: A new approach via tensor networks
and tensor decompositions (invited). In Proceedings of the International
Workshop on Smart Info-Media Systems in Asia (SISA2013), September
2013b. URL http://arxiv.org/abs/1403.2048.

A. Cichocki. Tensor networks for big data analytics and large-scale optimiza-
tion problems. arXiv preprint arXiv:1407.3124, 2014.

A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing:
Learning Algorithms and Applications. John Wiley & Sons, Ltd, 2003.

A. Cichocki, R. Zdunek, A.-H. Phan, and S. Amari. Nonnegative Matrix and
Tensor Factorizations: Applications to Exploratory Multi-way Data Analy-
sis and Blind Source Separation. Wiley, Chichester, 2009.

A. Cichocki, S. Cruces, and S. Amari. Log-determinant divergences revis-
ited: Alpha-beta and gamma log-det divergences. Entropy, 17(5):2988–
3034, 2015a.

A. Cichocki, D. Mandic, A.-H. Phan, C. Caiafa, G. Zhou, Q. Zhao, and L. De
Lathauwer. Tensor decompositions for signal processing applications: From
two-way to multiway component analysis. IEEE Signal Processing Maga-
zine, 32(2):145–163, 2015b.

N. Cohen and A. Shashua. Convolutional rectifier networks as generalized
tensor decompositions. In Proceedings of The 33rd International Conference
on Machine Learning, pages 955–963, 2016.

N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learn-
ing: A tensor analysis. In 29th Annual Conference on Learning Theory,
pages 698–728, 2016.

P. Comon. Tensors: a brief introduction. IEEE Signal Processing Magazine,
31(3):44–53, 2014.

http://arxiv.org/abs/1403.2048


414 References

P. Comon and C. Jutten. Handbook of Blind Source Separation: Independent
Component Analysis and Applications. Academic Press, 2010.

P. G. Constantine and D. F. Gleich. Tall and skinny QR factorizations in
MapReduce architectures. In Proceedings of the Second International Work-
shop on MapReduce and its Applications, pages 43–50. ACM, 2011.

P. G. Constantine, D. F. Gleich, Y. Hou, and J. Templeton. Model reduc-
tion with MapReduce-enabled tall and skinny singular value decomposition.
SIAM Journal on Scientific Computing, 36(5):S166–S191, 2014.

E. Corona, A. Rahimian, and D. Zorin. A Tensor-Train accelerated solver for
integral equations in complex geometries. arXiv preprint arXiv:1511.06029,
November 2015.

C. Crainiceanu, B. Caffo, S. Luo, V. Zipunnikov, and N. Punjabi. Population
value decomposition, a framework for the analysis of image populations.
Journal of the American Statistical Association, 106(495):775–790, 2011.
URL http://pubs.amstat.org/doi/abs/10.1198/jasa.2011.ap10089.

A. Critch and J. Morton. Algebraic geometry of matrix product states. Sym-
metry, Integrability and Geometry: Methods and Applications (SIGMA), 10:
095, 2014. .

A. J. Critch. Algebraic Geometry of Hidden Markov and Related Models. PhD
thesis, University of California, Berkeley, 2013.

A. L. F. de Almeida, G. Favier, J. C. M. Mota, and J. P. C. L. da Costa.
Overview of tensor decompositions with applications to communications.
In R. F. Coelho, V. H. Nascimento, R. L. de Queiroz, J. M. T. Romano,
and C. C. Cavalcante, editors, Signals and Images: Advances and Results in
Speech, Estimation, Compression, Recognition, Filtering, and Processing,
chapter 12, pages 325–355. CRC Press, 2015.

F. De la Torre. A least-squares framework for component analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(6):1041–
1055, 2012.

L. De Lathauwer. A link between the canonical decomposition in multilinear
algebra and simultaneous matrix diagonalization. SIAM Journal on Matrix
Analysis and Applications, 28:642–666, 2006.

L. De Lathauwer. Decompositions of a higher-order tensor in block terms
— Part I and II. SIAM Journal on Matrix Analysis and Applications,
30(3):1022–1066, 2008. URL http://publi-etis.ensea.fr/2008/De08e.
Special Issue on Tensor Decompositions and Applications.

http://pubs.amstat.org/doi/abs/10.1198/jasa.2011.ap10089
http://publi-etis.ensea.fr/2008/De 08e


References 415

L. De Lathauwer. Blind separation of exponential polynomials and the de-
composition of a tensor in rank-pLr, Lr, 1q terms. SIAM Journal on Matrix
Analysis and Applications, 32(4):1451–1474, 2011.

L. De Lathauwer and D. Nion. Decompositions of a higher-order tensor in
block terms – Part III: Alternating least squares algorithms. SIAM Journal
on Matrix Analysis and Applications, 30(3):1067–1083, 2008.

L. De Lathauwer, B. De Moor, and J. Vandewalle. A Multilinear singular
value decomposition. SIAM Journal on Matrix Analysis Applications, 21:
1253–1278, 2000a.

L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and
rank-pR1, R2, . . . , RN q approximation of higher-order tensors. SIAM Jour-
nal of Matrix Analysis and Applications, 21(4):1324–1342, 2000b.

