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Outline

Regression analysis examines the association between a dependent
variable, y, and one or more independent variables, x1,z», ..., z,.

o |t determines whether and "how much” of the variation in the dependent
variable can be explained by independent variables (relationship strength)

o Regression analysis covers a range of linear and nonlinear models, from
univariate regression to multiple regression, polynomial regression, and
regression with multiplicative variables (Volterra series, Recurrent NNs)

Advantages of linear regression:

Interpretability: Regression models clearly establish how each
independent variable affects the dependent variable

Simplicity: The concept of regression is relatively simple and intuitive,
compared to most established machine learning models

Applicability: It is an indispensable “must-try” tool in manifold fields,
including finance, biomedicine, science and engineering

I Logistic Regression (which is linear in the “logit” space) is used for
classification problems based on either binary or multiple categories
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Visualising and quantifying relations between variables
Example 1: Scatter plots and correlation

Correlation quantifies the strength (scatter) and direction of the linear
relationship between two variables, x and y, in both the x-direction and
y-direction, as illustrated in the scatter plots below.
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I’ In addition to the correlation analysis, it is very useful to quantify how two

or more variables (co—)vary together 3~ basis of regression
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Correlation, partial correlation, non-metric correlation

o The standard bivariate or product moment correlation, r,,, = E{xy},
measures the (linear) association between two numerical variables, = and y
o This may be interpreted as examining the existence and strength of a
linear “straight-line” relationship between the two variables, = and y

o When normalised as p,, = W it is known as the Pearson
correlation coefficient, or correlation coefficient

o In a multivariate case, the corr. coeff., p,,, does not remove the effects
of other variable(s) when quantifying the association between x and y

o On the other hand, the partial correlation coefficient measures the
association between two variables after adjusting for (or eliminating) the

Tey—TxzTyz

effects of additional variables, and has the form Toyz =

o Recall from Lecture 2 that partial correlations are typically used to
estimate the order of Autoregressive (AR processes); see the next slide

o The coefficient of association, R? signifies the proportion of the total
variation in y that is accounted for by the variation in x  (see Appendix)
o Spearman'’s rho, ps, and Kendall's tau, 7, correlation coefficients can be
used to measure the association between ordinal (categorical) variables
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Example 2: Scatter plot, AutoRegressive process (Lecture 2)
Consider an AR(1) process with a; = —0.3, and an AR(2) with a; < 0,a2 > 0

The nature of an AR process may be inferred through scatter plots of pairs
x[n], z[m + n], separated by an interval (lag), m.
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AR(2) process: xz[n| = —0.3z[n — 1] 4+ 0.1z[n — 2] + w[n]
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Relationship between variables
Correlation versus Regression

After establishing how two variables co-vary, interpolation and prediction
can be performed through linear regression &~ Regression line is unique

Daily Returns of Crude Qil vs. Energy Sector

S&P 500 vs. Gold Prices in April 2024
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Regression examines the cumulative distance between all data points and
the regression line in the y-direction only 9 it models the variation of the
explained variable, y, in response to a change in the explanatory variable, x
o Variable x is also called a regressor, independent variable, or predictor

o Variable y is also called response, dependent var., criterion or true label
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Example 3: Scatter plots of the Euro vs USD exchange

Scatter plots of a detrended EUR/USD exchange rate vs its 7 days lagged version
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o The detrended Euro to USD currency exchange time series shows strong
correlation for small correlation lags (7 = 1,7 = 2), as evidenced by a
narrow shape of the concentration of data points (the narrower the better)
o For large correlation lags (7 = 100, 7 = 250, 7 = 360), the scatter plots
indicate a lack of correlation or weak spurious correlations (see Slide 3)

Q: If z and y are correlated, can we infer the value of y based on z7?

A: Yes, we can regress y onto x and establish such inference!
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Linear Regression: The analysis framework

Daily Returns of Crude Oil vs. Energy Sector Daily Returns of Crude Qil vs. Energy Sector
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Regression models the “rate of change” of the explained variable, v, in
response to the change in the explanatory variable, x, in the form

Univariate regression: y[n] = a + Bx[n| + e[n]

o The error (or residual), e[n], accounts for the stochastic nature of regression

o The slope of the regression line, 8 = 7“— with r as the correlation coefficient
between = and y, and o, and o, as the standard deviations in the  and y

o The intercept a = y — 8x where T and y are the sample means of x and y

The regression line passes through the centroid (z, 7))
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Finding regression coefficients: Least Squares Regression

Linear regression &~ relationship between two variables based on a line of best fit

Consider a line fit: y=px+e<—=y,=0x;+¢ i1€{l,...,N}

Least Squares Regression o Least Squares regression (LSR)
Observed Data points o . . . .
Regressed S|ope=2_89 alms to mlnlmlse the sum Of the
Regressed Intercept = 1.10 .
squares of the differences between
the observed and predicted values

w
o

N
w

N
o

’\ Regression line argmin ||y—pBz||3 <= argmin|le||3

Dependent Variable (y)

5 o We say that we regress y onto z,
oL with (3 as the regression coefficient.

0 2 10

4 6
Independent Variable (x)

Common terminologies for Least Squares Regression

Econometrics Statistics Machine Learning
Y Dependent Var., Estimate Explained V., Response, Regressand | True Label, Criterion
I5] Coefficients Coefficients Parameters
x | Independent Var., Predictor Explanatory Var. Regressor Features, Predictors
e Residual Error Prediction Error
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Residual

—41

Goodness of regression fit: Examination of residuals

The Regression Analysis involves the following assumptions:

Linearity. The relationship between the dependent and independent
variable(s) should be close to a straight line (hyper-plane).

Homo-scedasticity. The residuals exhibit a zero-mean, F{e} = 0, and
constant variance, E{e?} = 02, which does not depend on the value of z.

= The error terms are independent and normally distributed (i.i.d.) around
the regression line. For each fixed value of x the distribution of ¥ is normal.

X
Randomly scattered residuals
Good: Assumptions satisfied

4,

2,

Residual
o
[

X
Curved residual pattern

Bad: Non-linear relation

Residual

4,

2,

IS Regression does not imply or assume any causality

X
Variance increase with x

Bad: Non-constant variance
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Example 4: Capital Asset Pricing Model (CAPM)
W. Sharpe was awarded the Nobel Prize for economy in 1990 for CAPM

The CAPM is given by the following linear regression model
E(R) = Ry + 8 (E(Rm) — By) + e

expected return of asset ¢ 7 risk-free 1 T exposure to market N residual (unpredictable)

o Ry is the risk-free rate of interest, e.g. interest
arising from government bonds; R is assumed
to be 3% Annual Percentage Rate (APR);

o B (the beta) & sensitivity of the expected
excess asset returns, E(R;)-Ry, to excess market
returns, E(R,,)-R, (8=exposure to market).
o (E(R;) — Ry) is known as the risk premium;
o E(R,,) is the expected return of the market;
o (E(Rm) — Ry) is the market premium or
excess return of the market (difference between
the expected market return and the risk free).

Monthly Log Returns of Nvidia and S&P 500

0.3 —e— Nvidia Monthly Log Return

—<— S&P 500 Monthly Log Return

0.2

0.1

0.0

Monthly Log Return

-0.1

We assume that the market is the
S&P 500 index and regress for 3.

