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Outline

Regression analysis examines the association between a dependent
variable, y, and one or more independent variables, x1, x2, . . . , xp.

◦ It determines whether and “how much” of the variation in the dependent
variable can be explained by independent variables (relationship strength)

◦ Regression analysis covers a range of linear and nonlinear models, from
univariate regression to multiple regression, polynomial regression, and
regression with multiplicative variables (Volterra series, Recurrent NNs)

Advantages of linear regression:
Interpretability: Regression models clearly establish how each
independent variable affects the dependent variable
Simplicity: The concept of regression is relatively simple and intuitive,
compared to most established machine learning models
Applicability: It is an indispensable “must-try” tool in manifold fields,
including finance, biomedicine, science and engineering

R Logistic Regression (which is linear in the “logit” space) is used for
classification problems based on either binary or multiple categories
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Visualising and quantifying relations between variables
Example 1: Scatter plots and correlation
Correlation quantifies the strength (scatter) and direction of the linear
relationship between two variables, x and y, in both the x-direction and
y-direction, as illustrated in the scatter plots below.

R In addition to the correlation analysis, it is very useful to quantify how two
or more variables (co–)vary together # basis of regression
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Correlation, partial correlation, non-metric correlation

◦ The standard bivariate or product moment correlation, rxy = E{xy},
measures the (linear) association between two numerical variables, x and y
◦ This may be interpreted as examining the existence and strength of a
linear “straight-line” relationship between the two variables, x and y
◦ When normalised as ρxy = cov(x,y)

σxσy
, it is known as the Pearson

correlation coefficient, or correlation coefficient
◦ In a multivariate case, the corr. coeff., ρxy, does not remove the effects
of other variable(s) when quantifying the association between x and y
◦ On the other hand, the partial correlation coefficient measures the
association between two variables after adjusting for (or eliminating) the
effects of additional variables, and has the form rxy·z =

rxy−rxzryz√
1−r2

xz

√
1−r2

yz

◦ Recall from Lecture 2 that partial correlations are typically used to
estimate the order of Autoregressive (AR processes); see the next slide
◦ The coefficient of association, R2 signifies the proportion of the total
variation in y that is accounted for by the variation in x (see Appendix)
◦ Spearman’s rho, ρs, and Kendall’s tau, τ , correlation coefficients can be
used to measure the association between ordinal (categorical) variables
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Example 2: Scatter plot, AutoRegressive process (Lecture 2)

Consider an AR(1) process with a1 = −0.3, and an AR(2) with a1 < 0, a2 > 0

The nature of an AR process may be inferred through scatter plots of pairs
x[n], x[m+ n], separated by an interval (lag), m.
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Relationship between variables
Correlation versus Regression

After establishing how two variables co-vary, interpolation and prediction
can be performed through linear regression # Regression line is unique

Regression examines the cumulative distance between all data points and
the regression line in the y-direction only # it models the variation of the
explained variable, y, in response to a change in the explanatory variable, x

◦ Variable x is also called a regressor, independent variable, or predictor

◦ Variable y is also called response, dependent var., criterion or true label
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Example 3: Scatter plots of the Euro vs USD exchange
Scatter plots of a detrended EUR/USD exchange rate vs its τ days lagged version

◦ The detrended Euro to USD currency exchange time series shows strong
correlation for small correlation lags (τ = 1, τ = 2), as evidenced by a
narrow shape of the concentration of data points (the narrower the better)
◦ For large correlation lags (τ = 100, τ = 250, τ = 360), the scatter plots
indicate a lack of correlation or weak spurious correlations (see Slide 3)

Q: If x and y are correlated, can we infer the value of y based on x?

A: Yes, we can regress y onto x and establish such inference!
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Linear Regression: The analysis framework
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Regression models the “rate of change” of the explained variable, y, in
response to the change in the explanatory variable, x, in the form

Univariate regression: y[n] = α+ βx[n] + e[n]

◦ The error (or residual), e[n], accounts for the stochastic nature of regression
◦ The slope of the regression line, β = r

σy
σx

, with r as the correlation coefficient
between x and y, and σx and σy as the standard deviations in the x and y

◦ The intercept α = ȳ − βx̄ where x̄ and ȳ are the sample means of x and y

The regression line passes through the centroid (x̄, ȳ)
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Finding regression coefficients: Least Squares Regression
Linear regression # relationship between two variables based on a line of best fit

Consider a line fit: y = β x+ e⇐⇒ yi = β xi + ei i ∈ {1, . . . , N}
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◦ Least Squares regression (LSR)
aims to minimise the sum of the
squares of the differences between
the observed and predicted values

argmin
β
||y−βx||22 ⇐⇒ argmin

β
||e||22

◦ We say that we regress y onto x,
with β as the regression coefficient.

Common terminologies for Least Squares Regression
Econometrics Statistics Machine Learning

y Dependent Var., Estimate Explained V., Response, Regressand True Label, Criterion

β Coefficients Coefficients Parameters

x Independent Var., Predictor Explanatory Var. Regressor Features, Predictors

e Residual Error Prediction Error
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Goodness of regression fit: Examination of residuals
The Regression Analysis involves the following assumptions:

Linearity. The relationship between the dependent and independent
variable(s) should be close to a straight line (hyper-plane).

Homo-scedasticity. The residuals exhibit a zero-mean, E{e} = 0, and
constant variance, E{e2} = σ2, which does not depend on the value of x.

R The error terms are independent and normally distributed (i.i.d.) around
the regression line. For each fixed value of x the distribution of y is normal.
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Good: Assumptions satisfied Bad: Non-linear relation Bad: Non-constant variance

R Regression does not imply or assume any causality
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Example 4: Capital Asset Pricing Model (CAPM)
W. Sharpe was awarded the Nobel Prize for economy in 1990 for CAPM

The CAPM is given by the following linear regression model

E(Ri) = Rf + β
(
E(Rm)−Rf

)
+ e

expected return of asset i↗ risk-free ↑ ↖ residual (unpredictable)↑ exposure to market

◦ Rf is the risk-free rate of interest, e.g. interest

arising from government bonds; Rf is assumed

to be 3% Annual Percentage Rate (APR);

◦ β (the beta) # sensitivity of the expected

excess asset returns, E(Ri)-Rf , to excess market

returns, E(Rm)-Rf , (β=exposure to market).

◦
(
E(Ri)−Rf

)
is known as the risk premium;

◦ E(Rm) is the expected return of the market;

◦
(
E(Rm) − Rf

)
is the market premium or

excess return of the market (difference between

the expected market return and the risk free).
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We assume that the market is the

S&P 500 index and regress for β.