W. de Launey and J. Seberry. The strong Kronecker product. Journal of
Combinatorial Theory, Series A, 66(2):192–213, 1994. URL http://dblp.
uni-trier.de/db/journals/jct/jcta66.html#LauneyS94.

V. de Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best
low-rank approximation problem. SIAM Journal on Matrix Analysis and
Applications, 30:1084–1127, 2008.

A. Desai, M. Ghashami, and J. M. Phillips. Improved practical matrix sketch-
ing with guarantees. IEEE Transactions on Knowledge and Data Engineer-
ing, 28(7):1678–1690, 2016.

I. S. Dhillon. Fast Newton-type methods for nonnegative matrix and tensor
approximation. The NSF Workshop, Future Directions in Tensor-Based
Computation and Modeling, 2009.

E. Di Napoli, D. Fabregat-Traver, G. Quintana-Ortí, and P. Bientinesi. To-
wards an efficient use of the BLAS library for multilinear tensor contrac-
tions. Applied Mathematics and Computation, 235:454–468, 2014.

S. V. Dolgov. Tensor Product Methods in Numerical Simulation of High-
dimensional Dynamical Problems. PhD thesis, Faculty of Mathematics and
Informatics, University Leipzig, Germany, 2014.

S. V. Dolgov and B. N. Khoromskij. Two-level QTT-Tucker format for opti-
mized tensor calculus. SIAM Journal on Matrix Analysis and Applications,
34(2):593–623, 2013.

S. V. Dolgov and B. N. Khoromskij. Simultaneous state-time approximation
of the chemical master equation using tensor product formats. Numerical
Linear Algebra with Applications, 22(2):197–219, 2015.

http://dblp.uni-trier.de/db/journals/jct/jcta66.html#LauneyS94
http://dblp.uni-trier.de/db/journals/jct/jcta66.html#LauneyS94


416 References

S. V. Dolgov and D. V. Savostyanov. Alternating minimal energy methods
for linear systems in higher dimensions. SIAM Journal on Scientific Com-
puting, 36(5):A2248–A2271, 2014.

S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V. Savostyanov.
Computation of extreme eigenvalues in higher dimensions using block ten-
sor train format. Computer Physics Communications, 185(4):1207–1216,
2014.

P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-based
generalization of the singular value decomposition. Linear Algebra and its
Applications, 420(2):553–571, 2007.

G. Ehlers, J. Sólyom, Ö. Legeza, and R.M. Noack. Entanglement structure
of the Hubbard model in momentum space. Physical Review B, 92(23):
235116, 2015.

M. Espig, M. Schuster, A. Killaitis, N. Waldren, P. Wähnert, S. Handschuh,
and H. Auer. TensorCalculus library, 2012. URL http://gitorious.org/
tensorcalculus.

F. Esposito, T. Scarabino, A. Hyvärinen, J. Himberg, E. Formisano, S. Co-
mani, G. Tedeschi, R. Goebel, E. Seifritz, and F. Di Salle. Independent
component analysis of fMRI group studies by self-organizing clustering.
NeuroImage, 25(1):193–205, 2005.

G. Evenbly and G. Vidal. Algorithms for entanglement renormalization. Phys-
ical Review B, 79(14):144108, 2009.

G. Evenbly and S. R. White. Entanglement renormalization and wavelets.
Physical Review Letters, 116(14):140403, 2016.

H. Fanaee-T and J. Gama. Tensor-based anomaly detection: An interdisci-
plinary survey. Knowledge-Based Systems, 2016.

G. Favier and A. de Almeida. Overview of constrained PARAFAC models.
EURASIP Journal on Advances in Signal Processing, 2014(1):1–25, 2014.

J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids. Com-
puting, 67(3):225–253, 2001.

S. Garreis and M. Ulbrich. Constrained optimization with low-rank tensors
and applications to parametric problems with PDEs. SIAM Journal on
Scientific Computing (accepted), 2016.

M. Ghashami, E. Liberty, and J. M. Phillips. Efficient frequent directions
algorithm for sparse matrices. arXiv preprint arXiv:1602.00412, 2016.

http://gitorious.org/tensorcalculus
http://gitorious.org/tensorcalculus


References 417

V. Giovannetti, S. Montangero, and R. Fazio. Quantum multiscale entangle-
ment renormalization ansatz channels. Physical Review Letters, 101(18):
180503, 2008.

S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of
pseudo-skeleton approximations. Linear Algebra and its Applications, 261:
1–21, 1997a.

S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov. Pseudo-skeleton
approximations by matrices of maximum volume. Mathematical Notes, 62
(4):515–519, 1997b.

L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM
Journal on Matrix Analysis and Applications, 31(4):2029–2054, 2010.

L. Grasedyck, D. Kessner, and C. Tobler. A literature survey of low-rank
tensor approximation techniques. GAMM-Mitteilungen, 36:53–78, 2013.

A. R. Groves, C. F. Beckmann, S. M. Smith, and M. W. Woolrich. Linked
independent component analysis for multimodal data fusion. NeuroImage,
54(1):2198–21217, 2011.

Z.-C. Gu, M. Levin, B. Swingle, and X.-G. Wen. Tensor-product represen-
tations for string-net condensed states. Physical Review B, 79(8):085118,
2009.

