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Aims

◦ The concept of least squares estimation (LSE), a method which is
indispensable in areas ranging from finance through to neuroscience

◦ Geometry of LS: The the orthogonality principle # signal and noise
subspaces, ordinary least squares (OLS)

◦ Measurement space, basis functions, constrained least squares, order
recursive least squares, nonlinear least squares, separable least squares

◦ Establish parallels with the ML estimation, BLUE, MVUE, and CRLB

◦ Move from block-based estimation to estimation based on streaming
data: Sequential Least Squares (SLS), link with state space models

◦ Incorporating prior knowledge and domain knowledge: Weighted least
squares, confidence levels in data samples

◦ Role of estimator memory # forgetting factor and online adaptation

◦ Practical applications (regression, Noise Canc. headphones, finance, ...)
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The method of Least Squares

This class of estimators has, generally, no optimality properties

◦ But, do we necessarily require optimality # an optimal estimator may
be mathematically intractable or computationally too complex

◦ Makes good sense for many practical problems # this dates back to
Gauss who in 1795 introduced the method to study planetary motions

◦ LS is not statistically based # no probabilistic assumptions are made
about the data, no need for knowledge of a pdf or second order stats

◦ We only need to assume a deterministic signal model

◦ Usually easy to implement, either in a block–based or sequential manner
# this amounts to the minimisation of a quadratic cost function

◦ Within the (LS) approach we attempt to minimise the squared difference
between the observed data and the assumed model of noiseless data

◦ Rigorous statistical performance cannot be assessed without some
specific assumptions about probabilistic structure in the data
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Motivation: A simpler model often generalises better
Consider two models for x[n] = A+Bn+ q[n] (q  noise)
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R Model is more useful than an exact fit!

← consistent
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But, careful with over–fitting (see Appendix 1)

Least squares overfitting.m Least Squares Order Selection Interactive.m

Data considered was a noisy line: x[n] = A+Bn+ q[n], q ∼ N (0, σ2)

R So, the correct data model was LS of order–1 (blue line in the figures below)
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Observations of x[n] = A + Bn + w[n] (blue dots)
and LS estimates of varying order

Raw data
Order-0: error power =177.09
Order-1: error power =130.7
Order-7: error power =122.94
Order-15: error power =106

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
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New observations of x[n] = A + Bn + w[n] (orange dots)
and old LS estimates of varying order

Raw data
Order-0: error power =165.95
Order-1: error power =100.1
Order-7: error power =115.13
Order-15: error power =120.65

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn

R Order–7 and Order–15 Least Squares (LS) fits to the data gave a lower “within–sample”

training error power than the correct Order–1 fit (122 and 106 versus 130) (left panel)

R But this leads to over–fitting, i.e. worse extrapolation (inference) on “out-of-sample” test

data from the same generative model (120 for Order–15 vs 100 for Order-1) (right panel)
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Data model and the Least Squares Error (LSE) criterion
no probabilistic assumptions made about the data

The signal s[n] is assumed to be generated by a deterministic model which
depends upon an unknown parameter θ or a vector parameter θ.

bation

θ

x[n]s[n]

noise model

inaccuracies

signal

model

pertur−

Least squares data model

The observed signal x[n] is subject to:

◦ external noise q[n]

◦ model inaccuracies

No probabilistic assumptions!

Only signal model assumed # wide
range of applications.

θ

errormodelsignal 

deterministic

assumed

input

observed

noisy

−
+

Σ

e[n]

model

signal s[n]

x[n]

J(θ) =

N−1∑
n=0

e2[n]=

N−1∑
n=0

(x[n]− s[n]︸ ︷︷ ︸
e[n]

)2

LSE objective: min
θ
J(θ) ≡ arg min

θ
J(θ)

◦ The LS estimator of θ finds that value

of θ which makes the model output s[n]

closest to the observed data x[n];

◦ The closeness is measured by LS error

criterion (error power) J(e2) = J(θ).
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Example 1: DC Level in WGN

Our old example: DC level in WGN (cf. MLE needs an assumed pdf)

Data model: s[n; θ] = A

Measurement model: x[n] = s[n; θ] + q[n] = A+ q[n], q[n] # any noise

LSE formulation:
J(A) =

N−1∑
n=0

(x[n]−A)2

LSE solution:

set the derivative to zero
dJ(A)

dA
= −2

N−1∑
n=0

(x[n]−A) = 0

the LS estimator : Â =
1

N

N−1∑
n=0

x[n] is a MVU estimator

We cannot claim optimality in the MVU sense, except for the
Gaussian noise q ∼ N (0, σ2). All we can say is that the LSE
estimator minimises the sum of squared errors (error power).