I'= So CAPM is actually fitting a line to noisy data! 3~ LS regression

Large 8 & a less resilient company. Small 8 & lower exposure to market risk.
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Example 4: Capital Asset Pricing Model (CAPM), cntd.

Notice that we employ a block-LS approach, over blocks of 22 days

Asset return, R;, risk-free interest rate, R¢, and market return, R,,,
(S&P500 return) are all known. We consider log-returns.

I”& We can now perform LS regression to obtain the value of 3.
Each month has 22 trading days. Then, the CAPM states that

Ri.qay1 — Ry Riday1 — Ry e1

Ri;day% — R 15 Rm;day:z — By + 6:2 = 1, =0f8r,+e

_Ri;day22 — Rf_ _Rm;day22 — Rf_ _622_
Therefore, the LS estimate: 8= (Tyn1Tm) ' Tm T
Monthly CAPM Beta of Nvidia vs. S&P 500 Distribution of Residuals

—e— Beta_CAPM

[] 1

| ﬁ hl |

~0.10 —0.05 0.00 0.05 0.10 0.15
Residual Value

0.20
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Standardised linear regression

It is often convenient to examine regression with zero intercept, as e.g in
Financial Engineering in Example 4. In addition, the analysis may benefit
from standardisation to zero mean and unit variance, especially in
nonlinear regression and for visualisation purposes.

o The parameter, B when estimated from raw data is termed the
non-standardised regression coefficient

o The standardised regression coefficient, also termed the beta coefficient
or the beta is the slope obtained by the regression of y on = when the
data are standardised to zero mean and unit variance.

o When the data are standardised, the intercept, «, assumes the value of 0

6 Raw data Centered data Centered and Scaled data
41 ! ]
./ : i |
18 e ] i
o | T S
: S l b b
—21 ' 10 s
_4<
6 xvl x'2 x'3 x'4 x'1 x'2 x'3 x'4 xvl x'2 x'3 x'4
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Example 5: Within-sample (interpolation) and
out-of-sample (extrapolation) inference using regression

Interpolation: Quite accurate, as  Extrapolation: Needs to be
a linear fit matches the data range  considered much more carefully.
which the model has seen. Height of Boys Over Time

Blood Alcohol Content as a func of Number of Beers
0.14 4 100 +
y=0.0141x + 0.0035

80 A

60 -

© ©
= ]
o N
1 1

Height in Inches

0.08 - ° 40 -

0.0 25 50 7.5 10.0 12,5 15.0 17.5 20.0

0.06 A
Height of Boys Over Time

0.04
100

Blood Alcohol Content in mg/ml

0.02 A
80 A

0.00 T T T T
0 2 4 6 8 © 60
Number of Beers //.»“_“—wc
Nobody in the study drunk 6.5 ]

0.0 25 50 7.5 10.0 12,5 15.0 17.5 20.0

Height in Inches

pints of beer, but we can still use
regression to interpolate and find

the estimated blood alcohol level.

Imperial College
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more appropriate (or quadratic).

© D. P. Mandic Statistical Signal Processing & Inference 14



Real world: Outliers and influential points in regression

Outlier: A perfectly good observation that lies outside the overall pattern
of observations, that is, it is in the tails of the distribution.

Influential point aka leverage outlier: An observation that markedly
changes the regression if removed. This is often an outlier along the z-axis.

pentds @ Data points
— Without child 19
1201 Outlier in — Without child 18

=
W
o

Gesell Adaptive Score

601 hild 18
5 10 15 20 25 30 35 40
Age at first word (months)

Remedy: Robust regression estimators can deal easily with vertical outliers
(explained variable, ¥, outside main concentration of data); see Appendix
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Blood Alcohol Content in mg/ml

Explaining the total variation in the dependent variable

for other measures, such as coefficient of determination, see Appendix

For simplicity, consider the univariate regression model

y= 0o+ Bz +e

7 lies on the regression line!

Blood Alcohol Content as a func of Number of Beers

y=0.0141x + 0.0035

0.14

©
=
N

©
=
o

Y

N

S G=Blla} =G+ B s B{e}=0
prediction N\ mean, ¢

This means that:
o we are predicting the means, § = E{y|x}

The total variation or the total sum of
squares (SST) for the dependent variable,

©
o
©

©
o
)

©
o
N

o
o
N

©
o
o

y, is therefore made up of two parts
v~ sum of squares error

SST = SSE <+ SSR

total sum of squares * sum of squares regression

2 4

o

6

Number of Beers

SST=) (y—9° SSE=) (y—9°> SSR=) (-7

: The SSE is the unexplained part
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Regressing y onto x is different from regressing x onto y

Regression examines the distance of all points in the y direction only

We always regress the explained variable, y, onto an explanatory variable, x

Correct: Regressing y onto

T

0.01

Daily Returns of Crude Qil vs. Energy Sector
L

Incorrect: Regressing x onto y

Daily Returns of Crude Qil vs. Energy Sector

Both together

Daily Returns of Crude Qil vs. Energy Sector
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In the = on y regression (in orange), the residuals represent a horizontal
distance between the observed data points and the x on y regression line.
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The random residuals indicate that linear regression is appropriate
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Vanguard Energy ETF Returns

The Total Least Squares (TLS) method

Instead of the “vertical distance” (regression of y onto x), we can also use
the “shortest distance” (orthogonal projection) between the observed data
and the regression line 3~ the method of Total Least Squares (TLS).

o
o
fart

Daily Returns of Crude Oil vs. Energy Sector

0.00+

—0.01

—0.02 1

—0.031

—0.04

S e Data Points

= Regression Line y on x
-~ Regression Line x on y
= TLS Regression Line

Q- —————
Y

0.00 0.02 0.04

Crude Oil Returns

—0.04 -0.02

Vanguard Energy ETF Returns

Daily Returns of Crude Qil vs. Energy Sector

0.001

—0.01 1

—0.02 1

—0.031

Data Points

e ®
¢ = TLS Regression Line

—0.04

0.00 0.02 0.04

Crude Oil Returns

—0.04 -0.02

The projection operator (see Lecture 6), that is, modelling based on the
orthogonal distance, is more complicated than the modelling based on the
vertical and horizontal distance but generally yields more accurate models.

In the 2D case, the TLS regression line is equivalent to the first principal

component of the data matrix.
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Multiple linear regression analysis

Same idea as univariate regression, just several explanatory variables, =, ..., z,

The multiple linear regression model has the general form

y|n] = Bo + Bixzi[n] + Baza|n] + - - + Bpxp|n] + e[n]

intercept 1 partial correlation coefficients 1

with x[n] = [z1[n], ..., z,[n]]" as the explanatory variables, 3 = [B1, . .., Ba]" as

the corresponding regression coefficients, and (3, as the intercept.
The estimate y|n| based on the multiple regression model is given by

yln] = Bo =+ Blwl[n] + 32962[77/] Tt ﬁApxp[n]

y y =60, +0; x; +6, x, y m’°bserig“°” y =60, +0; x; +6, x,

X
5% X2 — X2
lope for variable x2 R . .
........................ The best flt equatlon Can be
e s found by minimizing the sum
X1 X1 of squared errors, Y e2.