R So CAPM is actually fitting a line to noisy data! # LS regression
Large β # a less resilient company. Small β # lower exposure to market risk.
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Example 4: Capital Asset Pricing Model (CAPM), cntd.
Notice that we employ a block-LS approach, over blocks of 22 days

Asset return, Ri, risk-free interest rate, Rf , and market return, Rm,
(S&P500 return) are all known. We consider log-returns.

R We can now perform LS regression to obtain the value of β.

Each month has 22 trading days. Then, the CAPM states thatRi;day1 − Rf

Ri;day2 − Rf
...

Ri;day22 − Rf

 = β

Rm;day1 − Rf

Rm;day2 − Rf
...

Rm;day22 − Rf

+

 e1

e2
...

e22

 ⇒ ri = β rm + e

Therefore, the LS estimate: β̂ = (rm
Trm)−1rm
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Standardised linear regression

It is often convenient to examine regression with zero intercept, as e.g in
Financial Engineering in Example 4. In addition, the analysis may benefit
from standardisation to zero mean and unit variance, especially in
nonlinear regression and for visualisation purposes.

◦ The parameter, β̂, when estimated from raw data is termed the
non-standardised regression coefficient
◦ The standardised regression coefficient, also termed the beta coefficient
or the beta is the slope obtained by the regression of y on x when the
data are standardised to zero mean and unit variance.
◦ When the data are standardised, the intercept, α, assumes the value of 0
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Example 5: Within-sample (interpolation) and
out-of-sample (extrapolation) inference using regression

Interpolation: Quite accurate, as
a linear fit matches the data range
which the model has seen.
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Nobody in the study drunk 6.5
pints of beer, but we can still use
regression to interpolate and find
the estimated blood alcohol level.

Extrapolation: Needs to be
considered much more carefully.
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A “piece-wise” linear fit would be
more appropriate (or quadratic).
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Real world: Outliers and influential points in regression

Outlier: A perfectly good observation that lies outside the overall pattern
of observations, that is, it is in the tails of the distribution.
Influential point aka leverage outlier: An observation that markedly
changes the regression if removed. This is often an outlier along the x-axis.
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Remedy: Robust regression estimators can deal easily with vertical outliers
(explained variable, y, outside main concentration of data); see Appendix
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Explaining the total variation in the dependent variable
for other measures, such as coefficient of determination, see Appendix

For simplicity, consider the univariate regression model

y = β0 + β1x+ e → ŷ = E{y|x} = β0 + β1x as E{e} = 0
prediction↗ ↖ mean, ȳ

ŷ lies on the regression line!
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ŷ

This means that:
◦ we are predicting the means, ȳ = E{y|x}
The total variation or the total sum of
squares (SST) for the dependent variable,
y, is therefore made up of two parts

SST = SSE + SSR
total sum of squares↗ sum of squares regression↗

↙ sum of squares error

The SSE is the unexplained part

SST =
∑

(y − ȳ)2 SSE =
∑

(y − ŷ)2 SSR =
∑

(ŷ − ȳ)2
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Regressing y onto x is different from regressing x onto y

Regression examines the distance of all points in the y direction only

We always regress the explained variable, y, onto an explanatory variable, x
Correct: Regressing y onto x Incorrect: Regressing x onto y Both together
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In the x on y regression (in orange), the residuals represent a horizontal
distance between the observed data points and the x on y regression line.
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The random residuals indicate that linear regression is appropriate
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The Total Least Squares (TLS) method

Instead of the “vertical distance” (regression of y onto x), we can also use
the “shortest distance” (orthogonal projection) between the observed data
and the regression line # the method of Total Least Squares (TLS).
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The projection operator (see Lecture 6), that is, modelling based on the
orthogonal distance, is more complicated than the modelling based on the
vertical and horizontal distance but generally yields more accurate models.

In the 2D case, the TLS regression line is equivalent to the first principal
component of the data matrix.
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Multiple linear regression analysis
Same idea as univariate regression, just several explanatory variables, x1, . . . , xp

The multiple linear regression model has the general form

y[n] = β0 + β1x1[n] + β2x2[n] + · · ·+ βpxp[n] + e[n]
intercept↗ ↑ partial correlation coefficients ↑

with x[n] = [x1[n], . . . , xp[n]]T as the explanatory variables, β = [β1, . . . , βn]
T as

the corresponding regression coefficients, and β0 as the intercept.

The estimate ŷ[n] based on the multiple regression model is given by

ŷ[n] = β̂0 + β̂1x1[n] + β̂2x2[n] + · · ·+ β̂pxp[n]
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The best fit equation can be 
found by minimizing the sum 
of squared errors, ∑𝑒#.

R Bivariate linear regression: ŷ[n] = β̂0 + β̂1x1[n] + β̂2x2[n]

The coefficients θ̂i = β̂i are found using the method of Least Squares
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Example 6: Bivariate regression in economics

Consider an example of the prediction of online sales of frozen pies.

◦ Dependent variable, y, is the sales of pies (number sold per week)
◦ Independent variables, x1 & x2, are

x1: Price of a pie in local currency
x2: Advertising costs in local currency

The bivariate linear regression model of pie sales now becomes

sales = β0 + β1 × price+ β2 × advertising cost

The parameters β1 and β2 indicate the “rate of change” wrt the
corresponding independent variables: price and advertising costs.

Slope β1. Indicates that the average value of sales changes by β1 for each
1 GBP increase in the price, while all other parameters are held constant.
Slope β2. Indicates that the average value of sales changes by β2 for each
1 GBP spent on advertising, while all other parameters are held constant.

For example, for β1 = 10, and if the income is to remain fixed after a
change in price, then the sales would be expected to decrease by 10 pies
per week for each 1 GBP increase in the selling price.
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Example 7: Fama-French three-factor model (Problem Sets)

NB: β here is not equal to β in CAPM, due to two additional factors

The model is given by (E. Fama won Nobel Prize in Economics in 2013)

Ri = Rf + β (Rm −Rf) + bs · SMB + bv ·HML+ e

where SMB measures the historic excess returns of small caps over big
caps and HML the value stocks over growth stocks. bs and bv are coeffs.

LS Regression of Fama-French: We regress for the three beta’s: The
market is the S&P 500 index; Rf is assumed to be 3% APR; Intercept = 0.
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Goodness of a regression model: Back to the residuals

The examination of the residuals, e[n]=y[n] - ŷ[n], is very useful as e.g.
their histogram will reveal whether the assumption of their normality holds.