M. Haardt, F. Roemer, and G. Del Galdo. Higher-order SVD based sub-
space estimation to improve the parameter estimation accuracy in multi-
dimensional harmonic retrieval problems. IEEE Transactions on Signal
Processing, 56:3198–3213, July 2008.

W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus, volume 42
of Springer Series in Computational Mathematics. Springer, Heidelberg,
2012.

W. Hackbusch and S. Kühn. A new scheme for the tensor representation.
Journal of Fourier Analysis and Applications, 15(5):706–722, 2009.

N. Halko, P. Martinsson, and J. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decomposi-
tions. SIAM Review, 53(2):217–288, 2011.

S. Handschuh. Numerical Methods in Tensor Networks. PhD thesis, Facualty
of Mathematics and Informatics, University Leipzig, Germany, Leipzig,
Germany, 2015.

R. A. Harshman. Foundations of the PARAFAC procedure: Models and condi-
tions for an explanatory multimodal factor analysis. UCLA Working Papers
in Phonetics, 16:1–84, 1970.



418 References

F. L. Hitchcock. Multiple invariants and generalized rank of a p-way matrix
or tensor. Journal of Mathematics and Physics, 7:39–79, 1927.

S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for
tensor optimization in the tensor train format. SIAM Journal on Scientific
Computing, 34(2), 2012. URL http://dx.doi.org/10.1137/100818893.

M. Hong, M. Razaviyayn, Z. Q. Luo, and J. S. Pang. A unified algorithmic
framework for block-structured optimization involving big data with appli-
cations in machine learning and signal processing. IEEE Signal Processing
Magazine, 33(1):57–77, 2016.

H. Huang, C. Ding, D. Luo, and T. Li. Simultaneous tensor subspace selection
and clustering: The equivalence of high order SVD and K-means cluster-
ing. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data mining, pages 327–335. ACM, 2008.

R. Hübener, V. Nebendahl, and W. Dür. Concatenated tensor network states.
New Journal of Physics, 12(2):025004, 2010.

C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf. Strictly single-site
DMRG algorithm with subspace expansion. Physical Review B, 91(15):
155115, 2015.

T. Huckle, K. Waldherr, and T. Schulte-Herbriggen. Computations in quan-
tum tensor networks. Linear Algebra and its Applications, 438(2):750–781,
2013.

A. Hyvärinen. Independent component analysis: Recent advances. Philosoph-
ical Transactions of the Royal Society A, 371(1984):20110534, 2013.

I. Jeon, E. E. Papalexakis, C. Faloutsos, L. Sael, and U. Kang. Mining billion-
scale tensors: Algorithms and discoveries. The VLDB Journal, pages 1–26,
2016.

B. Jiang, F. Yang, and S. Zhang. Tensor and its Tucker core: The invariance
relationships. arXiv e-prints arXiv:1601.01469, January 2016.

U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos. GigaTensor: Scaling
tensor analysis up by 100 times – algorithms and discoveries. In Proceed-
ings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’12), pages 316–324, August 2012.

Y.-J. Kao, Y.-D. Hsieh, and P. Chen. Uni10: An open-source library for tensor
network algorithms. In Journal of Physics: Conference Series, volume 640,
page 012040. IOP Publishing, 2015.

L. Karlsson, D. Kressner, and A. Uschmajew. Parallel algorithms for tensor
completion in the CP format. Parallel Computing, 57:222–234, 2016.

http://dx.doi.org/10.1137/100818893


References 419

J.-P. Kauppi, J. Hahne, K. R. Müller, and A. Hyvärinen. Three-way analysis
of spectrospatial electromyography data: Classification and interpretation.
PloS One, 10(6):e0127231, 2015.

V. A. Kazeev and B. N. Khoromskij. Low-rank explicit QTT representation
of the Laplace operator and its inverse. SIAM Journal on Matrix Analysis
and Applications, 33(3):742–758, 2012.

V. A. Kazeev, B. N. Khoromskij, and E. E. Tyrtyshnikov. Multilevel Toeplitz
matrices generated by tensor-structured vectors and convolution with loga-
rithmic complexity. SIAM Journal on Scientific Computing, 35(3):A1511–
A1536, 2013a.

V. A. Kazeev, O. Reichmann, and C. Schwab. Low-rank tensor structure of
linear diffusion operators in the TT and QTT formats. Linear Algebra and
its Applications, 438(11):4204–4221, 2013b.

V. A. Kazeev, M. Khammash, M. Nip, and C. Schwab. Direct solution of the
chemical master equation using quantized tensor trains. PLoS Computa-
tional Biology, 10(3):e1003359, 2014.

B. N. Khoromskij. Opd logNq-quantics approximation of N -d tensors in high-
dimensional numerical modeling. Constructive Approximation, 34(2):257–
280, 2011a.

B. N. Khoromskij. Tensors-structured numerical methods in scientific com-
puting: Survey on recent advances. Chemometrics and Intelligent Labo-
ratory Systems, 110(1):1–19, 2011b. URL http://www.mis.mpg.de/de/
publications/preprints/2010/prepr2010-21.html.

B. N. Khoromskij and A. Veit. Efficient computation of highly oscillatory
integrals by using QTT tensor approximation. Computational Methods in
Applied Mathematics, 16(1):145–159, 2016.