Bivariate linear regression:  §[n] = By + f1z1[n] + Boza[n]

The coefficients 0; = BZ are found using the method of Least Squares

Imperial College
London
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Example 6: Bivariate regression in economics

Consider an example of the prediction of online sales of frozen pies.

o Dependent variable, y, is the sales of pies (number sold per week)
o Independent variables, x| & x5, are

x1: Price of a pie in local currency

x9. Advertising costs in local currency

The bivariate linear regression model of pie sales now becomes

sales = By + 81 X price + Py X advertising cost

The parameters 31 and (35 indicate the “rate of change” wrt the
corresponding independent variables: price and advertising costs.

Slope /7. Indicates that the average value of sales changes by (; for each
1 GBP increase in the price, while all other parameters are held constant.
Slope [J5. Indicates that the average value of sales changes by (5 for each
1 GBP spent on advertising, while all other parameters are held constant.

For example, for 5; = 10, and if the income is to remain fixed after a
change in price, then the sales would be expected to decrease by 10 pies

per week for each 1 GBP increase in the selling price.

Imperial College
London
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Example 7: Fama-French three-factor model (Problem Sets)

NB: 3 here is not equal to 3 in CAPM, due to two additional factors

The model is given by (E. Fama won Nobel Prize in Economics in 2013)
Ri=R;s+0(Rn—Ry)+bs-SMB+bv-HML +e
where SMB measures the historic excess returns of small caps over big

caps and HML the value stocks over growth stocks. bs and bv are coeffs.

LS Regression of Fama-French: We regress for the three beta'’s: The
market is the S&P 500 index; Ry is assumed to be 3% APR; Intercept = 0.

Monthly Fama-French Betas of Nvidia vs. S&P500 . Distribution of Residuals
4 T
1 —e— Beta_MarketExcess —— Fama-French Residuals
1
3 ! —+— Beta_SMB CAPM Residuals
| Beta HML 20
2 1
1
] \/0——/
@ 1 ! >15
] ! G
m 1 g
0 : /\——'\ O 10
X 1
1 | V N\
i 5
) :
|
F P F P PSP PN A 0 N o S
R S S S S SR S S S M. A
RN A G I IR S LG N S PN o7 o o¥
Date Residual Value
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Goodness of a regression model: Back to the residuals

The examination of the residuals, e[n|=y[n]| - y[n], is very useful as e.g.
their histogram will reveal whether the assumption of their normality holds.
Scatter plots (scattergrams) of the residuals are also very useful:

o A plot of e[n] against time can indicate whether the assumptions of a
constant variance of the residuals and their uncorrelatedness hold

o A plot of e[n] against the predicted dependent variable, §[n], examines
the assumption of constant variance of the residuals

o A plot of e[n] against an independent variable x;[n| indicates whether a
linear model is appropriate; it should exhibit a random pattern (Slide 10)

Residuals
Residuals
I-
®
o
]

[ |
[ ]

]

[ ]
Residuals
[ ]

}

[ ]

.li
..

[ ]

.l
[}

b L ]

[ ]

Time Predicted Y Values Predicted Y Values

Residuals grow with time Variance not constant Appropriate model
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Regression with categorical variables (see also Appendix)

Consider a task which involves both numerical and non—numerical data:

o Yes or No o On or Off o Male or Female o Like or Dislike
o Exercise per week: 1 - every day, 2 - two or more times, 3 - never

In such cases, linear regression should involve qualitative variables, also
known as dummy, indicator or categorical explanatory variables.

Example 8: Consider again Example 6 (pie sales), with ¢ = pies sold

g — 50 + 61331 -+ 52332 + 53[133 Tr3 € {0, 1}
where x1 = price, ro = advertising, and dummy variable x3 = holiday
(z3 = 1 if there was holiday that week, x3 = 0 if no holiday that week). So

Holiday: g = Bo+ b1z1 + Baza + B3 x 1 = (6o + B3) + Srx1 + PBax2
No Holiday: ¢ = B0+ fiz1+ Bexa+ 83 x 0= [y + Biz1 + Baxa

= Holiday
= No Holiday

o For x3 = 1 (weeks with holiday) we have
a different intercept 0 = By + O3

o The slopes 51 and (5 remain the same
as for weeks with no holiday (z3 = 0)

x1 (Price)

Imperial College
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Towards nonlinear regression: Polynomial regression

Q: Which of these two models is more appropriate: linear or quadratic?

S&P 500 vs. Gold Prices in April 2024

Residuals of Both Fits, S&P500 vs. Gold

2400 75 e
501 )
; 2350 5l o - ° .
[0} w PY °
O [ I - @~ @ -
= 23001 E o v .
— [
i) S -254 .
o o ® e
O 22501 501 .
e Data - © P
7200 Linear Fit _751 e Linear Fit Residuals, sum(Res2)=47375
—— Quadratic Fit e e _100/ ® Quadratic Fit Residuals, sum(Res?)=42270
5000 5050 5100 5150 5200 5250 5000 5050 5100 5150 5200 5250
S&P 500 X

A: The scatter plot of residuals vs x slightly favours a quadratic model

IS Again, the residuals help!

y = Bo + Bz + Box® + e

,” ______ N\\
s L \\ ____________________
@ ,/ ° .w-v. .. \\ vl o o
g// w °° % | ° o..., N g 0.0‘. o’ o o.. ol v
) .’—"'-—:~ ’. e o ©® (ad ) [ ]
& o..::” ..\\ ® o ! * % “ ° ¢
e .7 MNee (/] [eEemmmmsssssssssms—==
// \\
[ J y 9
1] 1]
X X X X
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Polynomial regression model

Justification: Weierstrass theorem tells us that any continuous function
can be approximated arbitrarily well with a high-enough order polynomial.

So, our polynomial regression model has the form
y = Bo+ Prx+ Bax® + -+ + BpaP +e

where (3; are the regression coefficients (partial regression coefficients)

P: The powers of x appear to be highly correlated.
S: We should use centred variables z, that is © — (x — Z), to remove the

non-essential multi-collinearity in the data, to give
y=bo+bi(x—Z)+by(x—2)°+ -+ by(x—T)P+e¢

I’ The variables (z — ), (x — Z)?,...,(z — Z)P are now linearly independent.

P: For a large p, the magnitudes of the powers of (x — ) can be very large.

A: We can standardise data, as ma_x.

x

P: The predictor variables are linearly dependent (multi-collinearity).
A: Use the first few principal components of the data matrix. (see Appendix)

Imperial College
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The concept of “linear in the parameters” models

I’ A “Linear Model” does not arise from fitting straight lines to data!

4 x[n] Observed data
Model is quadratic in time "n’'

Model is "linear in the parameters!’

True signal of interest

° 0 (quadratic in n)
} } } } } } } >
1 2 3 4 5 6 n

For N observations: z[n] = 8o+ Sin+ fon’+eln] = x=HB+e

linear in parameters (3

- - 10 02 |
50 1 1 12
where  B=| B H=\| :
| P2 1 N—-1 (N-1)? |

I’ So, both Multiple Regression (with n — z1,n? — ) and Polynomial

Regression (n — x,n? — x2) are linear in the parameters.