R Still, this leads to a very powerful and practically useful class of estimators.
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The method of Least Squares is very convenient
how do we use it in practice?

1. Problem with signal mean. If the noise is not zero–mean, then the
sample mean estimator actually models x[n] = A+ q[n] + q′[n]

q[n] ∼ nonzero mean noise q′[n] ∼ zero mean noise → E{x[n]} = A+ E{q[n]}
R The presence of non-zero mean noise q[n] biases the LSE estimator, as

the LS approach assumes that the observed data are composed of a
signal (described by a deterministic model) and zero mean noise.

2. Nonlinear signal model. For instance s[n] = cos 2πf0n, where the
frequency f0 is to be estimated. The LSE criterion

J(f0) =

N−1∑
n=0

(x[n]− cos 2πf0n)2

is highly nonlinear in f0 → closed form minimisation is impossible.
◦ However, for s[n] = A cos 2πf0n, if f0 is known and A is unknown,

then we can still use the LS method, as A is “linear in the data”

◦ Separable least squares. When estimating both A and f0, the error
is quadratic in A and non-quadratic in f0  minimize J wrt A
for a given f0, reducing to minimising J over f0 only (see Slide 23).
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Geometric interpretation & Example 2: Fourier analysis
Recall, our cost function: J(θ) =

∑N−1
n=0 e

2[n] =
∑N−1

n=0 (x[n]− s[n]︸ ︷︷ ︸
e[n]

)2 = eTe

Consider a signal model s[n]=a cos 2πf0n+b sin 2πf0n, with f0 known.

Task: Determine the unknown parameters, that is, the amplitudes a and b.

Solution: With f0 known and θ = [a, b]T , we have
s[0]
s[1]

...
s[N − 1]


︸ ︷︷ ︸

s

=


1 0

cos 2πf0 sin 2πf0
... ...

cos 2πf0[N − 1]︸ ︷︷ ︸
h1

sin 2πf0[N − 1]︸ ︷︷ ︸
h2


[
a
b

]
︸ ︷︷ ︸
θ

=
[
h1 |h2

]︸ ︷︷ ︸
H

[
a
b

]
︸ ︷︷ ︸
θ

R We must assume that H is full rank otherwise multiple θ map to the same s

s = ah1+bh2 (linear combination of h1 & h2); error e = x−s = x−Hθ

In general, s = Hθ ⇔ s =
[
h1 | · · · |hp︸ ︷︷ ︸
columns of H

][
θ1, . . . , θp

]T
=
∑p
i=1 θihi

R Signal model is a linear combination of “signal space” basis vectors {h1, . . . , hp}

and the Least Squares (LS) cost is given by J(θ) =
(
x−Hθ

)T (
x−Hθ

)
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Geometric interpretation # continued
the signal vector s is a linear combination of the columns of H

This can be rewritten in a more elegant form. Assume θ = [θ1, . . . , θp]
T .

Recall that the Euclidean length ‖ · ‖2 of a general N × 1 vector
q = [q1, q2, . . . , qN ]T ∈ RN×1 is given by

‖ q ‖2=

√√√√ N∑
i=1

q2
i =

√
qTq =

√
< q,q >

Then, for q = a− b, the square distance between a = x and b = Hθ is

J
(
θ
)

=
(
x−Hθ

)T (
x−Hθ

)
=
∥∥x−Hθ

∥∥2

2
=
∥∥x− p∑

i=1

θihi
∥∥2

2

R The LSE attempts to minimise the square of the distance between the
measured (noisy) data vector, x, and the signal estimate, ŝ, given by

ŝ =
∑p
i=1 θ̂ihi

R The signal estimate, ŝ, resides in a p–dimensional subspace, Sp, spanned by
the columns h1, . . . ,hp of H (range of H). For LS estimation, N > p.
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Geometry of LSE: Vector space projections
signal dimension is lower than measurement dimension (signal lives in a subspace)

R The observation, x ∈ RN×1, resides in RN , while signal vector, s, lies in a
p-dimen. subspace Sp ⊂ RN . For example, for N=3 and p = 2, we have:

ε=

h

hh1

1h

subspace spanned

by

x

−

2

x ŝ

S
2

a) Signal subspace b) Orthogonal projection to determine signal estimate

ŝ

={ }, 2 S
2

ε

~ The vector in S2 which is closest

to x in the Euclidean sense is the

component ŝ ∈ S2, that is, the

orthogonal projection of x onto

S2, ŝ = Px, P# projection matrix.