H.-J. Kim, E. Ollila, V. Koivunen, and H. V. Poor. Robust iteratively
reweighted Lasso for sparse tensor factorizations. In IEEE Workshop on
Statistical Signal Processing (SSP), pages 420–423, 2014.

S. Klus and C. Schütte. Towards tensor-based methods for the numerical
approximation of the Perron-Frobenius and Koopman operator. arXiv e-
prints arXiv:1512.06527, December 2015.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

D. Kressner and C. Tobler. Algorithm 941: HTucker–A MATLAB toolbox for
tensors in hierarchical Tucker format. ACM Transactions on Mathematical
Software, 40(3):22, 2014.

http://www.mis.mpg.de/de/publications/preprints/2010/prepr2010-21.html
http://www.mis.mpg.de/de/publications/preprints/2010/prepr2010-21.html


420 References

D. Kressner and A. Uschmajew. On low-rank approximability of solutions
to high-dimensional operator equations and eigenvalue problems. Linear
Algebra and its Applications, 493:556–572, 2016.

D. Kressner, M. Steinlechner, and A. Uschmajew. Low-rank tensor methods
with subspace correction for symmetric eigenvalue problems. SIAM Journal
on Scientific Computing, 36(5):A2346–A2368, 2014a.

D. Kressner, M. Steinlechner, and B. Vandereycken. Low-rank tensor com-
pletion by Riemannian optimization. BIT Numerical Mathematics, 54(2):
447–468, 2014b.

P. M. Kroonenberg. Applied Multiway Data Analysis. John Wiley & Sons
Ltd, New York, 2008.

J. B. Kruskal. Three-way arrays: Rank and uniqueness of trilinear decom-
positions, with application to arithmetic complexity and statistics. Linear
Algebra and its Applications, 18(2):95–138, 1977.

V. Kuleshov, A. T. Chaganty, and P. Liang. Tensor factorization via matrix
factorization. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, pages 507–516, 2015.

N. Lee and A. Cichocki. Estimating a few extreme singular values and vectors
for large-scale matrices in Tensor Train format. SIAM Journal on Matrix
Analysis and Applications, 36(3):994–1014, 2015.

N. Lee and A. Cichocki. Tensor train decompositions for higher order regres-
sion with LASSO penalties. In Workshop on Tensor Decompositions and
Applications (TDA2016), 2016a.

N. Lee and A. Cichocki. Regularized computation of approximate pseudoin-
verse of large matrices using low-rank tensor train decompositions. SIAM
Journal on Matrix Analysis and Applications, 37(2):598–623, 2016b. URL
http://adsabs.harvard.edu/abs/2015arXiv150601959L.

N. Lee and A. Cichocki. Fundamental tensor operations for large-scale data
analysis using tensor network formats. Multidimensional Systems and Sig-
nal Processing (accepted), 2016c.

J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc. An input-adaptive and
in-place approach to dense tensor-times-matrix multiply. In Proceedings of
the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, page 76. ACM, 2015.

M. Li and V. Monga. Robust video hashing via multilinear subspace projec-
tions. IEEE Transactions on Image Processing, 21(10):4397–4409, 2012.

http://adsabs.harvard.edu/abs/2015arXiv150601959L


References 421

S. Liao, T. Vejchodský, and R. Erban. Tensor methods for parameter esti-
mation and bifurcation analysis of stochastic reaction networks. Journal of
the Royal Society Interface, 12(108):20150233, 2015.

A. P. Liavas and N. D. Sidiropoulos. Parallel algorithms for constrained tensor
factorization via alternating direction method of multipliers. IEEE Trans-
actions on Signal Processing, 63(20):5450–5463, 2015.

L. H. Lim and P. Comon. Multiarray signal processing: Tensor decomposition
meets compressed sensing. Comptes Rendus Mecanique, 338(6):311–320,
2010.

M. S. Litsarev and I. V. Oseledets. A low-rank approach to the computation
of path integrals. Journal of Computational Physics, 305:557–574, 2016.

H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. A survey of multilinear
subspace learning for tensor data. Pattern Recognition, 44(7):1540–1551,
2011.

M. Lubasch, J. I. Cirac, and M.-C. Banuls. Unifying projected entangled
pair state contractions. New Journal of Physics, 16(3):033014, 2014. URL
http://stacks.iop.org/1367-2630/16/i=3/a=033014.

C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken. Dynamical ap-
proximation of hierarchical Tucker and tensor-train tensors. SIAM Journal
on Matrix Analysis and Applications, 34(2):470–494, 2013.

M. W. Mahoney. Randomized algorithms for matrices and data. Foundations
and Trends in Machine Learning, 3(2):123–224, 2011.

M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved
data analysis. Proceedings of the National Academy of Sciences, 106:697–
702, 2009.

M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions
for tensor-based data. SIAM Journal on Matrix Analysis and Applications,
30(3):957–987, 2008.

H. Matsueda. Analytic optimization of a MERA network and its relevance to
quantum integrability and wavelet. arXiv preprint arXiv:1608.02205, 2016.

A. Y. Mikhalev and I. V. Oseledets. Iterative representing set selection for
nested cross–approximation. Numerical Linear Algebra with Applications,
2015.