Imperial College
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Interaction effects between independent variables
Building towards the Volterra approximation model

Interaction regression models contain cross-product terms, for example
2 2 2 2
y = Bo + frx1 + Box] + Pawe + Laxs + Bsr122 + Pexix2 + Broiws +e

basic terms interactive terms
= Response to one x variable also depends on the values of other x variables

Example 8: Consider the interaction model
y = Po + B1x1 + Poxa + P12 + €

= X5 iS NON-Zero
— X5 |S ZEIO

o Without the interaction term, the effect of x1 on y is

measured by (7.

o With the interaction term, the effect of x1 on vy is
/ measured by /81 _|_ /83502-
o This effect changes according to the value of x.

X

Solution: Develop the LS regression in steps, by fitting a variety of models
to the data, adding and removing variables according to their significance.

In this process, the coefficient of partial determination provides a measure
of the “marginal contribution” of each independent variable.

Imperial College
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Therapy Effect

4

Example 9: Interaction models in medicine

Classes of antihypertensive medications include diuretics, calcium channel
blockers, angiotensin converting enzyme inhibitors, and beta blockers.

Consider the interaction model in hypertension therapy based on two drugs
Yya+B =0.6+022; + 0.84+0.2029 + 0.3lriz9 + €

effect of Drug A

effect of Drug B interaction A+B

where x1 is the dose of Drug A and x5 the dose of Drug B.

=Drug A+B
Drug A
=Drug B

Drug interaction

Expected effect A+B=1.85

4_?

— Double dose of drug B effect

0.4 0.6 0.8 1 1.2 1.4 1.6 18
Drug Dose

On average, a double of dose of a single drug
gave only 16% of additional blood pressure
reduction (expected 2x, observed 1.16x)

It has been shown that the effect of
combining two different classes of drugs is
approximately 5 times greater than that of
doubling the dose of a single drug (= 1.85).

Wald, David S., et al.“Combination therapy versus

monotherapy in reducing blood pressure”, American
Journal of Medicine 122:3 (2009).
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Calculating regression coefficients: Least Squares (LS)

Consider the following regression models
Multiple regression: y = PBo + B1x1 + Boxs + B33 + €
Polynomial regression: y = By + Bix + Pox® + B3z’ + e
Interaction regression: y = By + B1x1 + Boxs + B3xri120 + €

By employing linear independence between: (i) x and z# in polynomial
regression, and (ii) when x; L x5 in interaction regression, substitute
Polynomial regression: z? =z, & z° — z3

Interaction regression: riro — I3

= Polynomial and interaction regress. can be treated as multiple regressions

yln] = Bo + Srz1[n] + Baxan| + -+ + Bpxpln] +€e[n] n=0,1,....N -1

y[0] 1 x1[0] e xp[0] Bo e[0]

y[1] |1 3[31.[1] mp.[l] 5.1 4+ e[.l] LS} B _ (XTX)—ley
yiv-1 | L1 eav-y o vy L | Levon |

y X B e
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Recurrent Neural Networks (RNN) and Regression

The Volterra series (universal function approximation) is effectively a
Taylor series expansion (TSE) with memory of the network output.

In Time-Delay Neural Networks (TDNN), the explanatory variables are
separated by a time delay, for example, 1 = x(k — 1) and 22 = z(k — 2),
so that the output of a multiplicative NN becomes an interaction model
y(k) = co+crx(k—1)+cox(k —2) +csz?(k — 1) + cax®(k — 2) +
cse(k — Dax(k —2) + cex®(k — 1) + cra®(k — 2) + - - -

With the introduction of feedback, in the form y(k — 1), y(k — 2),..., we
arrive at Recurrent Neural Networks (RNN) as function approximators.

For example, the most frequently used bilinear model (first order
truncated Volterra) model, given by

N—1N-1 N—1
Zczy —J —I_Zzszy _j (k )+Zai$(k_i)
i—=0 j—1 i—0

IS equwalent to an RNN with multiplicative synapses.
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Example 10: Recurrent perceptron as an interaction
regression model

Consider the following RNN (recurrent perceptron) with multiplicative
synapses. lts output is given by

y(k) =ciy(k — 1) + borx(k)y(k — 1) + bi1x(k — D)y(k — 1) + apx(k) + a1x(k — 1)

This is precisely the form of the bilinear model on the previous slide.

We can also involve different types of nonlinearity after the “summation”

stage, such as the tanh or the logistic function elaborated next.

Imperial College
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Logistic Regression: Motivation

Many situations require the output of a regression model to be discrete or
even binary (classes C'; and C5) and not continuous-valued as in standard
regression. This requires a discriminative model p(C1|x), p(Cs|x).

6 P: Linear model does not output probabilities, it

— Decision Boundary .
sh— Regression Line - o '¢ 4 o treats the classes as categories (here: 0 and 1) and
) fits the best hyperplane (here: aline) that minimises
the distances between the observed points and the
hyperplane. So, it simply interpolates between the
points, and we cannot interpret this as probabilities.
_ P: The regression line is unbounded, while the
‘ probabilities, p(C1|x) and p(Cs|x), are bounded to

4 3 2 -1 0 1 2 3 4 between O and 1 &~ we need another method.
X1

Solution: A function of probabilities which is linear in the data, x, such as
the logistic mapping, which for a binary classification example is given by

ply = Ch[x) ply =1) p(y=Y)

o = In = In = Po+ b1z + -+ Gpx
p(y = Calx) 1-ply=1) L—ply=N) S linear in x —
:_rgﬁ(ejganl CO"ege © D. P. Mandic Statistical Signal Processing & Inference 32



Logistic Regression: Formulation

Odds: The ratio of something occurring to something not occurring. Odds
are different from the probability which is the ratio of something occurring
to everything that could occur e.g. % has the odds of 4:1.  (see Appendix)

2
The logit function is the logarithm of the odds = % = %, that is

ply=1) _, pry=Y)

In = Bo+ Brx1+ -+ Byr, =B'x+ 8
1—ply=1) I—ply=N) < 1“ie;rrinx — ’
Now: log p() =z=08"%x+8 — p(z) :g(z)zezzeﬂTX+5o
I —p(z) 1 —p(x)

Then: p(x) = eﬁTX+5O(1 —p(z)) — plx)+ eﬁTx+50p(x) _ B x+B0

B x+80 1

p(x) logistic function

and  p(x)

T 1+ eBTxt 50 IR

For binary outcomes, Logistic Regression gives a linear classifier, with the
decision boundary between the outcomes given by 8 x+5,=0 (Appendix)
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Logistic regression: Application in classification

Consider 2-class classification, based on logistic sigmoid ®(z) = 1+e—é1w+ﬁo

6 T 1.0
Decision Boundary
| i i ole o o _
4N Regression Line ° %NS o, S 0.8 P(x) = 1+1eix
)
2 oS oo e
7 p g 0.6
' 0.4,
) ) [ ]
9 ®
0.2
® _
[ ]
0.0
-6

4 -3 -2 -1 o0 1 2 3 4 -75 -50 —-25 0.0 25 50 7.5
X1 X

Logistic regression: Parameters are 31 (slope) and 3y (horizontal shift).
Assume the class labels C' € {C'1, C5}. Our aim is to model the conditional
probabilities p(C1|x) and p(Cs|x) as a function of x.

probability of class C; : P(Cilz) = ®(S1x+ [y) =p

probability of class Cy: P(Colx) =1 —®(f1x+ o) =1—0p
I'= Logistic regression gives the probability that data belong to a category. It is
an extension of the linear regression model for classification problems.
In the simplest case, if the decision boundary Sz + 8¢ > 0 then p = 1, and
if B2+ By < 0 then p = 0. The §’s are found using Maximum Likelihood.
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Logistic Regression: Intuition and scope

Consider a probabilistic generative model for classification, given by
v~ class probability

p(x,C) = p(x|C) p(C) ()
N class-conditional probability

where x € R is the sample and C' € {C1, C5} is the class label.