~ Two vectors are orthogonal if their

scalar product xTy = 0

~ Therefore, to determine ŝ, we use

so-called orthogonality condition:

ε = (x−ŝ) ⊥ H ⇔
(
x−ŝ

)
⊥ S2

ε ⊥ S2 ⇔ ε ⊥ h1 & ε ⊥ h2 (a) :
(
x− ŝ

)
⊥ h1 ⇒

(
x− ŝ

)T
h1 = 0

(b) :
(
x− ŝ

)
⊥ h2 ⇒

(
x− ŝ

)T
h2 = 0
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Finally: LS solution for our Fourier example
Observe: ŝ = projection of x onto Range(H)

Letting ŝ = θ̂1h1 + θ̂2h2 = Hθ̂ (here HN×2, θ̂2×1)

and based on the orthogonality conditions (a) and (b) (previous slide)(
x− θ̂1h1 − θ̂2h2

)T
h1 = 0 ≡ εTh1 = 0(

x− θ̂1h1 − θ̂2h2

)T
h2 = 0 ≡ εTh2 = 0

Since H = [h1 |h2], θ̂ = [â, b̂]T , and ε = x−Hθ̂, the above conditions
can be combined into a vector/matrix form as (use uTv = vTu)

εTH = 0T so that HTε = 0 and HT (x−Hθ̂) = 0

R The equivalent system HTH θ̂ = HTx is called the LS normal equations.

Solve for the unknown vector parameter, θ̂, to yield the general Least
Squares Estimate (LSE) for any dimension, p, of the parameter space

θ̂ls =
(
HTH

)−1
HTx (HN×p, θ̂p×1)

In our Fourier example, θ̂ls = [â, b̂]T is 2× 1-dimensional, and H is (N × 2)-dim.
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Back to the geometry of Least Squares: General case
We know that in a general case, θ = [θ1, . . . , θp]

T

In general s = θ1h1 + θ2h2 + · · ·+ θphp = Hθ

Model: Matrix H multiplies true parameters, θ ∈ Rp, to yield the signal s.

𝑅! 𝑅"

𝜽 𝒔

𝒙𝜽$

𝑯

(𝑯#𝑯)$𝟏𝑯#

𝑅𝑎𝑛𝑔𝑒(𝑯) ⊂ 𝑅!, N > p

s lies in Sp, a subspace of RN

x can lie anywhere in RN

← Acts as an inverse from RN back to Rp

The estimated parameter vector, θ̂ ∈ Rp is obtained from the noisy
observations, x = s + q, x ∈ RN , in the form

θ̂ls =
(
HTH

)−1
HT︸ ︷︷ ︸

pseudoinverse of H

x (HN×p, θ̂p×1)
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Benefits of orthogonal basis functions (geometry)

Orthogonal basis Non–orthogonal basis

◦ Largest volume is possible only for an orthogonal set of bases!

◦ This also greatly simplifies the maths related to the various estimation
algorithms which rest upon vector space projections (see e.g. Slide 16).

◦ The best scenario is if we have orthonormal bases (orthogonal and unit
length), as elaborated in the sequel.