L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The
Quarterly Journal of Mathematics, 11:50–59, 1960.

http://stacks.iop.org/1367-2630/16/i=3/a=033014


422 References

J. Morton. Tensor networks in algebraic geometry and statistics. Lecture
at Networking Tensor Networks, Centro de Ciencias de Benasque Pedro
Pascual, Benasque, Spain, 2012.

M. Mørup. Applications of tensor (multiway array) factorizations and decom-
positions in data mining. Wiley Interdisciplinary Review: Data Mining and
Knowledge Discovery, 1(1):24–40, 2011.

V. Murg, F. Verstraete, R. Schneider, P. R. Nagy, and O. Legeza. Tree ten-
sor network state with variable tensor order: An efficient multireference
method for strongly correlated systems. Journal of Chemical Theory and
Computation, 11(3):1027–1036, 2015.

N. Nakatani and G. K. L. Chan. Efficient tree tensor network states (TTNS)
for quantum chemistry: Generalizations of the density matrix renormal-
ization group algorithm. The Journal of Chemical Physics, 2013. URL
http://arxiv.org/pdf/1302.2298.pdf.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimiza-
tion problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

Y. Nesterov. Subgradient methods for huge-scale optimization problems.
Mathematical Programming, 146(1-2):275–297, 2014.

N. H. Nguyen, P. Drineas, and T. D. Tran. Tensor sparsification via a bound
on the spectral norm of random tensors. Information and Inference, page
iav004, 2015.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):
11–33, 2016.

A. Novikov and R. A. Rodomanov. Putting MRFs on a tensor train. In
Proceedings of the International Conference on Machine Learning (ICML
’14), 2014.

A. C. Olivieri. Analytical advantages of multivariate data processing. One,
two, three, infinity? Analytical Chemistry, 80(15):5713–5720, 2008.

R. Orús. A practical introduction to tensor networks: Matrix product states
and projected entangled pair states. Annals of Physics, 349:117–158, 2014.

I. V. Oseledets. Approximation of 2d�2d matrices using tensor decomposition.
SIAM Journal on Matrix Analysis and Applications, 31(4):2130–2145, 2010.

I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33(5):2295–2317, 2011.

http://arxiv.org/pdf/1302.2298.pdf


References 423

I. V. Oseledets and S. V. Dolgov. Solution of linear systems and matrix
inversion in the TT-format. SIAM Journal on Scientific Computing, 34(5):
A2718–A2739, 2012.

I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the curse of dimensional-
ity, or how to use SVD in many dimensions. SIAM Journal on Scientific
Computing, 31(5):3744–3759, 2009.

I. V. Oseledets and E. E. Tyrtyshnikov. TT cross–approximation for mul-
tidimensional arrays. Linear Algebra and its Applications, 432(1):70–88,
2010.

I. V. Oseledets, S. V. Dolgov, V. A. Kazeev, D. Savostyanov, O. Lebedeva,
P. Zhlobich, T. Mach, and L. Song. TT-Toolbox, 2012. URL https://
github.com/oseledets/TT-Toolbox.

E. E. Papalexakis, N. Sidiropoulos, and R. Bro. From K-means to higher-way
co-clustering: Multilinear decomposition with sparse latent factors. IEEE
Transactions on Signal Processing, 61(2):493–506, 2013.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. Tensors for data min-
ing and data fusion: Models, applications, and scalable algorithms. ACM
Transactions on Intelligent Systems and Technology (TIST), 8(2):16, 2016.

N. Parikh and S. P. Boyd. Proximal algorithms. Foundations and Trends in
Optimization, 1(3):127–239, 2014.

D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix product
state representations. Quantum Information & Computation, 7(5):401–
430, July 2007. URL http://dl.acm.org/citation.cfm?id=2011832.
2011833.

R. Pfeifer, G. Evenbly, S. Singh, and G. Vidal. NCON: A tensor network
contractor for MATLAB. arXiv preprint arXiv:1402.0939, 2014.

N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit
feature maps. In Proceedings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 239–247. ACM,
2013.

A.-H. Phan and A. Cichocki. Extended HALS algorithm for nonnegative
Tucker decomposition and its applications for multiway analysis and clas-
sification. Neurocomputing, 74(11):1956–1969, 2011.

A.-H. Phan, P. Tichavský, and A. Cichocki. Fast alternating ls algorithms for
high order candecomp/parafac tensor factorizations. IEEE Transactions
on Signal Processing, 61(19):4834–4846, 2013a.

https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox
http://dl.acm.org/citation.cfm?id=2011832.2011833
http://dl.acm.org/citation.cfm?id=2011832.2011833


424 References

A.-H. Phan, P. Tichavský, and A. Cichocki. Tensor deflation for CANDE-
COMP/PARAFAC – Part I: Alternating subspace update algorithm. IEEE
Transactions on Signal Processing, 63(22):5924–5938, 2015a.

A.-H. Phan, A. Cichocki, A. Uschmajew, P. Tichavský, G. Luta, and
D. Mandic. Tensor networks for latent variable analysis. Part I: Algorithms
for tensor train decomposition. ArXiv e-prints, 2016.

A.-H. Phan and A. Cichocki. Tensor decompositions for feature extraction
and classification of high dimensional datasets. Nonlinear Theory and its
Applications, IEICE, 1(1):37–68, 2010.