Scatter plots (scattergrams) of the residuals are also very useful:

◦ A plot of e[n] against time can indicate whether the assumptions of a
constant variance of the residuals and their uncorrelatedness hold

◦ A plot of e[n] against the predicted dependent variable, ŷ[n], examines
the assumption of constant variance of the residuals

◦ A plot of e[n] against an independent variable xi[n] indicates whether a
linear model is appropriate; it should exhibit a random pattern (Slide 10)
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Regression with categorical variables (see also Appendix)

Consider a task which involves both numerical and non–numerical data:
◦ Yes or No ◦ On or Off ◦ Male or Female ◦ Like or Dislike
◦ Exercise per week: 1 - every day, 2 - two or more times, 3 - never

In such cases, linear regression should involve qualitative variables, also
known as dummy, indicator or categorical explanatory variables.

Example 8: Consider again Example 6 (pie sales), with ŷ = pies sold

ŷ = β0 + β1x1 + β2x2 + β3x3 x3 ∈ {0, 1}
where x1 = price, x2 = advertising, and dummy variable x3 = holiday
(x3 = 1 if there was holiday that week, x3 = 0 if no holiday that week). So

Holiday: ŷ = β0 + β1x1 + β2x2 + β3 × 1 = (β0 + β3) + β1x1 + β2x2

No Holiday: ŷ = β0 + β1x1 + β2x2 + β3 × 0 = β0 + β1x1 + β2x2

x1 (Price)

y 
(S

al
es

)

0

0 + 3 Holiday
No Holiday ◦ For x3 = 1 (weeks with holiday) we have

a different intercept β = β0 + β3

◦ The slopes β1 and β2 remain the same
as for weeks with no holiday (x3 = 0)
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Towards nonlinear regression: Polynomial regression
Q: Which of these two models is more appropriate: linear or quadratic?

5000 5050 5100 5150 5200 5250
S&P 500

2200

2250

2300

2350

2400

Go
ld

 P
ric

es

S&P 500 vs. Gold Prices in April 2024

Data
Linear Fit
Quadratic Fit

5000 5050 5100 5150 5200 5250
x

100

75

50

25

0

25

50

75

Re
sid

ua
ls

Residuals of Both Fits, S&P500 vs. Gold

Linear Fit Residuals, sum(Res2)=47375
Quadratic Fit Residuals, sum(Res2)=42270

A: The scatter plot of residuals vs x slightly favours a quadratic model

y = β0 + β1x+ β2x
2 + e

R Again, the residuals help!

x

y

x

Re
sid

ua
ls

x

y

x

Re
sid

ua
ls
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Polynomial regression model

Justification: Weierstrass theorem tells us that any continuous function
can be approximated arbitrarily well with a high-enough order polynomial.

So, our polynomial regression model has the form

y = β0 + β1x+ β2x
2 + · · ·+ βpx

p + e

where βi are the regression coefficients (partial regression coefficients)

P: The powers of x appear to be highly correlated.
S: We should use centred variables x, that is x→ (x− x̄), to remove the
non-essential multi-collinearity in the data, to give

y = b0 + b1(x− x̄) + b2(x− x̄)2 + · · ·+ bp(x− x̄)p + ε

R The variables (x− x̄), (x− x̄)2, . . . , (x− x̄)p are now linearly independent.

P: For a large p, the magnitudes of the powers of (x− x̄) can be very large.
A: We can standardise data, as x−x̄

σx
.

P: The predictor variables are linearly dependent (multi-collinearity).
A: Use the first few principal components of the data matrix. (see Appendix)
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The concept of “linear in the parameters” models

R A “Linear Model” does not arise from fitting straight lines to data!

Model is "linear in the parameters!" 

x[n]

n2 3 4 5 61

True signal of interest
(quadratic in n)

Observed data

Model is quadratic in time "n"

For N observations: x[n] = β0 + β1n+ β2n
2︸ ︷︷ ︸

linear in parameters β

+e[n] V x = Hβ + e

where β =

 β0

β1

β2

 H =


1 0 02

1 1 12

... ... ...
1 N − 1 (N − 1)2


R So, both Multiple Regression (with n→ x1, n

2 → x2) and Polynomial
Regression (n→ x, n2 → x2) are linear in the parameters.
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Interaction effects between independent variables
Building towards the Volterra approximation model

Interaction regression models contain cross-product terms, for example
y = β0 + β1x1 + β2x

2
1 + β3x2 + β4x

2
2︸ ︷︷ ︸

basic terms

+β5x1x2 + β6x
2
1x2 + β7x1x

2
2︸ ︷︷ ︸

interactive terms

+e

R Response to one x variable also depends on the values of other x variables

x

y

x2 is non-zero
x2 is zero

Example 8: Consider the interaction model

y = β0 + β1x1 + β2x2 + β3x1x2 + e

◦ Without the interaction term, the effect of x1 on y is

measured by β1.

◦ With the interaction term, the effect of x1 on y is

measured by β1 + β3x2.

◦ This effect changes according to the value of x2.

Solution: Develop the LS regression in steps, by fitting a variety of models
to the data, adding and removing variables according to their significance.

In this process, the coefficient of partial determination provides a measure
of the “marginal contribution” of each independent variable.
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Example 9: Interaction models in medicine

Classes of antihypertensive medications include diuretics, calcium channel
blockers, angiotensin converting enzyme inhibitors, and beta blockers.

Consider the interaction model in hypertension therapy based on two drugs

yA+B = 0.6 + 0.2x1︸ ︷︷ ︸
effect of Drug A

+ 0.8 + 0.25x2︸ ︷︷ ︸
effect of Drug B

+ 0.31x1x2︸ ︷︷ ︸
interaction A+B

+ e

where x1 is the dose of Drug A and x2 the dose of Drug B.

On average, a double of dose of a single drug
gave only 16% of additional blood pressure
reduction (expected 2×, observed 1.16×)

It has been shown that the effect of
combining two different classes of drugs is
approximately 5 times greater than that of
doubling the dose of a single drug (≈ 1.85).

Wald, David S., et al.“Combination therapy versus

monotherapy in reducing blood pressure”, American

Journal of Medicine 122:3 (2009).
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Calculating regression coefficients: Least Squares (LS)

Consider the following regression models

Multiple regression: y = β0 + β1x1 + β2x2 + β3x3 + e

Polynomial regression: y = β0 + β1x+ β2x
2 + β3x

3 + e

Interaction regression: y = β0 + β1x1 + β2x2 + β3x1x2 + e

By employing linear independence between: (i) x and x2 in polynomial
regression, and (ii) when x1 ⊥ x2 in interaction regression, substitute

Polynomial regression: x2 → x2 & x3 → x3

Interaction regression: x1x2 → x3

R Polynomial and interaction regress. can be treated as multiple regressions

y[n] = β0 + β1x1[n] + β2x2[n] + · · ·+ βpxp[n] + e[n] n = 0, 1, . . . , N − 1


y[0]
y[1]

...
y[N − 1]


︸ ︷︷ ︸

y

=


1 x1[0] · · · xp[0]
1 x1[1] · · · xp[1]
...