This also justifies our preference for linear systems and orthogonal
bases, wherever possible.
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Computational advantages of having orthogonal bases
(columns of H)

For a general case of θ = [θ1, . . . , θp]
T , the LS estimator finds

θ̂ls =
(
HTH

)−1
HTx where H = [h1 |h2 | · · · |hp]N×p so that

HTH =


hT1 h1 hT1 h2 · · · hT1 hp
hT2 h1 hT2 h2 · · · hT2 hp

... ... . . . ...
hTph1 hTph2 · · · hTphp

 =


〈h1,h1〉 〈h1,h2〉 · · · 〈h1,hp〉
〈h2,h1〉 〈h2,h2〉 · · · 〈h2,hp〉

... ... . . . ...
〈hTp ,h1〉 〈hTp ,h2〉 · · · 〈hTp ,hp〉



for orthonormal columns 〈hi,hj〉 = δij ⇒ HTH =


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

 = I

In that case θ̂ = HTx and ŝ = Hθ̂ = HHTx

R Easy, no inversion needed! Also, for every unknown parameter, θi = hTi x

R θi = hTi x is a projection of the observed data x onto each column of H
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Example 2: Fourier analysis # continued (we have H = [h1|h2])

For more detail see Example 9 in Lecture 4 (NB: power of A cosωn is A2/2)

For f0 = k/N , with k = 1, 2, . . . , N/2− 1, and large N , the scalar product
of the columns of the observation matrix H becomes (orthogonality)

hT1 h2 =

N−1∑
n=0

cos
(
2π

k

N
n
)

sin
(
2π

k

N
n
)

= 0 ⇔ h1 ⊥ h2 (orthogonal)

while hT1 h1 =
N

2
hT2 h2 =

N

2
(from power of cos and sin)

Combining the above results gives HTH = N
2 I and therefore

θ̂ =

[
â

b̂

]
=
(
HTH

)−1
HTx =

2

N
HTx =

[
2
N

∑N−1
n=0 x[n] cos(2π kNn)

2
N

∑N−1
n=0 x[n] sin(2π kNn)

]

R For orthonormal columns,
(
HTH

)−1
HTx = HTx and ŝ = Hθ̂ = HHTx

In general, the columns of H are not orthogonal, and the signal estimate

ŝ = Hθ̂ = H
(
HTH

)−1
HT︸ ︷︷ ︸

projection matrix P

x = Px (Appendix 8)
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Linear least squares in a nutshell

Assume a linear observation model x = Hθ + q. Then the cost function

J(θ) =

N−1∑
n=0

(
x[n]− s[n, θ]

)2
=
(
x− Hθ︸︷︷︸

s

)T(
x− Hθ︸︷︷︸

s

)
(∗)

= xTx− 2xTHθ + θTHTHθ (H is full rank)

The gradient of the cost function is then

∇θJ(θ) =
∂J(θ)

∂θ
= −2HTx + 2HTHθ = 0

1. The LSE estimator of θ becomes θ̂ =
(
HTH

)−1
HTx

2. The minimum LS cost (replace θ̂ into J(θ) in (*) above) is therefore

Jmin=J(θ̂)=xT
[
I−H

(
HTH

)−1
HT
]
x︸ ︷︷ ︸

θ̂

=xT
(
x− Hθ̂︸︷︷︸

ŝ︸ ︷︷ ︸
ε

)
=xTx− xTHθ̂
↑

power of x
↖
cross-corr(x, ŝ)
≈ power of ŝ

R Jmin represents the error power which is not explained by the model for ŝ
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Linear least squares in a nutshell, continued
Matlab: Least Squares Order Selection Interactive.m

◦ The LS approach can be interpreted as the problem of approximating a
data vector x ∈ RN by another vector ŝ which is a linear combination of
vectors {h1, . . . ,hp} that lie in a p-dimensional subspace S ∈ Rp ⊂ RN
◦ The problem is solved by choosing ŝ so as to be an orthogonal projection

of x on the subspace spanned by hi, i = 1, . . . , p (S=range of H)
◦ The LS estimator is very sensitive to the correct deterministic model of

s, as shown in the figure below for the LS fit of x[n] = A+Bn+ q[n].
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Observations of x[n] = A + Bn + q[n] (blue dots) and LS estimates of varying order

Raw data
Order-0: error power =195.05
Order-1: error power =98.39
Order-7: error power =94.11

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
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Summary: The role of the model order p
Recall the AR process order x(n) = a1x(n− 1) + · · ·+ apx(n− p) + q(n)

Follows naturally from the problem of fitting a polynomial to the data
(recall the Weierstrass theorem # any continuous differentiable function
can be approximated arbitrarily well with a high-enough order polynomial)

◦ Observe from the previous slide that Jmin is a non-increasing function
of the model order p.

◦ The choice p = N is a perfect fit to the “in-sample” data, but overall
we overfit, that is, we also fit the noise (see Slide 18 and Slide 5).