We are interested in finding a discriminative model for classification,
that is, we aim to find p(C|x).

From eq. (*), we have (without loss of generality we can choose C' = ()

_ p(x|C)p(C1) p(x|C1)p(C1) ayes theorem
p(Cl‘X) B p(x) - p(X’Cl)p(Cl) +p(X|02)P(C2) (B ves th )
1 1

| 1 PEICR(C) Ty, (PRICOMCD) ()
p(x[C1)p(C1) 1+e p(x[C2)p(Ca)

We are interested in cases where the term in the exponent takes a simple

form, for example —ln(ggiggggg;%) is linear.

Imperial College
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Logistic Regression: Intuition and scope

To see how eq. (**) simplifies, we shall choose parametric forms for the
class- and class-conditional probabilities

p(Cl) =T p(CQ) =1 —p(Cl) =1—m
p(x|Cy) = N (p1, %) p(x[C2) = N(u2,E) (%% x)

I'= We have chosen the class-conditional probabilities to have different means
but same covariances. Now, upon replacing (***) into (**) we arrive at

1
p(Cl‘X) _ 1+ 6_(WTX—I—b)

(5 * )

= By choosing Gaussian distributions with same covariances, the quadratic

terms in the exponent of (**) vanish, and the logistic regression model
becomes the true classification model.

Homework: Find the expressions for w and b as a function of uq, o, 2.
Now, consider different covariances in (***), e.g. 31, 35; how does the
expression in (****) change?

Imperial College
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Example 11: Classification of financial sentiment with
Logistic Regression

Consider binary sentiment classification of a financial news article

~ -l ,* ------------
The company's peﬂ"érmance Waé‘di‘s‘appojnjcipgthis quarter! Despite
strong revenu/es’,/the net income was significantly lower than expected. x3 =0
The CEO announced cost-cutting measures, but analysts remain

skeptical. There were some positive developments in their new product Xe = 3.85

line, which is expected to boost sales in the next quarter.

X1:3

I”= We wish to assign the sentiment class + or — to this document. To this
end, let us represent each input observation by the 6 features xq,..., zs.

Var Definition Value
x1  count (positive financial words € doc) 3
x2  count (negative financial words € doc) 3
- { 1 ifno € doc 0
O otherwise
x4  count (transition words € doc) 2
- { 1 if! € doc {
O otherwise
xe¢  In(word count of doc) In(47) = 3.85
Imperial CO"ege © D. P. Mandic Statistical Signal Processing & Inference 37
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Example 11: Classification of financial sentiment with
Logistic Regression, contd.

Each of these features, x1,..., x4 is associated with a weight, w1, ..., ws.

Assume that, after training, the six weights corresponding to the six
features are
w = [2.5,-5.0,—1.2,0.5,-2.0,0.7]"  b=0.1
A comparison of the weights w; = 2.5 (for z1, positive words) and
we = —5.0 (for z2, negative words) indicates that the “negative lexicon

words” (disappointing, lower, sceptical), with negative sentiment, are two
times as important as “positive lexicon words” (strong, positive, boost).

Based on these features of the input text x, the probabilities of the
positive and negative sentiment classes

P(+|z) and P(— | 2)
can be computed as
p(+|2)=Ply=1]2)=0c(w'x+b)=0c(—5.75) = 0.0033
p(—|z)=Ply=0|2)=1—-0(w'x+0b)=0.9967
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Multi-class logistic regression classifier: Introduction
MNIST (handwritten digits) CIFAR (image classification)

0000006022 0002 000 . wEET, IEEHZ-
T T T U UV A 2 R N B B aomonie LB E B S
2229322222222 e Elmalll WES ¥ EEW
3333333%3>3333333 SEE R LA -
g etd 49 YYq syadd 4 \yy w  EARSES SRS
5558535 SS 55958554579 dog DI EBIR ] e [ &P
b 66 bbbobbbobde bl w  DEEEESEEE
T792777TOYNTI2R7 T 7 norse [ IR SR 5 V9 o I L S TR
Y3 T8 8P LI PTTEYT LT P e B T e
4999993939994 94999 wJHGNSESES

The output takes more than two values, so each class ¢ € C will have its
own offset ﬁéc) and parameters ,B(C). Now, the conditional probabilities

S eﬁgﬁ+XTB@g
Pr(Y =c| X =2x) =

D eﬁgﬂ+xTﬁQﬂ
C

1 . .
For only two classes (say, 0 and 1), we have oot A that is, we arrive

at standard Logistic Regression.
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Multi-class logistic regression classifier: Principle

To categorise into multiple classes, we may adopt two strategies:

o Use multiple binary classifiers for each class of the input data, and
examine their outputs to make a class prediction

o Use one multi-class classifier as a generalisation of logistic regression

. AP+
Pr(Y =c| X =2) = 5 ceC
> e +xT()
C
Multiple Binary Classifiers One Multi-class Classifiers

-
0.86
Binary Classifier: 1 8355)

) o 0.22

gy Binary Classifier: 2 078
InpUt Binary Classifier: 3 8819
\ 0.13

Classifier
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Multi-class logistic classifier: The SoftMax function

The SoftMax function represents a multi-class logistic classifier which uses
one-hot output encoding to compute p(yr = 1|x)  (with 327 p(yr|x) = 1)

T
exp(z e b
p(yx|x) = pr( k) = KXP(W’“X; k) yi Is one of K classes
Zj:l exp(z;) 23:1 eXP(Wj x + b;)
where the model parameters for a class k£ are wy, and by, k=1,2,... , K

For example, for reduced CIFAR data {cat, dog, bird}, we can calculate

exp (,Bg;t x)
exp(,Bg;t x)+exp(,8£ogx)+exp(,8g;rd x)

Py =cat|x) =
Relationship to Logistic Regression: For a special case K = 2 (Slide 34)

1 exp (W1 x + by)
exp (W{ x + b1) + exp (wg x + by) | €XP (Wg x4 ba)

p(ykl|x) =

and the SoftMax regression reduces into the 2-class logistic regression. The
SoftMax is a backbone of modern Neural Networks and Deep Learning.
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Employing SoftMax in Logistic Regression

Binary logistic regression employs a weight vector w and a scalar output 7.
Multinomial logistic regression & weight matrix W and vector output y.
Each row k& of W g is the weight vector wy, with K as the number of
classes and F' as number of input features

~ _ exp(21) exp(z2) exp(2 k)
y = SoftMax(Wx+b) = = e e, —F
( ) [E:jzzlexp(zj)’ E:j::1exp(zj)7 ’ E:j::1exp(zj)]
Binary Logistic Regression SoftMax Logistic Regression
This movie was fantastic! This movie was fantastic!
A A
4 N 4 A\
X1 Xf Input feature vector X1 Xf
Word count “I” count x € RfFX1 Word count “I” count
4% Wi1 Wi Wis3
K Weight Vector Weight Matrix
A E w e RS w e R3S w= : . :
Wre Wgq1- Wrp  Wgs

Output[Sigmoid] Output[SoftMax] : ﬁ y
y €R y € R3*1 {

p(+) =1—p(-) p(+) p(=) pWN)
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Multi-class logistic classifier: The SoftMax, contd.