... . . . ...
1 x1[N − 1] · · · xp[N − 1]


︸ ︷︷ ︸

X


β0

β1
...
βp


︸ ︷︷ ︸

β

+


e[0]
e[1]

...
e[N − 1]


︸ ︷︷ ︸

e

LS−→ β̂ = (XTX)−1XTy
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Recurrent Neural Networks (RNN) and Regression

The Volterra series (universal function approximation) is effectively a
Taylor series expansion (TSE) with memory of the network output.

In Time-Delay Neural Networks (TDNN), the explanatory variables are
separated by a time delay, for example, x1 = x(k − 1) and x2 = x(k − 2),
so that the output of a multiplicative NN becomes an interaction model

y(k) = c0 + c1x(k − 1) + c2x(k − 2) + c3x
2(k − 1) + c4x

2(k − 2) +

c5x(k − 1)x(k − 2) + c6x
3(k − 1) + c7x

3(k − 2) + · · ·

With the introduction of feedback, in the form y(k − 1), y(k − 2), . . ., we
arrive at Recurrent Neural Networks (RNN) as function approximators.

For example, the most frequently used bilinear model (first order
truncated Volterra) model, given by

y(k) =

N−1∑
j=1

ciy(k − j) +

N−1∑
i=0

N−1∑
j=1

bi,jy(k − j)x(k − i) +

N−1∑
i=0

aix(k − i)

is equivalent to an RNN with multiplicative synapses.
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Example 10: Recurrent perceptron as an interaction
regression model

Consider the following RNN (recurrent perceptron) with multiplicative
synapses. Its output is given by

y(k) = c1y(k − 1) + b0,1x(k)y(k − 1) + b1,1x(k − 1)y(k − 1) + a0x(k) + a1x(k − 1)

X

y(k−1)

Σ

y(k)

x(k−1)

x(k)

−1z

−1z

a0

a1

0,1b

1,1b

1c

X

This is precisely the form of the bilinear model on the previous slide.

We can also involve different types of nonlinearity after the “summation”
stage, such as the tanh or the logistic function elaborated next.
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Logistic Regression: Motivation

Many situations require the output of a regression model to be discrete or
even binary (classes C1 and C2) and not continuous-valued as in standard
regression. This requires a discriminative model p(C1|x), p(C2|x).

4 3 2 1 0 1 2 3 4
x1

6

4

2

0

2

4

6

x
2

Decision Boundary
Regression Line

P: Linear model does not output probabilities, it
treats the classes as categories (here: 0 and 1) and
fits the best hyperplane (here: a line) that minimises
the distances between the observed points and the
hyperplane. So, it simply interpolates between the
points, and we cannot interpret this as probabilities.
P: The regression line is unbounded, while the
probabilities, p(C1|x) and p(C2|x), are bounded to
between 0 and 1 # we need another method.

Solution: A function of probabilities which is linear in the data, x, such as
the logistic mapping, which for a binary classification example is given by

ln
p(y = C1|x)

p(y = C2|x)
= ln

p(y = 1)

1− p(y = 1)
= ln

p(y = Y )

1− p(y = N)
= β0 + β1x1 + · · ·+ βpxp︸ ︷︷ ︸

linear in x
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Logistic Regression: Formulation

Odds: The ratio of something occurring to something not occurring. Odds
are different from the probability which is the ratio of something occurring
to everything that could occur e.g. 0.8

0.2 has the odds of 4:1. (see Appendix)

The logit function is the logarithm of the odds = p(Y )
p(N) = p(1)

p(0), that is

ln
p(y = 1)

1− p(y = 1)
= ln

p(y = Y )

1− p(y = N)
= β0 + β1x1 + · · ·+ βpxp︸ ︷︷ ︸

linear in x

= βTx + β0

Now: log
p(x)

1− p(x)
= z = βTx + β0 → p(x)

1− p(x)
= σ(z) = ez = eβ

Tx+β0

Then: p(x) = eβ
Tx+β0

(
1− p(x)

)
→ p(x) + eβ

Tx+β0p(x) = eβ
Tx+β0

and p(x) =
eβ

Tx+β0

1 + eβ
Tx+β0

→ p(x) =
1

1 + e−β
Tx−β0

logistic function

R For binary outcomes, Logistic Regression gives a linear classifier, with the

decision boundary between the outcomes given by βTx+β0=0 (Appendix)
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Logistic regression: Application in classification

Consider 2-class classification, based on logistic sigmoid Φ(x) = 1
1+e−β1x+β0

4 3 2 1 0 1 2 3 4
x1

6

4

2

0

2

4

6

x 2

Decision Boundary
Regression Line

7.5 5.0 2.5 0.0 2.5 5.0 7.5
x

0.0

0.2

0.4

0.6

0.8

1.0

(x
)

(x) = 1
1 + e x

Logistic regression: Parameters are β1 (slope) and β0 (horizontal shift).

Assume the class labels C ∈ {C1, C2}. Our aim is to model the conditional
probabilities p(C1|x) and p(C2|x) as a function of x.

probability of class C1 : P (C1|x) = Φ(β1 x+ β0) = p

probability of class C2 : P (C2|x) = 1− Φ(β1 x+ β0) = 1− p
R Logistic regression gives the probability that data belong to a category. It is

an extension of the linear regression model for classification problems.
In the simplest case, if the decision boundary βx+ β0 ≥ 0 then p = 1, and
if βx+ β0 < 0 then p = 0. The β′s are found using Maximum Likelihood.
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Logistic Regression: Intuition and scope

Consider a probabilistic generative model for classification, given by

p(x, C) = p(x|C) p(C) (∗)
↖ class-conditional probability

↙ class probability

where x ∈ RD is the sample and C ∈ {C1, C2} is the class label.

We are interested in finding a discriminative model for classification,
that is, we aim to find p(C|x).

From eq. (*), we have (without loss of generality we can choose C = C1)

p(C1|x) =
p(x|C1)p(C1)

p(x)
=

p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
(Bayes theorem)

=
1

1 + p(x|C2)p(C2)
p(x|C1)p(C1)

=
1

1 + e
−ln
(
p(x|C1)p(C1)
p(x|C2)p(C2)

) (∗∗)

We are interested in cases where the term in the exponent takes a simple
form, for example −ln

(p(x|C1)p(C1)
p(x|C2)p(C2)

)
is linear.
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Logistic Regression: Intuition and scope

To see how eq. (**) simplifies, we shall choose parametric forms for the
class- and class-conditional probabilities

p(C1) = π p(C2) = 1− p(C1) = 1− π
p(x|C1) = N (µ1,Σ) p(x|C2) = N (µ2,Σ) (∗ ∗ ∗)

R We have chosen the class-conditional probabilities to have different means
but same covariances. Now, upon replacing (***) into (**) we arrive at

p(C1|x) =
1

1 + e−(wTx+b)
(∗ ∗ ∗∗)

R By choosing Gaussian distributions with same covariances, the quadratic
terms in the exponent of (**) vanish, and the logistic regression model
becomes the true classification model.