◦ Recall the penalty-based MDL and AIC strategies in AR modelling #
we choose the simplest model order p that is adequate for the data.

◦ In practice, if we have a specified Jmin, then we can gradually
increase p until we reach the required Jmin.

◦ To save on computation, we can further exploit the geometry of
learning in OLS, and use an order-recursive LS algorithm to compute
the model of order (p+ 1) from the model of order p. (see Appendix 7)
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Other forms of Least Squares # towards weighted LS
(assigning importance to data samples)

Recall that the LS estimator aims to minimise J =
∑N−1
n=0 e

2(n) = eTe.

e
T
e = [e0, e1, . . . , eN−1]


e0

e1
...

eN−1

 = e
T

I e = [e0, e1, . . . , eN−1]


1 0 · · · 0

0 1 · · · 0
... ... . . . ...

0 0 · · · 1



e0

e1
...

eN−1


We can also assign weighting to the errors, J =

∑N−1
n=0 wn e

2(n) = eTWe

[e0, e1, . . . , eN−1]


w0 0 · · · 0

0 w1 · · · 0
... ... . . . ...

0 0 · · · wN−1



e0

e1
...

eN−1

 = e
T

W e

For wn =
1

σ2
n

⇒ e
T

W e = [e0, e1, . . . , eN−1]


1

σ2
0

0 · · · 0

0 1

σ2
1
· · · 0

... ... . . . ...

0 0 · · · 1

σ2
N−1



e0

e1
...

eN−1


↑ see Slide 21 and L4 Example 5

R If w is a forgetting factor, λ, then J(n) =
∑n

k=0λ
n−ke2(k) and W= diag(λo, . . . , λn)
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Weighted Least Squares (WLS)
see also Example 5 in Lecture 5, and Quadratic Forms in Appendix 6b & in Lec. 1

To emphasize the contribution of those data samples that are deemed to
be more reliable, we can include an N ×N positive definite (and hence
symmetric) diagonal weighting matrix, W, so that

J(θ) = eTW e =
(
x−Hθ

)T
W
(
x−Hθ

)
It is now straightforward to show that the weighted least squares solution

θ̂ =
(
HTWH

)−1
HTWx & Jmin = xT

(
W−WH

(
HTWH

)−1
HTW

)
x

Example 3: For a diagonal W with elements [W]ii = wi > 0, the LS
error of the DC level estimator becomes

J(A) =

N−1∑
n=0

wn
(
x[n]−A

)2
If x[n] = A+ q[n], where the zero-mean uncorrelated noise (not i.i.d., any
distribution) q[n] ∼ (0, σ2

n), it is reasonable to choose wn = 1/σ2
n, to give

Â =
(N−1∑
n=0

x[n]

σ2
n

)(N−1∑
n=0

1

σ2
n

)−1

Remark: If we take W = C−1, then the WLS yields the BLUE estimator.
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Exponentially weighted LS # LS with a “forgetting
factor” or “fading memory” (see Slide 20)

◦ The standard LS cost function is best suited for statistically stationary
environments, as it takes into account the whole data history.

◦ In the original cost function all the errors are weighted equally. This is
not adequate in statistically nonstationary environments, where distant
past is not contributing to learning nor is it statistically relevant.

◦ In order to deal with nonstationary environments, we can modify the LS
error criterion to promote forgetting of old data (weighted LS), as

J(n) =

n∑
k=0

λn−ke2(k) =
[
en, en−1, . . . , e0

]
λ0 0 · · ·
0 λ1 · · ·
... . . . ...
0 · · · λn



en
en−1

...
e0

 = eTWe

◦ The forgetting factor λ ∈ (0, 1], but typically λ > 0.95.

◦ Through the forgetting factor, λ, the ’old’ and often irrelevant/unreliable
information is gradually forgotten # suitable for non–stationary environ.

◦ The forgetting factor introduces an effective data window length of 1
1−λ
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LSE: Opportunities in practical applications # numerous

◦ Constrained least squares. We can incorporate a set of linear
constraints in the form Aθ = c, to have a constrained LS criterion

Jc(θ) =
(
x−Hθ

)T(
x−Hθ

)
− λ

(
Aθ − c

)
using e.g. Lagrange optimisation as above (first term # LS solution θ̂).