Parameters of SoftMax are calculated using Negative Log-Likelihood (NLL) loss

The parameters of SoftMax are typically found by Maximum Likelihood

Z=W-X+5b
Linear 1.9
0.2 0.8
=(0.5 O.1> 0.9
09 0.3
0.1
b= (0.2) 1.8
03 Scores
(Logits)

Y, = eZi /3N e%

o o
= N
) IN

0.40

|

Probabilities

¥

F

C
L==-)" Ylog®)
i=1

1.0

0.0

0.0

|

Output

0.82

Denote by x* the m-th sample from class k. Then, the likelihood function

[((wg, bg)|X) = ZZlnp Ykxg')

exp(Wix" + by,)

ZZln

> exp(wix + b;)

ol (-
and O S 1 play )]st — 30 plunlxt (see Appencin
W m k#£5 m
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SoftMax in action: Deep Neural Networks

classification of hand—written numbers 3~ a 10—class discriminative problem

output layer

MNIST dataset of (10 neurons with Softmax activation)
hand-written digits

(70000 images)

0

input data
(flattened image with 784 pixels)

-
15 /::1 | ‘ .4 i
/ RS K L)

» 3 > RN S /I 2
| — S TN
i S SSS

28 x 28 pixels == WXASHITIN 3

P S NN

° :  \N T S
: ‘ DX " (LA .:‘ 5 o

S } 7:.:, 5 -‘v;'v 4
" 0 LS 7 Rt {7
. WKL ST ) ’
. 1 15 g . () 5K ,\ P % .
25 . H ¢ ““ /

K RGN 4 5
PRI V4
< \‘\\\‘\?---—,—é = '}#V ‘%\:\t\“; 6
° AN WAL \“' o
. 2 S\ RO
/2 SR\ AR
iy W
N . 8
training set: 60000 images hidden layer 9
test set: 10000 images (8 neurons with ReLU activation)

I'=" Our images are 28 X 28 pixels, so we have 28 X 28 = 784 inputs to the network!
I’= MLP has 2 layers of neurons (hidden & output), and in total 6,370 trainable parameters.
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Logistic regression and neural networks: The Perceptron

With a slight abuse in notation (& — 2® — 1), and for 5 — oo, we have

B(x) 1 B—so0 +1, wix+b>0
= X > =
Y Y —1, wix+b<0

- 1+ e_B(WTx—l—b) B Sign(WTX i b)

o

For two classes, as in the figure, the

inear decision boundary is given by:
@Nmbiner
inputs weights e - N W1T1 + Wwako — b=20
- y
tput . .
x2/@ b imer ©"""" Perceptron learning: With d,, as a
bias teaching signal, the weight update is
mesomes. standard inear regression wa o ify=dn
& Wnpt1 = w, +nx, ify<d,

followed by a hard limiter, that is,

the sign of our standard regression " fy

Now, because vy, = sign(w;‘fxn +b) =41 we have Wil = Wy + N YnXy

where 7) is the stepsize (learning rate), a small positive number.
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Perceptron in Action: Binary classification perceptron.m

Iteration: 10 ‘ Iteration: 11
e o * T Geometric interpretation
0.8 L A 25T oo
M ~©%%  Comes from
06+ * o8 §%® © .
* o) [L A~ )0
< wlx = ||w]|| ||x]|| cos6
0.4 ) % o 0P
E \8\)@, O 0O
0.2 ff o
0 i |
0 0.2 * Class 1
X, © Class 2
Iteration: 13 —Decision Boundary

O Misclassified Point

Perceptron learning:

1) Initialise the weights

2) Pick a mis-classified point
3) Update the weights as

. 1 Wntl = Wy + 1 YnXp

X, X, 4) Go to Step 2 until all points
are correctly classified

Guaranteed to converge if data is linearly separable

Imperial College . e ,
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Logistic function for temporal data: Universal function

approximation property of Neural Networks (NN)

Consider the output of a single “logistic neuron,” the bias b provides a temporal shift

Output of a

x I

w; V1
@ o

b,
V2
“—Q® B

®

y

[~
o

combination of two “logistic neurons” (blue and red) & Gaussian—like

lbl
]
1
]
1
by

I'= A layer of such neurons & smooth Universal Function Approximation
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Summary: Logistic Regression

Assumptions:

- Independent observations

- Linear relationship between independent variables and log odds
- Little or no collinearity among independent variables

- Residuals do not have to be normally distributed

- Sensitive to outliers

- Homoscedasticity is not required

Pro’s and Con’s

- It is not only a classification model, but also gives probabilities
- The interpretation is more difficult because the the weights are
multiplicative and not additive

Advantages over naive Bayes:

o Does not require strong conditional independence assumptions

o Much more robust to correlated features, it will assign part of the weight
to one feature and the other part to another feature

o Naive Bayes works well on small datasets and logistic regression works
better on large datasets
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Summary: Regression vs Logistic Regression

Linear Regression Logistic Regression

o Establishes a relationship o Estimates a relationship between

between a continuous dependent
variable and one or more
independent variables

Does not require large sample
size for successful operation

Easily interpretable and intuitive
Applications across disciplines

Polynomial regression -
universal function approximation

Robust regression required in the
presence of outliers

‘Linear in the parameters’ family

Parameters typically found using
Least Squares methods

a categorical dependent variable
and one or more continuous
independent variables

Requires large sample size
to represent values across all
response categories

A discriminative model, aims to
distinguish between categories

Multinomial logistic regression
uses the SoftMax function to
compute probabilities

Parameters typically found using
Maximum Likelihood Estimation

Linear in the logit space
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Appendix: Scatter plots of the detrended S&P 500
financial index

8001 8001
600 1 600 1
400 1 400+
— 200+ ~ 200+
— (09]
—
L0 + 0
-
X ~200 X —2001
—4004 —400 1
~600 1 ~6001
—8001 —8001
-800 -600 -—400 -200 O 200 400 600 800 -600 —400 -200 0 200 400
x[t] x[t]
800 1 8001
600 1 600 1
400+ 400+
—. 200+ ~ 200+
T N
E 01 Yoo
)
X _200] < -2001
—4001 —4001
~600 1 -6001
—8001 -8001
-800 -600 -—400 -200 O 200 400 600 800 -400 -200 0 200 400
x[t] x[t]

The detrended S&P 500 time series shows strong correlations for small
lags in the scatter plot, and spurious correlations for large lags.
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Appendix: Influence of outliers in linear regression

There are two general types of outlying observations:
o Vertical outliers: y, is outlying while x,, is not outlying (easy to fix)
o Leverage points: y, is not outlying while z,, is outlying (complicated)

Problems caused by leverage points: As the outlier in the explanatory
variable, it has an unbounded influence (full weighting of leverage points).