Homework: Find the expressions for w and b as a function of µ1, µ2,Σ.
Now, consider different covariances in (***), e.g. Σ1,Σ2; how does the
expression in (****) change?
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Example 11: Classification of financial sentiment with
Logistic Regression

Consider binary sentiment classification of a financial news article

The company's performance was disappointing this quarter! Despite 
strong revenues, the net income was significantly lower than expected. 
The CEO announced cost-cutting measures, but analysts remain 
skeptical. There were some positive developments in their new product 
line, which is expected to boost sales in the next quarter.

•x1: Count of positive financial words (e.g., "strong", 
"positive", "boost")
•x2: Count of negative financial words (e.g., "disappointing", 
"lower", "skeptical")
•x3: Binary indicator if the word "no" is in the document
•x4: Count of transition words
•x5: Binary indicator if the word "!" is in the document
•x6: Logarithm of the number of words in the document

<# = 3

<% = 3 <, = 2 <- = 1

<& = 0

<. = 3.85

R We wish to assign the sentiment class + or − to this document. To this
end, let us represent each input observation by the 6 features x1, . . . , x6.

Var Definition Value

x1 count (positive financial words ∈ doc) 3

x2 count (negative financial words ∈ doc) 3

x3

{
1 if no ∈ doc

0 otherwise
0

x4 count (transition words ∈ doc) 2

x5

{
1 if ! ∈ doc

0 otherwise
1

x6 ln(word count of doc) ln(47) = 3.85

c© D. P. Mandic Statistical Signal Processing & Inference 37



Example 11: Classification of financial sentiment with
Logistic Regression, contd.

Each of these features, x1, . . . , x6 is associated with a weight, w1, . . . , w6.

Assume that, after training, the six weights corresponding to the six
features are

w = [2.5,−5.0,−1.2, 0.5,−2.0, 0.7]T b = 0.1

A comparison of the weights w1 = 2.5 (for x1, positive words) and
w2 = −5.0 (for x2, negative words) indicates that the “negative lexicon
words” (disappointing, lower, sceptical), with negative sentiment, are two
times as important as “positive lexicon words” (strong, positive, boost).

Based on these features of the input text x, the probabilities of the
positive and negative sentiment classes

P (+ | x) and P (− | x)

can be computed as

p(+ | x) = P (y = 1 | x) = σ(wTx + b) = σ(−5.75) = 0.0033

p(− | x) = P (y = 0 | x) = 1− σ(wTx + b) = 0.9967
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Multi-class logistic regression classifier: Introduction

MNIST (handwritten digits) CIFAR (image classification)

C(? = cat ∣ <) = exp K()*+ <
exp Kcat+ < + exp Kdog

+ < + exp Kbird
+ <

Image Recognition
In image recognition, SoftMax regression can classify 
objects within images into multiple categories such as cats, 
dogs, and birds. Given the pixel values of an image, the 
model calculates the probability for each category.

The output takes more than two values, so each class c ∈ C will have its

own offset β
(c)
0 and parameters β(c). Now, the conditional probabilities

Pr(Y = c | ~X = x) =
eβ

(c)
0 +xTβ(c)∑

c e
β

(c)
0 +xTβ(c)

For only two classes (say, 0 and 1), we have 1

1+e−(β0+x·β), that is, we arrive

at standard Logistic Regression.
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Multi-class logistic regression classifier: Principle

To categorise into multiple classes, we may adopt two strategies:
◦ Use multiple binary classifiers for each class of the input data, and
examine their outputs to make a class prediction
◦ Use one multi-class classifier as a generalisation of logistic regression

Pr(Y = c | ~X = x) =
eβ

(c)
0 +xTβ(c)∑

c e
β

(c)
0 +xTβ(c)

c ∈ C

Input

Binary Classifier: 0

Binary Classifier: 1

Binary Classifier: 2

Binary Classifier: 3

Binary Classifier: 4

0.14

Input

0.08

0.20

0.05

0.12

0.55

SoftMax
Classifier

0.86
0.25
0.75
0.22
0.78
0.09
0.91
0.87
0.13

Multiple	Binary	Classifiers	 One	Multi-class	Classifiers	
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Multi-class logistic classifier: The SoftMax function

The SoftMax function represents a multi-class logistic classifier which uses
one-hot output encoding to compute p(yk = 1|x) (with

∑K
k=1 p(yk|x) = 1)

p(yk|x) =
exp(zk)∑K
j=1 exp(zj)

=
exp(wT

k x + bk)∑K
j=1 exp(wT

j x + bj)
yk is one of K classes

where the model parameters for a class k are wk and bk, k = 1, 2, . . . ,K

For example, for reduced CIFAR data {cat, dog, bird}, we can calculate

P (y = cat | x) =
exp(βTcat x)

exp(βTcat x)+exp(βTdogx)+exp(βTbird x)

Relationship to Logistic Regression: For a special case K = 2 (Slide 34)

p(yk|x) =
1

exp
(
w>1 x + b1

)
+ exp

(
w>2 x + b2

) [ exp
(
w>1 x + b1

)
exp

(
w>2 x + b2

) ]
and the SoftMax regression reduces into the 2-class logistic regression. The
SoftMax is a backbone of modern Neural Networks and Deep Learning.
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Employing SoftMax in Logistic Regression

Binary logistic regression employs a weight vector w and a scalar output ŷ.
Multinomial logistic regression # weight matrix W and vector output ŷ.
Each row k of WK×F is the weight vector wk, with K as the number of
classes and F as number of input features

ŷ = SoftMax(Wx+b) =
[ exp(z1)∑K

j=1 exp(zj)
, exp(z2)∑K

j=1 exp(zj)
, . . . , exp(zK)∑K

j=1 exp(zj)

]
Binary	Logistic	Regression SoftMax	Logistic	Regression	

InputThis movie was fantastic!

Input feature vector 
# ∈ ℝ!×#

Weight Vector
& ∈ ℝ#×!

Weight Matrix
& ∈ ℝ$×!

Output[SoftMax]
'( ∈ ℝ$×#

<# <% <& ⋯ <'
Word count Positive count “No” count “!” count

This movie was fantastic!