A.-H. Phan, A. Cichocki, P. Tichavský, D. Mandic, and K. Matsuoka. On
revealing replicating structures in multiway data: A novel tensor decom-
position approach. In Proceedings of the 10th International Conference
LVA/ICA, Tel Aviv, March 12–15, pages 297–305. Springer, 2012.

A.-H. Phan, A. Cichocki, P. Tichavský, R. Zdunek, and S. R. Lehky. From
basis components to complex structural patterns. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2013, Vancouver, BC, Canada, May 26–31, 2013, pages 3228–
3232, 2013b. URL http://dx.doi.org/10.1109/ICASSP.2013.6638254.

A.-H. Phan, P. Tichavský, and A. Cichocki. Low complexity damped Gauss-
Newton algorithms for CANDECOMP/PARAFAC. SIAM Journal on
Matrix Analysis and Applications (SIMAX), 34(1):126–147, 2013c. URL
http://arxiv.org/pdf/1205.2584.pdf.

A.-H. Phan, P. Tichavský, and A. Cichocki. Low rank tensor deconvolution.
In Proceedings of the IEEE International Conference on Acoustics Speech
and Signal Processing, ICASSP, pages 2169–2173, April 2015b. URL http:
//dx.doi.org/10.1109/ICASSP.2015.7178355.

S. Ragnarsson. Structured Tensor Computations: Blocking Symmetries and
Kronecker Factorization. PhD dissertation, Cornell University, Department
of Applied Mathematics, 2012.

M. V. Rakhuba and I. V. Oseledets. Fast multidimensional convolution in low-
rank tensor formats via cross–approximation. SIAM Journal on Scientific
Computing, 37(2):A565–A582, 2015.

P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data
optimization. Mathematical Programming, 156:433–484, 2016.

J. Salmi, A. Richter, and V. Koivunen. Sequential unfolding SVD for tensors
with applications in array signal processing. IEEE Transactions on Signal
Processing, 57:4719–4733, 2009.

http://dx.doi.org/10.1109/ICASSP.2013.6638254
http://arxiv.org/pdf/1205.2584.pdf
http://dx.doi.org/10.1109/ICASSP.2015.7178355
http://dx.doi.org/10.1109/ICASSP.2015.7178355


References 425

U. Schollwöck. The density-matrix renormalization group in the age of matrix
product states. Annals of Physics, 326(1):96–192, 2011.

U. Schollwöck. Matrix product state algorithms: DMRG, TEBD and relatives.
In Strongly Correlated Systems, pages 67–98. Springer, 2013.

N. Schuch, I. Cirac, and D. Pérez-García. PEPS as ground states: Degeneracy
and topology. Annals of Physics, 325(10):2153–2192, 2010.

N. Sidiropoulos, R. Bro, and G. Giannakis. Parallel factor analysis in sensor
array processing. IEEE Transactions on Signal Processing, 48(8):2377–
2388, 2000.

N. D. Sidiropoulos. Generalizing Caratheodory’s uniqueness of harmonic pa-
rameterization to N dimensions. IEEE Transactions on Information The-
ory, 47(4):1687–1690, 2001.

N. D. Sidiropoulos. Low-rank decomposition of multi-way arrays: A signal
processing perspective. In Proceedings of the IEEE Sensor Array and
Multichannel Signal Processing Workshop (SAM 2004), July 2004. URL
http://www.sandia.gov/~tgkolda/tdw2004/Nikos04.pdf.

N. D. Sidiropoulos and R. Bro. On the uniqueness of multilinear decomposi-
tion of N-way arrays. Journal of Chemometrics, 14(3):229–239, 2000.

N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos. Tensor decomposition for signal processing and machine
learning. arXiv e-prints arXiv:1607.01668, 2016.

A. Smilde, R. Bro, and P. Geladi. Multi-way Analysis: Applications in the
Chemical Sciences. John Wiley & Sons Ltd, New York, 2004.

S. M. Smith, A. Hyvärinen, G. Varoquaux, K. L. Miller, and C. F. Beckmann.
Group-PCA for very large fMRI datasets. NeuroImage, 101:738–749, 2014.

L. Sorber, M. Van Barel, and L. De Lathauwer. Optimization-based algo-
rithms for tensor decompositions: Canonical Polyadic Decomposition, de-
composition in rank-pLr, Lr, 1q terms and a new generalization. SIAM Jour-
nal on Optimization, 23(2), 2013.

L. Sorber, I. Domanov, M. Van Barel, and L. De Lathauwer. Exact line
and plane search for tensor optimization. Computational Optimization and
Applications, 63(1):121–142, 2016.

M. Sørensen and L. De Lathauwer. Blind signal separation via tensor decom-
position with Vandermonde factor. Part I: Canonical polyadic decompo-
sition. IEEE Transactions on Signal Processing, 61(22):5507–5519, 2013.
URL http://dx.doi.org/10.1109/TSP.2013.2276416.

http://www.sandia.gov/~tgkolda/tdw2004/Nikos04.pdf
http://dx.doi.org/10.1109/TSP.2013.2276416


426 References

M. Sørensen, L. De Lathauwer, P. Comon, S. Icart, and L. Deneire. Canonical
Polyadic Decomposition with orthogonality constraints. SIAM Journal on
Matrix Analysis and Applications, 33(4):1190–1213, 2012.