◦ Nonlinear least squares. The signal model is nonlinear, i.e. s 6= Hθ
We can either linearise the problem (e.g. using Taylor series expansion)
or solve it numerically in some iterative or recursive fashion. These
methods are often prone to convergence problems if highly nonlinear.

◦ Dealing with nonlinear least squares # parameter transformation.
Example: Consider a nonlinear problem of estimating the amplitude
and phase of a sinusoid s[n] = A cos(ωn+ φ), n = 0, . . . , N − 1

 Transform the problem into A cos(ωn+ φ) = A cosφ cosωn−A sinφ sinωn

Variable swap. Let α1 = A cosφ and α2 = −A sinφ, and α = [α1, α2]T .

Now, the signal model becomes linear in α, that is, s = Hα

Use LS to obtain α̂ =
(
HTH

)−1
HTx (see Lecture 5 Example 10)

where A =
√
α2

1 + α2
2 and φ = arctan(−α2/α1)
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LS estimation in the big picture of estimators

Consider the linear model x = Hθ + w

Estimator Model Assumption Estimate

LSE x = Hθ + q no probabilistic assumptions θ̂ls =
(
HTH

)−1
HTx

BLUE x = Hθ + q SOS of q, unknown pdf θ̂blue =
(
HTH

)−1
HTx

MLE x = Hθ + q need to assume pdf of q θ̂mle =
(
HTH

)−1
HTx

MVUE x = Hθ + q need to know pdf of q θ̂mvu =
(
HTH

)−1
HTx

LSE and orthogonal projections:

Signal model is s = Hθ # the estimate is a projection of x onto Sp ∈ Rp ⊂ RN

ŝ = Hθ̂ = H
(
HTH

)−1
HTx = Px

where P = H
(
HTH

)−1
HT is called the projection matrix. Since the

estimated signal ŝ = Px ∈ Sp, it follows that P(Px) = Px.

Therefore, any projection matrix is idempotent, that is P2 = P, and it is
symmetric and singular with rank p (many x(n) can have the same projection).
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From Autoregression to Least Squares regression

Auto-regression whereby we regress a variable x[n] onto its own past
values x[n− 1], . . . , x[n− p], in the form (with q[n] as driving white noise)

Model: x[n] = a1x[n− 1] + a2x[n− 2] + · · ·+ apx[n− p] + q[n]

Estimate: x̂[n] = â1x[n− 1] + â2x[n− 2] + · · ·+ âpx[n− p]

Multiple regression onto p different variables. The population model
has the following general form, where e[n] are the residuals

Model: y[n] = α+ β1x1[n] + β2x2[n] + · · ·+ βpxp[n] + e[n]

The estimate ŷ[n] based on the multiple regression model is then

ŷ[n] = α̂+ β̂1x1[n] + β̂2x2[n] + · · ·+ β̂pxp[n]

As before, α represents the intercept, but the β’s are now the partial
correlation coefficients
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Least Squares Regression (LSR): A brief summary
Linear regression # relationship between two variables based on a line of best fit

Consider a line fit: y = β x+ e⇐⇒ yi = β xi + ei i ∈ {1, . . . , N}
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Least Squares Regression
Observed Data points
Regressed Slope = 2.89 
Regressed Intercept = 1.10

↖ Regression line

◦ Least Squares regression (LSR)
aims to minimise the sum of the
squares of the differences between
the observed and predicted values

argmin
β
||y−βx||22 ⇐⇒ argmin

β
||e||22

◦ We say that we regress y onto x,
with β as the regression coefficient.

Common terminologies for Least Squares Regression
Econometrics Statistics Machine Learning

y Dependent Var., Estimate Explained V., Response, Regressand True Label, Criterion

β Coefficients Coefficients Parameters

x Independent Var., Predictor Explanatory Var. Regressor Features, Predictors

e Residual Error Prediction Error
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Example 4a: Capital Asset Pricing Model (CAPM)
W. Sharpe was awarded the Nobel Prize for economy in 1990 for CAPM

The CAPM is given by the regression model

E(Ri) = Rf + β
(
E(Rm)−Rf

)
+ e

expected return of asset i↗ risk-free ↑ ↖ residual (unpredictable)↑ exposure to market

◦ Rf is the risk-free rate of interest, e.g. interest

arising from government bonds; Rf is assumed

to be 3% Annual Percentage Rate (APR);

◦ β (the beta) # sensitivity of the expected

excess asset returns, E(Ri)-Rf , to excess market

returns, E(Rm)-Rf , (β=exposure to market).