<# <% <& ⋯ <'
Word count Positive count “No” count “!” count

Output[Sigmoid]
)y ∈ ℝ>? >?# >?% >?&

& =

,#,# ,#,& ,#,$
,&,# ,&,& ,&,$
,$,# ,$,& ,$,$
⋮ ⋮ ⋮
,',# ,',& ,',$

& =

,#
,&
,$
⋮
,'

@ + = 1 − @(−) @ + @ − @ B
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Multi-class logistic classifier: The SoftMax, contd.
Parameters of SoftMax are calculated using Negative Log-Likelihood (NLL) loss

The parameters of SoftMax are typically found by Maximum Likelihood

Scores 
(Logits) Probabilities

𝑍 = 𝑊 ⋅ 𝑋 + 𝑏 𝑌̂! = 𝑒"!/∑#$%& 𝑒""

1.9

0.9

1.8

𝑊 =
0.2 0.8
0.5 0.1
0.9 0.3

𝑏 =
0.1
0.2
0.3

Linear Softmax

𝑋 =
1
2

0.44

0.16

0.40

Cross
Entropy

𝐿 = −4
!"#

$
𝑌!log(:𝑌!)

Output

1.0

0.0

0.0

Loss
0.82

𝑌 =
1
0
0

Denote by xkm the m-th sample from class k. Then, the likelihood function

l
(
(wk, bk

)
|X) =

∑
k

∑
m

ln p(yk|xmk ) =
∑
k

∑
m

ln
exp(wT

k x
m
k + bk)∑

j exp(wT
j x

m
k + bj)

and
∂l(·)
∂wj

=
∑
m

[
1− p(yj|xmj )

]
xmj −

∑
k 6=j

∑
m

p(yk|xmk )xmk (see Appendix)
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SoftMax in action: Deep Neural Networks
classification of hand–written numbers # a 10–class discriminative problem

R Our images are 28× 28 pixels, so we have 28× 28 = 784 inputs to the network!

R MLP has 2 layers of neurons (hidden & output), and in total 6,370 trainable parameters.
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Logistic regression and neural networks: The Perceptron

With a slight abuse in notation (Φ→ 2Φ− 1), and for β →∞, we have

y = Φ(x) =
1

1 + e−β(wTx+b)

β→∞−→ y =

{
+1, wTx + b ≥ 0

−1, wTx + b < 0
= sign(wTx + b)

combiner

w2

w1

Σ

x2

x1

b

y

inputs

output

linear

bias

hard
limiter

weights

So, for β → ∞, logistic regression
becomes standard linear regression
followed by a hard limiter, that is,
the sign of our standard regression

For two classes, as in the figure, the
decision boundary is given by:

w1x1 + w2x2 − b = 0

Perceptron learning: With dn as a
teaching signal, the weight update is

wn+1 =

 wn if y = dn
wn + η xn if y < dn
wn − η xn if y > dn

Now, because yn = sign(wT
nxn + b) = ±1 we have wn+1 = wn + η ynxn

where η is the stepsize (learning rate), a small positive number.

c© D. P. Mandic Statistical Signal Processing & Inference 45



Perceptron in Action: Binary classification perceptron.m

Geometric interpretation

Comes from

wTx = ||w|| ||x|| cos θ

Perceptron learning:
1) Initialise the weights

2) Pick a mis-classified point

3) Update the weights as
wn+1 = wn + η ynxn

4) Go to Step 2 until all points

are correctly classified
Guaranteed to converge if data is linearly separable

c© D. P. Mandic Statistical Signal Processing & Inference 46



Logistic function for temporal data: Universal function
approximation property of Neural Networks (NN)

Consider the output of a single “logistic neuron,” the bias b provides a temporal shift

∑𝑥

1

𝑤
𝑏

𝑦
𝑥

𝑦

∑

1

𝑤!
𝑏!

𝑦!

∑

1

𝑤"
𝑏" 𝑦"

∑ 𝑦

+1

−1

𝑥
𝑥

𝑦
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R A layer of such neurons # smooth Universal Function Approximation
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Summary: Logistic Regression

Assumptions:
- Independent observations
- Linear relationship between independent variables and log odds
- Little or no collinearity among independent variables
- Residuals do not have to be normally distributed
- Sensitive to outliers
- Homoscedasticity is not required

Pro’s and Con’s
- It is not only a classification model, but also gives probabilities
- The interpretation is more difficult because the the weights are
multiplicative and not additive

Advantages over naive Bayes:
◦ Does not require strong conditional independence assumptions
◦ Much more robust to correlated features, it will assign part of the weight
to one feature and the other part to another feature
◦ Naive Bayes works well on small datasets and logistic regression works
better on large datasets
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Summary: Regression vs Logistic Regression

Linear Regression

◦ Establishes a relationship
between a continuous dependent
variable and one or more
independent variables

◦ Does not require large sample
size for successful operation

◦ Easily interpretable and intuitive

◦ Applications across disciplines

◦ Polynomial regression #
universal function approximation

◦ Robust regression required in the
presence of outliers

◦ ‘Linear in the parameters’ family

◦ Parameters typically found using
Least Squares methods

Logistic Regression

◦ Estimates a relationship between
a categorical dependent variable
and one or more continuous
independent variables

◦ Requires large sample size
to represent values across all
response categories

◦ A discriminative model, aims to
distinguish between categories

◦ Multinomial logistic regression
uses the SoftMax function to
compute probabilities

◦ Parameters typically found using
Maximum Likelihood Estimation

◦ Linear in the logit space
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Appendix: Scatter plots of the detrended S&P 500
financial index
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The detrended S&P 500 time series shows strong correlations for small
lags in the scatter plot, and spurious correlations for large lags.
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Appendix: Influence of outliers in linear regression

There are two general types of outlying observations:
◦ Vertical outliers: yn is outlying while xn is not outlying (easy to fix)
◦ Leverage points: yn is not outlying while xn is outlying (complicated)

Problems caused by leverage points: As the outlier in the explanatory
variable, it has an unbounded influence (full weighting of leverage points).

R Robust (e.g. Huber) estimators are almost unaffected by vertical outliers
(deviation from concentration of explained variable, y), but are vulnerable
to leverage points (outside the concentration of explanatory variable, x)
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Appendix: Sensitivity to outliers of the ordinary Least
Squares (OLS) (role of regularisation and robust estimators)

Regression of daily returns of Altona Energy (ANR)

corporate bond on the credit default swap (CDX).