M. Steinlechner. Riemannian optimization for high-dimensional tensor com-
pletion. Technical report, Technical report MATHICSE 5.2015, EPF Lau-
sanne, Switzerland, 2015.

M. M. Steinlechner. Riemannian Optimization for Solving High-Dimensional
Problems with Low-Rank Tensor Structure. PhD thesis, École Polytechn-
nque Fédérale de Lausanne, 2016.

E. M. Stoudenmire and S. R. White. Minimally entangled typical thermal
state algorithms. New Journal of Physics, 12(5):055026, 2010.

J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: Dynamic tensor
analysis. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge Discovery and Data Mining, pages 374–383. ACM, 2006.

S. K. Suter, M. Makhynia, and R. Pajarola. TAMRESH – tensor approxima-
tion multiresolution hierarchy for interactive volume visualization. Com-
puter Graphics Forum, 32(3):151–160, 2013.

Y. Tang, R. Salakhutdinov, and G. Hinton. Tensor analyzers. In Proceedings
of the 30th International Conference on Machine Learning (ICML 2013),
Atlanta, USA, 2013.

D. Tao, X. Li, X. Wu, and S. Maybank. General tensor discriminant analysis
and Gabor features for gait recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(10):1700–1715, 2007.

P. Tichavský and A. Yeredor. Fast approximate joint diagonalization incor-
porating weight matrices. IEEE Transactions on Signal Processing, 47(3):
878–891, 2009.

M. K. Titsias. Variational learning of inducing variables in sparse Gaussian
processes. In Proceedings of the 12th International Conference on Artificial
Intelligence and Statistics, pages 567–574, 2009.

C. Tobler. Low-rank tensor methods for linear systems and eigenvalue prob-
lems. PhD thesis, ETH Zürich, 2012.

L. N. Trefethen. Cubature, approximation, and isotropy in the hypercube.
SIAM Review, Forthcoming, 2017. URL https://people.maths.ox.ac.
uk/trefethen/hypercube.pdf.

V. Tresp, C. Esteban, Y. Yang, S. Baier, and D. Krompaß. Learning with
memory embeddings. arXiv preprint arXiv:1511.07972, 2015.

https://people.maths.ox.ac.uk/trefethen/hypercube.pdf
https://people.maths.ox.ac.uk/trefethen/hypercube.pdf


References 427

J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Randomized single-view
algorithms for low-rank matrix approximation. arXiv e-prints, 2016.

L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31(3):279–311, 1966.

L. R. Tucker. The extension of factor analysis to three-dimensional matrices.
In H. Gulliksen and N. Frederiksen, editors, Contributions to Mathematical
Psychology, pages 110–127. Holt, Rinehart and Winston, New York, 1964.

A. Uschmajew and B. Vandereycken. The geometry of algorithms using hier-
archical tensors. Linear Algebra and its Applications, 439:133–166, 2013.

N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen. A new truncation
strategy for the higher-order singular value decomposition. SIAM Journal
on Scientific Computing, 34(2):A1027–A1052, 2012.

M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensem-
bles: Tensorfaces. In Proceedings of the European Conference on Computer
Vision (ECCV), volume 2350, pages 447–460, Copenhagen, Denmark, May
2002.

F. Verstraete, V. Murg, and I. Cirac. Matrix product states, projected entan-
gled pair states, and variational renormalization group methods for quan-
tum spin systems. Advances in Physics, 57(2):143–224, 2008.

N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer. Breaking the curse
of dimensionality using decompositions of incomplete tensors: Tensor-based
scientific computing in big data analysis. IEEE Signal Processing Magazine,
31(5):71–79, 2014.

G. Vidal. Efficient classical simulation of slightly entangled quantum compu-
tations. Physical Review Letters, 91(14):147902, 2003.

S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Gershman. Robust
iterative fitting of multilinear models. IEEE Transactions on Signal Pro-
cessing, 53(8):2678–2689, 2005.

S. Wahls, V. Koivunen, H. V. Poor, and M. Verhaegen. Learning multidi-
mensional Fourier series with tensor trains. In IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pages 394–398. IEEE,
2014.

D. Wang, H. Shen, and Y. Truong. Efficient dimension reduction for high-
dimensional matrix-valued data. Neurocomputing, 190:25–34, 2016.

H. Wang and M. Thoss. Multilayer formulation of the multiconfiguration time-
dependent Hartree theory. Journal of Chemical Physics, 119(3):1289–1299,
2003.



428 References

H. Wang, Q. Wu, L. Shi, Y. Yu, and N. Ahuja. Out-of-core tensor approx-
imation of multi-dimensional matrices of visual data. ACM Transactions
on Graphics, 24(3):527–535, 2005.

S. Wang and Z. Zhang. Improving CUR matrix decomposition and the Nys-
tröm approximation via adaptive sampling. The Journal of Machine Learn-
ing Research, 14(1):2729–2769, 2013.

Y. Wang, H.-Y. Tung, A. Smola, and A. Anandkumar. Fast and guaranteed
tensor decomposition via sketching. In Advances in Neural Information
Processing Systems, pages 991–999, 2015.