◦
(
E(Ri)−Rf

)
is known as the risk premium;

◦ E(Rm) is the expected return of the market;

◦
(
E(Rm) − Rf

)
is the market premium or

excess return of the market (difference between

the expected market return and the risk free).
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S&P 500 index and regress for β.

R So CAPM is actually fitting a line to noisy data! # LS regression
Large β # a less resilient company Small β # lower exposure to market risk
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Example 4a: Capital Asset Pricing Model (CAPM), cntd.
Notice that we employ a block-LS approach, over blocks of 22 days

Asset return Ri, risk-free interest rate Rf , and market return Rm
(S&P500 return) are all known. We consider log-returns.

R We can now perform LS regression to obtain the value of β.

Each month has 22 trading days. Then, the CAPM states thatRi;day1 − Rf

Ri;day2 − Rf
...

Ri;day22 − Rf

 = β

Rm;day1 − Rf

Rm;day2 − Rf
...

Rm;day22 − Rf

+

 e1

e2
...

e22

 ⇒ ri = β rm + e

Therefore, the LS estimate: β̂ = (rm
Trm)−1rm

T ri
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Example 4b: Fama-French three-factor model (Problem Sets)

NB: β here is not equal to β in CAPM, due to two additional factors

The model is given by (E. Fama won Nobel Prize in Economics in 2013)

Ri = Rf + β (Rm −Rf) + bs · SMB + bv ·HML+ e

where SMB measures the historic excess returns of small caps over big
caps and HML the value stocks over growth stocks. bs and bv are coeffs.

LS Regression of Fama-French: We regress for the three beta’s: The
market is the S&P 500 index; Rf is assumed to be 3% APR; Intercept = 0.
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Sequential least squares (SLS)

Oftentimes data are collected sequentially (streaming data), namely one
point at a time. To process such data, we can either:

◦ Wait until all the data points (samples) are collected and make an
estimate of the unknown parameters # block-based approach, or

◦ Refine our estimate as each new sample arrives # sequential approach

We shall now modify the LS method from a batch to a sequential mode.

Objective:

Suppose we have a least squares estimate, θ̂N−1, which is based on
the full signal history {x[0], x[1], . . . , x[N − 1]}.
We wish to produce a new estimate, θ̂N , upon observing the new
data sample, x[N ], but without using full dataset {x[0], . . . , x[N ]}.

Question: Can we update the existing solution θ̂N−1 sequentially,
based only on θ̂N−1 and x[N ], that is

θ̂N = f
(
θ̂N−1, x[N ]

)
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Example 5: DC level in uncorrelated zero mean noise
(new notation, Â[N ] = “estimate of A at a time instant N”)

Consider the problem of LS estimation the DC level in noise, for which we
have obtained

Â[N − 1] =
1

N

N−1∑
n=0

x[n]

If we now observe the new sample x[N ], then the new, enhanced, estimate

Â[N ] =
1

N + 1

N∑
n=0

x[n] =
1

N + 1

(N−1∑
n=0

x[n] + x[N ]
)

Â[N ] =
N

N + 1
Â[N − 1] +

1

N + 1
x[N ] # a recursive estimate!

R Similarly, to compute the minimum LS error recursively (Appendix 2)

from Jmin[N − 1] =

N−1∑
n=0

(
x[n]− Â[N − 1]

)2
Upon arrival of x[N ], re-arrange Jmin[N ] =

N∑
n=0

(
x[n]− Â[N ]

)2
(∗)
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Example 5: DC level in noise # a more convenient form
of the sequential estimator and the associated MSE

Clearly, the new estimate Â[N ] can be calculated from the old estimate
Â[N − 1], upon receiving the new observation x[N ].