← outliers
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Regression under outliers

Huber is a robust estimator

Ridge regression: Jn(w) = (dn −wT
nxn)2︸ ︷︷ ︸

standard cost

+λ1‖wn‖22︸ ︷︷ ︸
L2 penalty

= e2
n + λ1w

T
nwn

LASSO (sparsity promoting): Jn(w) = (dn −wT
nxn)2︸ ︷︷ ︸

standard cost

+λ2‖wn‖1︸ ︷︷ ︸
L1 penalty

◦ Ridge: Penalises for large weights (but does not reduce system dimensionality)

◦ Least absolute shrinkage and selection operator (LASSO) enforces insignificant weights

to go to zero, and thus promotes sparsity and aids interpretability (λ1, λ2 # param’s.)
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Appendix: Coefficient of determination, R2
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Coefficient of determination R2 = SSR
SST = sum of squares regression

total sum of squares =
∑

(ŷ−ȳ)2∑
(y−ȳ)2

Coef. of determ. represents the portion of total variation in the dependent
variable that is explained by variation in the independent variable.

◦ R2 behaves like a square of the correlation coef. and ranges from 0 to 1
◦ R2 does not decrease when a new x variable is added to the model (this
may be a disadvantage when comparing models)
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Appendix: Multicollinearity
Multi-collinearity refers to the existence of high correlations among the
independent variables (predictors).
◦ This means that the the correlated explanatory (predictor) variables
provide redundant information to the multiple regression model.
◦ Numerical difficulties in Least Squares solutions (ill-conditioned matrix of
predictors) unless “extra” predictor variables are removed.
◦ Difficult to assess the relative importance of independent variables when
explaining the variation in the dependent variable, e.g. a previously
significant independent variable becomes insignificant.
◦ Difficult to make inferences about the effects of individual regression
coefficients on the dependent variable y (lack of intepretability).
◦ The partial regression coefficients may not be estimated precisely.
◦ The estimated standard deviation of the model increases when a variable
is added to the model.

Q: Does multi-collinearity mean that multiple regression does not work?
A: Multi-collinearity does not affect the ability of multiple regression to
predict the dependent variable, y, but affects stability and interpretability
of regression coefficients.
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Appendix: Multicollinearity and metrics related to
regression

Practical indicators of collinearity: (i) When we add/remove an
independent variable, the values of the remaining regression coefficients
undergo a drastic change. (ii) From domain knowledge: an independent
variable which is known to be an important predictor is associated with a
small regression coefficient. (iii) Domain knowledge: a regression
coefficient which should be positive becomes negative, and vice versa

◦ A rule-of-thumb is that if the correlation between two independent
variables is between −0.70 to 0.70, keep both independent variables
◦ A more precise test of multi-collinearity is the Variance Inflation Factor
VIF = 1

1−R2
j
, with R2

j as coef. of determination after the j-th independent

variable is regressed against the remaining (p - 1) independent variables
◦ Rule-of-thumb: If VIF > 10 we should remove the considered
independent variable from the analysis (see the next slide)
◦ Rule-of-thumb: Calculate correlation between the independent variables
and use only one of the highly correlated variables
◦ Alternatively, transform the existing independent variables into a new set
of mutually independent predictors (PCR, latent root regression)
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Appendix: Multicollinearity # how to detect it

Start from the standard multiple regression model

ŷ = β0 + β1x1 + β2x2 + · · ·+ βpxp

Then, regress each independent variable against the (p-1) other
independent variables

x̂1 = β0 + β2x2 + β3x3 + · · ·+ βpxp

x̂2 = β0 + β1x1 + β3x3 + · · ·+ βpxp
... ...

x̂p = β0 + β1x1 + β2x2 + · · ·+ βp−1xp−1

R If an independent variable can be expressed via a linear combination of
other independent variables, then it is redundant.

We can measure this dependence via the Tolerance, T = 1−R2

or the Variance Inflation Factor (VIF), V IF = 1
1−R2.

In practice, an independent var. can be removed if T < 0.1 or V IF < 10.
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Appendix: Dealing with categorical explanatory variables
We need to transform categorical variables into a format suitable for algorithms

For categories of an ordinal variable, such a condition of a car (poor,
average, good), we can assign numerical scores to the categories, e.g.
(poor=1, average=2, good=3), which makes perfect sense.

Problem: Often, we cannot establish rank between categorical variables,
e.g. “red” is not greater than “blue”, “male” is not greater than “female”.
Solution: Resort to a “dummy” (indicator) variable in the form of e.g. 1
if the category is true and 0 it the category is false (see Slide 23).

Example: Find an average weight wrt gender via categorical variables

weighti = β1 · femalei + β2 ·malei + α

P: Direct use of variables male and female does not make sense, while
the dummy variables x1=female ∈ {0, 1} and x2=male ∈ {0, 1}, exhibit
a linear relationship, as x1 + x2 = 1→ x2 = 1− x1, causing collinearity.

S: Encode our N=2 categories into N -1 dummy var. δmale = 1 if true,

so that weighti = β · δmalei + α → y = βx2 + α
α = mean weight of category 0 (female), β = weight difference between cat. 0 and 1.

R Categorical information has been encoded by a binary indicator variable
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Appendix: Dealing with multiple categorical (qualitative)
explanatory variables # indicator variables, contd.

Example: Find an average weight wrt gender and exercise level by
extending the previous example with the binary category “exercise level”,
N = 3 categories: E1=x3=daily, E2=x4=often, E3=x5=sometimes
Now, x3 + x4 + x5 = 1 → x3 = 1− x4 − x5, and

weighti = β1 · δmalei + β2 · δE2
i + β3 · δE3

i + α

We now have 3 parameters describing 5 categories, where α is the average weight of a

female who exercises daily (Cat E1), β1 models the effects of gender on weight (without

accounting for exercise), while β2 and β3 give the effects of exercise level on mean weight

(without accounting for gender), all relative to α= weight of a female who exercises daily.

Summary: A dummy indicator variable converts a categorical variable
with N categories into (N − 1) binary variables which have the value of 1
if an observation belongs to a certain category, L, and 0 otherwise.

E.g. we wish to predict the price of a car based on their category (1 or 0)
x1=hatch, x2=saloon, x3=SUV, x4=estate. For these N = 4 categories
we need N -1=3 indicator variables, as

∑4
i=1 xi = 1 and x4 = 1−

∑3
1 xi, so

price = β0 + β1 × hatch+ β2 × saloon+ β3 × SUV
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Appendix: Dealing with multiple categorical explanatory
variables # one-hot encoding

While a ‘dummy’ indicator variable models the presence or absence of a
particular category, in this way one category is not explicitly represented.

One-hot encoding is a specific method of creating indicator variables,
whereby each of N categorical variables is converted into an N -dimensional
binary ’indicator vector’, so that each category is explicitly represented.