% = OLS without outlier '." 64 —— OLS without outlier
= QLS with vertical outlier <3 = QLS with leverage outlier
&
==+ Huber with leverage outlier

==+ Huber with vertical outlier

4| Vertical Outlier: (-1, 6)

X

/

Leverage Outlier: (6, -1

Robust (e.g. Huber) estimators are almost unaffected by vertical outliers
(deviation from concentration of explained variable, y), but are vulnerable

to leverage points (outside the concentration of explanatory variable, )
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Appendix: Sensitivity to outliers of the ordinary Least

Sq uares ( O LS) (role of regularisation and robust estimators)
» Data Inside 95% Confidence Interval 150 - OLS
- Data Outside 95% Confidence Interval T ) Ridge

—Ordinary Least Squares —

—Robust Regression with Huber - 100 —— Lasso

—Ordinary Least Square Without Outliers| L
o e

—— Huber Regressor
50 « training data

e ....".":..‘ [ R
1] Po J°° o0 °
o dgaTra

-50

- + -<— outliers outliers 7
Zzz o T95 % confidence interval | 00

-0.03 -0.02 -0.01 C](;X 0.01 0.02 0.03 3 5 " ; : , \ ;
Regression of daily returns of Altona Energy (ANR) Regression under outliers
corporate bond on the credit default swap (CDX). Huber is a robust estimator
Ridge regression: TIn(w) = (d,, — ngn)%+3\1|\wn|\§ —e2 + \wliw,

stand;d cost Lo F?ernalty
LASSO (sparsity promoting): TIn(w) = (d,, — W;‘fxn)%+\)\2|\wn||L
stand;rrd cost L4 Bgnalty

o Ridge: Penalises for large weights (but does not reduce system dimensionality)

o Least absolute shrinkage and selection operator (LASSQO) enforces insignificant weights

to go to zero, and thus promotes sparsity and aids interpretability (A1, A2 & param’s.)
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Appendix: Coefficient of determination, R*

0 1!3Iood Alcohol Content as a function of Number of Beers 0Bllgod Alcohol Content as a function of Number of Beers/Wt
. . .o
3 r=0.7 Y 35 r=0.9 °
8 8 >
S 0.08 - 5 0.08 - r’=0.79 °
- -
g E °
£ g
— 0.06 A — 0.06 A
+— +—
C C
g 2
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o o
£ 0.04 4 © 0.04 1
@] o
< e
o] o
9 9
< <
- 0.02 A - 0.02 A
[e] o
o i}
[a] m
)
0.00 T T T T 0.00 T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Number of Beers Number of Beers / Weight

SS R __ sum of squares regression __ Z(Q—§)2
SST =~ total sum of squares ~— > (y—1%)2

Coefficient of determination R? =

Coef. of determ. represents the portion of total variation in the dependent
variable that is explained by variation in the independent variable.

o R? behaves like a square of the correlation coef. and ranges from 0 to 1
o R? does not decrease when a new x variable is added to the model (this
may be a disadvantage when comparing models)
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Appendix: Multicollinearity

Multi-collinearity refers to the existence of high correlations among the
independent variables (predictors).

o This means that the the correlated explanatory (predictor) variables
provide redundant information to the multiple regression model.

o Numerical difficulties in Least Squares solutions (ill-conditioned matrix of
predictors) unless “extra” predictor variables are removed.

o Difficult to assess the relative importance of independent variables when
explaining the variation in the dependent variable, e.g. a previously
significant independent variable becomes insignificant.

o Difficult to make inferences about the effects of individual regression
coefficients on the dependent variable y (lack of intepretability).

o The partial regression coefficients may not be estimated precisely.

o The estimated standard deviation of the model increases when a variable
is added to the model.

Q: Does multi-collinearity mean that multiple regression does not work?
A: Multi-collinearity does not affect the ability of multiple regression to
predict the dependent variable, y, but affects stability and interpretability

of regression coefficients.

Imperial College
London

© D. P. Mandic Statistical Signal Processing & Inference 54



Appendix: Multicollinearity and metrics related to
regression

Practical indicators of collinearity: (i) When we add/remove an
independent variable, the values of the remaining regression coefficients
undergo a drastic change. (ii) From domain knowledge: an independent
variable which is known to be an important predictor is associated with a
small regression coefficient. (iii) Domain knowledge: a regression
coefficient which should be positive becomes negative, and vice versa

o A rule-of-thumb is that if the correlation between two independent
variables is between —0.70 to 0.70, keep both independent variables
o A more precise test of multi-collinearity is the Variance Inflation Factor

VIF = 1+R2, with R? as coef. of determination after the j-th independent
j

variable is regressed against the remaining (p - 1) independent variables

o Rule-of-thumb: If VIF > 10 we should remove the considered
independent variable from the analysis (see the next slide)

o Rule-of-thumb: Calculate correlation between the independent variables
and use only one of the highly correlated variables

o Alternatively, transform the existing independent variables into a new set
of mutually independent predictors (PCR, latent root regression)
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Appendix: Multicollinearity & how to detect it

Start from the standard multiple regression model

g:50+51$1‘|‘52x2+"'+6p3§p

Then, regress each independent variable against the (p-1) other
independent variables

i1:50+52$2+53$3+”'+5p$p
£2:50+51$1+53x3+”'+ﬁpxp

Tp = Lo+ Brx1 + Poxa + -+ Bp_1Tp_1

I’ If an independent variable can be expressed via a linear combination of
other independent variables, then it is redundant.

We can measure this dependence via the Tolerance, T'=1 — R?

or the Variance Inflation Factor (VIF), VIF = 1_#]%2.

In practice, an independent var. can be removed if 7' < 0.1 or VIF < 10.
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Appendix: Dealing with categorical explanatory variables

We need to transform categorical variables into a format suitable for algorithms

For categories of an ordinal variable, such a condition of a car (poor,
average, good), we can assign numerical scores to the categories, e.g.
(poor=1, average=2, good=3), which makes perfect sense.

Problem: Often, we cannot establish rank between categorical variables,
e.g. “red” is not greater than “blue”, “male” is not greater than “female”.
Solution: Resort to a “"dummy” (indicator) variable in the form of e.g. 1
if the category is true and 0 it the category is false (see Slide 23).

Example: Find an average weight wrt gender via categorical variables
weight; = (1 - female; + By - male; + «
P: Direct use of variables male and female does not make sense, while

the dummy variables x1=female € {0,1} and zo=male € {0, 1}, exhibit
a linear relationship, as 1 + 2 =1 — 9 = 1 — x1, causing collinearity.

S: Encode our N=2 categories into N-1 dummy var. §™%¢ =1 if true,

so that weight; = 8- "% +a —  y= P+«
o = mean weight of category 0 (female), 8 = weight difference between cat. 0 and 1.

I'= Categorical information has been encoded by a binary indicator variable
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Appendix: Dealing with multiple categorical (qualitative)
explanatory variables 3~ indicator variables, contd.

Example: Find an average weight wrt gender and exercise level by

extending the previous example with the binary category “exercise level”,

N = 3 categories: Fy=x3=daily, Eo=x4=o0ften, E3=x5=sometimes

Now, 23+ 24 +25=1 — x3=1-— 124 — x5, and
weighti251-5?“l6+ﬁ2-552+53-5f3+04

We now have 3 parameters describing 5 categories, where « is the average weight of a

female who exercises daily (Cat E1), 81 models the effects of gender on weight (without

accounting for exercise), while 85 and (3 give the effects of exercise level on mean weight

(without accounting for gender), all relative to o= weight of a female who exercises daily.