S. R. White. Density-matrix algorithms for quantum renormalization groups.
Physical Review B, 48(14):10345, 1993.

Z. Xu, F. Yan, and Y. Qi. Infinite Tucker decomposition: Nonparametric
Bayesian models for multiway data analysis. In Proceedings of the 29th
International Conference on Machine Learning (ICML), ICML ’12, pages
1023–1030. Omnipress, July 2012.

Y. Yang and T. Hospedales. Deep multi-task representation learning: A tensor
factorisation approach. arXiv preprint arXiv:1605.06391, 2016. URL http:
//adsabs.harvard.edu/abs/2016arXiv160506391Y.

T. Yokota, Q. Zhao, and A. Cichocki. Smooth PARAFAC decomposition
for tensor completion. IEEE Transactions on Signal Processing, 64(20):
5423–5436, 2016.

T. Yokota, N. Lee, and A. Cichocki. Robust multilinear tensor rank estimation
using higher order singular value decomposition and information criteria.
IEEE Transactions on Signal Processing, accepted, 2017.

Z. Zhang, X. Yang, I. V. Oseledets, G. E. Karniadakis, and L. Daniel. Enabling
high-dimensional hierarchical uncertainty quantification by ANOVA and
tensor-train decomposition. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 34(1):63–76, 2015.

H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai, and T. Xiang. Renor-
malization of tensor-network states. Physical Review B, 81(17):174411,
2010.

Q. Zhao, C. Caiafa, D. P. Mandic, Z. C. Chao, Y. Nagasaka, N. Fujii, L. Zhang,
and A. Cichocki. Higher order partial least squares (HOPLS): A generalized
multilinear regression method. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(7):1660–1673, 2013a.

http://adsabs.harvard.edu/abs/2016arXiv160506391Y
http://adsabs.harvard.edu/abs/2016arXiv160506391Y


References 429

Q. Zhao, G. Zhou, T. Adali, L. Zhang, and A. Cichocki. Kernelization of
tensor-based models for multiway data analysis: Processing of multidimen-
sional structured data. IEEE Signal Processing Magazine, 30(4):137–148,
2013b.

Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki. Tensor ring decompo-
sition. CoRR, abs/1606.05535, 2016. URL http://arxiv.org/abs/1606.
05535.

S. Zhe, Y. Qi, Y. Park, Z. Xu, I. Molloy, and S. Chari. DinTucker: Scaling
up Gaussian process models on large multidimensional arrays. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016.
URL http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/
11959/11888.

G. Zhou and A. Cichocki. Fast and unique Tucker decompositions via multi-
way blind source separation. Bulletin of Polish Academy of Science, 60(3):
389–407, 2012a.

G. Zhou and A. Cichocki. Canonical Polyadic Decomposition based on a
single mode blind source separation. IEEE Signal Processing Letters, 19
(8):523–526, 2012b.

G. Zhou, A. Cichocki, and S. Xie. Fast nonnegative matrix/tensor factor-
ization based on low-rank approximation. IEEE Transactions on Signal
Processing, 60(6):2928–2940, June 2012.

G. Zhou, A. Cichocki, Q. Zhao, and S. Xie. Efficient nonnegative Tucker
decompositions: Algorithms and uniqueness. IEEE Transactions on Image
Processing, 24(12):4990–5003, 2015.

G. Zhou, A. Cichocki, Y. Zhang, and D. P. Mandic. Group component analysis
for multiblock data: Common and individual feature extraction. IEEE
Transactions on Neural Networks and Learning Systems, (in print), 2016a.

G. Zhou, Q. Zhao, Y. Zhang, T. Adali, S. Xie, and A. Cichocki. Linked
component analysis from matrices to high-order tensors: Applications to
biomedical data. Proceedings of the IEEE, 104(2):310–331, 2016b.

http://arxiv.org/abs/1606.05535
http://arxiv.org/abs/1606.05535
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11959/11888
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11959/11888

	Introduction and Motivation
	Challenges in Big Data Processing
	Tensor Notations and Graphical Representations
	Curse of Dimensionality and Generalized Separation of Variables for Multivariate Functions
	Advantages of Multiway Analysis via Tensor Networks
	Scope and Objectives

	Tensor Operations and Tensor Network Diagrams
	Basic Multilinear Operations
	Graphical Representation of Fundamental Tensor Networks
	Generalized Tensor Network Formats

	Constrained Tensor Decompositions: From Two-way to Multiway Component Analysis
	Constrained Low-Rank Matrix Factorizations
	The CP Format
	The Tucker Tensor Format
	Higher Order SVD (HOSVD) for Large-Scale Problems
	Tensor Sketching Using Tucker Model
	Multiway Component Analysis (MWCA)
	Nonlinear Tensor Decompositions – Infinite Tucker

	Tensor Train Decompositions: Graphical Interpretations and Algorithms
	Tensor Train Decomposition – Matrix Product State
	Matrix TT Decomposition – Matrix Product Operator
	Links Between CP, BTD Formats and TT/TC Formats
	Quantized Tensor Train (QTT) – Blessing of Dimensionality
	Basic Operations in TT Formats
	Algorithms for TT Decompositions

	Discussion and Conclusions
	Acknowledgements
	References