R In this ‘1-of-N’ scheme, each category is treated equally without implying
any ordinal relationship, e.g. red = [1, 0, 0], green = [0, 1, 0], blue = [0, 0, 1]
or hatch=[1, 0, 0, 0], saloon=[0, 1, 0, 0], SUV=[0, 0, 1, 0], estate=[0, 0, 0, 1].

In this way, one-hot encoding provides a sparse representation which:
◦ Is straightforward, through a vector of N variables for N categories,
◦ Handles uniformly both nominal (no natural order) and ordinal (natural
order but treated as nominal) categorical var., enhancing interpretability,
◦ Simplifies the data pre-processing pipeline through this uniformity.

One-hot encoding: Commonly used to handle high-dimensional feature
spaces in ML, e.g. at the tokenisation stage in Natural Lang. Proc. (NLP).
Dummy indicator variables: Typically used in linear regression with
categorical variables, and to avoid multi-collinearity.
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Appendix: Logistic Regression # Historical notes

◦ Logistic function was introduced by the Belgian mathematician Pierre
Francois Verhulst in 1838 to model population growth

◦ It was later popularised by Pearl and Reed whose solution is in the form
of the logistic function we know today

◦ In 1944, Joseph Berkson introduced the term ‘logit’ (in analogy to the
‘probit’ model) and developed a logistic model for use in medical statistics.

◦ Logistic regression was further developed in statistics for the analysis of
binary data in the 1960s, and was common in medicine

◦ The book “The Analysis of Binary Data” by D. Cox and J. Snell
elaborated on the proportional hazards model and logistic regression

◦ In the late 1970s it became prominent in linguistics (linguistic variation)

◦ It was used in Natural Language Processing (NLP) since the 1990s, also
under the names maximum entropy modelling or maxent, for language
modelling, text classification, and speech tagging)

◦ It has become fundamental in machine learning for binary classification
(spam detection, credit scoring), as it is simple, interpretable and effective
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Appendix: Odds versus probabilities

Problem: Probabilities are not linear so an increase 10% to 20% doubles
the probability, but increase 80% to 90% only slightly improves probability.

Odds vs probabilities
Probability= number of favourable outcomes

total number of outcomes , so for flipping a coin p(heads) = 0.5

Odds = prob. of event happening
prob. of event not happening so for flipping a coin p(heads)

1−p(heads) = 0.5
1−0.5=1:1

Example: Rolling a dice
The probability of rolling 1 on a 6-sided die is p(1) = 1

6 ≈ 16.7%

The odds of rolling a 1 on a die are p(1)
1−p(1) = 1/6

1−1/6 = 1
5 or Odds = 1:5

Converting between odds and probability

Odds =
p

1− p
p =

Odds

1 +Odds

So, if the Odds of an event are 2:1, then p = 2
1+2 = 0.667 = 66.7%

If the probability of an event is p = 0.25, then Odds = 0.25
1−0.25 = 1

3, so 1:3

Example: Covid19 affects 1 in 1000 people. The diagnostic test has
sensitivity (true positive rate) = 99% specificity (true negative rate) 99%
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Appendix: Odds versus probabilities

R The odds of a randomly selected person having Covid are 0.001
0.999 = 1 : 999

Scenario: Positive test (PT)
False positive rate = (1- specificity) = 1 %
False negative rate = (1 - sensitivity) = 1 %

p(Covid|PT ) = p(PT |Covid)× p(Covid) + p(PT |No Covid)× p(No Covid)

where p(PT |Covid) = 0.99, p(Covid) = 0.001, p(PT |NoCovid) = 0.01,
p(NoCovid) = 0.999

so: p(PT ) = 0.99 · 0.001 + 0.01 · 0.999 = 0.01098

and p(Covid|PT ) =
0.99 · 0.001

0.01098
≈ 0.0902 or 9.02%

So, the probability that a person has Covid given that they have tested
positive is 9.02%

Now, the Odds(Covid|PT ) = 0.0902
1−0.0902 ≈ 0.099 or 1:10

Interpretation: Probability provides a direct measure of the likelihood of
an event occurring. Odds offers a comparative measure of the likelihood of
an event occurring versus it not occurring.
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Appendix: Effects of Scaling Logistic Regression
Parameters

Effects of scaling the
parameters of logistic
regression:

The values of x and y
were the same in all plots
and were drawn from the
U(−1, 1) distribution.

The labels were generated
randomly from logistic
regressions with different
w and β, and from
a perfect linear classifier
with the same boundary.

The red line designates a
contour of 0.5.
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Appendix: Finding parameters of Logistic Regression
For simplicity, we consider a binary classification task

For ◦ y = 1, the predicted probabilities will be ŷ = p(x;β0,β) = p(x)
◦ y = 0, the predicted probabilities will be 1− ŷ = 1− p(x)

In other words, for y = 1 our aim is to estimate β and β0 so that the
product of all probabilities ŷ = p(x) is close to 1, while for y = 0 the
product of all probabilities, 1− ŷ = 1− p(x), should also be close to 1.

Upon combining these conditions into a Likelihood Function (Bernoulli)

p(y|x) = ŷy(1− ŷ)1−y → L(y|x;β0,β) =

N∏
n=1

ŷyn
(
1− ŷ

)1−yn
Our goal becomes that of finding the parameters, β and β0, which
maximise the likelihood, L(·), and consequently the log-likelihood, l(·)

l(y|x;β0,β) =

N∑
n=1

[
yn log ŷ + (1− yn) log(1− ŷ)

]
This is known as Maximum Likelihood Estimation (MLE). (see Lecture 5)

We shall now show that maximising the likelihood is equivalent to
minimising the cross-entropy, a typical cost function in Neural Networks,
given by JCE(ŷ, y) = − log p(y|x)
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Appendix: Maximising the log-likelihood function is
equivalent to minimising the cross-entropy loss in NNs

Since the log is a monotonic function, it is more convenient to maximise

l(y|x;β0,β) =

N∑
n=1

[
yn log ŷ + (1− yn) log(1− ŷ)

]

=

N∑
n=1

log(1− ŷ) +

N∑
n=1

ynlog
ŷ

1− ŷ

=

N∑
n=1

log

(
1

1 + eβ0+βTx

)
+

N∑
n=1

yn(β0 + βTx)

=

N∑
n=1

yn(β0 + βTx)− log
(

1 + eβ0+βTx
)

With θ = [β0,β] and the cross-entropy, JCE(ŷ, y), we have

argmaxθ L = argminθ JCE(y|x;θ) = argminθ−
∑N
n=1 logL(yn|x;θ)

In this way, the cross-entropy loss is smaller if the estimate ŷ is close to
the correct y and bigger if the estimate is further from the correct y.
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Notes:

◦
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Notes:

◦
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Notes:

◦
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