Summary: A dummy indicator variable converts a categorical variable
with N categories into (N — 1) binary variables which have the value of 1
if an observation belongs to a certain category, L, and 0 otherwise.

E.g. we wish to predict the price of a car based on their category (1 or 0)
x1=hatch, xo=saloon, £3=SUV, z,=estate. For these N = 4 categories
we need N-1=3 indicator variables, as Zle r;=1land x4y =1— Zi’ T;, SO

price = By + 1 X hatch + By X saloon + B3 x SUV
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Appendix: Dealing with multiple categorical explanatory
variables 3~ one-hot encoding

While a ‘dummy’ indicator variable models the presence or absence of a
particular category, in this way one category is not explicitly represented.

One-hot encoding is a specific method of creating indicator variables,
whereby each of N categorical variables is converted into an N-dimensional
binary 'indicator vector’, so that each category is explicitly represented.

I’ In this ‘1-of-N’ scheme, each category is treated equally without implying
any ordinal relationship, e.g. red = [1,0, 0], green = [0, 1, 0], blue = [0, 0, 1]
or hatch=[1,0, 0, 0], saloon=|0, 1,0, 0], SUV=|0, 0, 1, 0], estate=[0, 0,0, 1].
In this way, one-hot encoding provides a sparse representation which:
o Is straightforward, through a vector of N variables for N categories,
o Handles uniformly both nominal (no natural order) and ordinal (natural
order but treated as nominal) categorical var., enhancing interpretability,
o Simplifies the data pre-processing pipeline through this uniformity.

One-hot encoding: Commonly used to handle high-dimensional feature
spaces in ML, e.g. at the tokenisation stage in Natural Lang. Proc. (NLP).
Dummy indicator variables: Typically used in linear regression with

categorical variables, and to avoid multi-collinearity.
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Appendix: Logistic Regression & Historical notes

o Logistic function was introduced by the Belgian mathematician Pierre
Francois Verhulst in 1838 to model population growth

o It was later popularised by Pearl and Reed whose solution is in the form
of the logistic function we know today

o In 1944, Joseph Berkson introduced the term ‘logit’ (in analogy to the
‘probit’ model) and developed a logistic model for use in medical statistics.
o Logistic regression was further developed in statistics for the analysis of
binary data in the 1960s, and was common in medicine

o The book “The Analysis of Binary Data” by D. Cox and J. Snell
elaborated on the proportional hazards model and logistic regression

o In the late 1970s it became prominent in linguistics (linguistic variation)
o It was used in Natural Language Processing (NLP) since the 1990s, also

under the names maximum entropy modelling or maxent, for language
modelling, text classification, and speech tagging)

o It has become fundamental in machine learning for binary classification
(spam detection, credit scoring), as it is simple, interpretable and effective
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Appendix: Odds versus probabilities

Problem: Probabilities are not linear so an increase 10% to 20% doubles
the probability, but increase 80% to 90% only slightly improves probability.

Odds vs probabilities

Probability=ntumber of favourable outcomes g4, for flipping a coin p(heads) = 0.5
p(heads) 0.5

__ prob. of event happening . . _ 1.
Odds = prob. of event not happening so for ﬂlppmg a coin 1—p(heads) 1—0.5_1'1

Example: Rolling a dice

The probability of rolling 1 on a 6-sided die is p(1) = = ~ 16.7%
1
5

The odds of rolling a 1 on a die are 12;1()1) — 1i/1€;6 = = or Odds = 1:5

Converting between odds and probability

D Odds
Odds = —— =
ST D P=1 + Odds
So, if the Odds of an event are 2:1, then p = %2 = 0.667 = 66.7%

If the probability of an event is p = 0.25, then Odds = % = % so 1:3
Example: Covid1l9 affects 1 in 1000 people. The diagnostic test has
sensitivity (true positive rate) = 99% specificity (true negative rate) 99%
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Appendix: Odds versus probabilities

I’& The odds of a randomly selected person having Covid are 8882; 1:999

Scenario: Positive test (PT)
False positive rate = (1- specificity) = 1 %
False negative rate = (1 - sensitivity) = 1 %

p(Covid|PT) = p(PT|Covid) x p(Covid) + p(PT|No Covid) x p(No Covid)

where p(PT|Covid) = 0.99, p(Covid) = 0.001, p(PT|NoCovid) = 0.01,
p(NoCovid) = 0.999
so:  p(PT) = 0.99-0.001 4 0.01 - 0.999 = 0.01098

0.99 - 0.001
and p(Covid|PT) = 007093 ~ 0.0902 or 9.02%

So, the probability that a person has Covid given that they have tested
positive is 9.02%

Now, the Odds(Covid|PT) = 123922 ~ 0.099 or 1:10

Interpretation: Probability provides a direct measure of the likelihood of
an event occurring. Odds offers a comparative measure of the likelihood of

an event occurring versus it not occurring.
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Appendix: Effects of Scaling Logistic Regression
Parameters

. (Logistic) b=-2.5, w=(-2, 2)

Effects of scaling the 0 (Logist'i.‘g) b=.:9;5, w=(-2, 2)

parameters of logistic °7]
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For

Appendix: Finding parameters of Logistic Regression

For simplicity, we consider a binary classification task

o y = 1, the predicted probabilities will be § = p(x; 5o, B) = p(x)
o y = 0, the predicted probabilities will be 1 — g =1 — p(x)
In other words, for y = 1 our aim is to estimate 3 and [y so that the

product of all probabilities § = p(x) is close to 1, while for y = 0 the
product of all probabilities, 1 — ¢ = 1 — p(x), should also be close to 1.

Upon combining these conditions into a Likelihood Function (Bernoulli)

N
plyb) =3 (1=9)'  —  Lighipo.B) = [[o(1-9)""

=1
Our goal becomes that of finding the parameters, ,Bnand By, which

maximise the likelihood, L(-), and consequently the log-likelihood, I(+)
N

L(ylx; B0, B) = ) [yn log§ + (1 — yy) log(1 — Q)}

n=1
This is known as Maximum Likelihood Estimation (MLE).  (see Lecture 5)
We shall now show that maximising the likelihood is equivalent to
minimising the cross-entropy, a typical cost function in Neural Networks,
given by Jee(9,y) = —log p(y|x)
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Appendix: Maximising the log-likelihood function is
equivalent to minimising the cross-entropy loss in NNs

Since the log is a monotonic function, it is more convenient to maximise

[(ylx; Bo, B Z [yn log§ + (1 — yn) log(1 — y)}

n=1 n=1
al 1
=2l (1 +650+5TX> 2 unlBo +57x)
N T
- Z 2(Bo + B'x) — log (1 4 foth X)
n=1

With @ = By, 3] and the cross-entropy, Jog(y,y), we have
argmaxg L = argming Jop(y|x;0) = arg ming — 22;1 log L(yn|x;0)

In this way, the cross-entropy loss is smaller if the estimate 7 is close to

the correct vy and bigger if the estimate is further from the correct y.
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