The solution can be rewritten in a more physically insightful form, as

Â[N ] = Â[N − 1] +
1

N + 1

(
x[N ]− Â[N − 1]

)
new estimate = old estimate + gain× error︸ ︷︷ ︸

correction

The minimum LS error then becomes (show yourselves, or see Appendix 2)

Jmin[N ] = Jmin[N − 1] +
N

N + 1

(
x[N ]− Â[N − 1]

)2

R Notice that Jmin is “cumulative” and increases with the number of data
points, N , as we are trying to fit more points with the same number of
parameters (over-determined system).
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Example 6: Weighted LS for the estimation of DC level
in noise in a sequential form (see Example 9 in Lecture 4 & Slide 21)

Start from
J(A) =

N−1∑
n=0

wn
(
x[n]−A

)2
If x[n] = A+ q[n], where the zero-mean uncorrelated noise (any
distribution) q[n] ∼ (0, σ2

n), it is reasonable to choose wn = 1/σ2
n, to give1

Standard LS solution : Â[N ] =

∑N
n=0

x[n]
σ2
n∑N

n=0
1
σ2
n

Its corresponding sequential form then becomes

Â[N ] = Â[N − 1] +

1
σ2
N∑N

n=0
1
σ2
n

(
x[N ]− Â[N − 1]

)
or new estimate = old estimate + gain × error

In practice, we may employ a forgetting factor λ < 1, to give J(A)=
∑N−1

n=0 λ
N−1−n e2(n)

1In standard weighted LS, with a diagonal weighting matrix W we would have [W]ii = 1
σ

2
i

.
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Observations about weighted LS: Noisy sample
How does a new noisy sample, x[N ], with a large σ2

N influence the estimation?

Notice that the gain reflects a relative match between the current
estimate and the new data, and depends on our confidence in the
new data sample, x[N ], given by 1/σ2

N .

Two extreme cases:

◦ If σ2
N →∞, i.e. the new sample is extremely noisy, then we

automatically do not correct the previous LSE

◦ If σ2
N → 0, that is, the new sample is noise–free, then Â→ x[N ], and

all previous samples are discarded

R If we assume x[n] = A+ q[n], with {q[n]} zero mean uncorrelated noise
for which the variance of each q[n] is σ2

n, n = 0, . . . , N − 1, then the
LSE is also the BLUE and

var
(
Â[N − 1]

)
=

1
N−1∑
n=0

1

σ2
n

(Lecture 5 slide 23)

c© D. P. Mandic Statistical Signal Processing & Inference 34



Weighted LS: Influence of “goodness” of the estimate Â

◦ The gain for the N-th update can be rewritten as (0 ≤ K[N ] ≤ 1)

K[N ] =

1
σ2
N∑N

n=0
1
σ2
n

=

1
σ2
N

1
σ2
N

+ 1

var
(
Â[N−1]

) =
var
(
Â[N − 1]

)
var
(
Â[N − 1]

)
+ σ2

N

◦ Bad estimate, good data. If var
(
Â[N − 1]

)
� σ2

N , then new data is
very useful, K[N ] ≈ 1, and the correction based on new data is large

◦ Good estimate, bad data. Conversely, is var
(
Â[N − 1]

)
� σ2

N , then
new data has little use, K[N ] ≈ 0, and the correction is small

◦ The recursive expression for the variance can be calculated as

var
(
Â[N ]

)
=
(

1−K[N ] var
(
Â[N − 1]

))
R Notice that the gain K[n] is also a random variable.
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Summary of sequential DC level estimators, both
weighted and standard DClevel.m

Estimator update: Â[N ] = Â[N − 1] +K[N ]
(
x[N ]− Â[N − 1]

)
Weighted: K[N ] =

var
(
Â[N − 1]

)
var
(
Â[N − 1]

)
+ σ2

N

Standard: K[N ] =
1

N + 1

Variance update: var
(
Â[N ]

)
=
(
1−K[N ]

)
var
(
Â[N − 1]

)
Initialisation: Â[0] = x[0], var

(
Â[0]

)
= σ2

0

Example 7: Perform sequential DC level estimation for A = 10, σ2 = 5
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Towards the vector parameter case: A noisy line example
(see Slides 26 – 28 here, and Lecture 4)

The observed data: x[n] = A+Bn+ q(n) ≡ x = Hθ + q

where x = [x0, x1, . . . , xN−1]T , q = [q0, q1, . . . , qN−1]T , and θ = [A B]T

Then, for N data points

HN−1 =


1 0
1 1
... ...
1 N − 1


N×2

n

noisy line

ideal noiseless line

0

A

x[n]

while, for N + 1 data points

HN =


1 0
1 1
... ...
1 N


(N+1)×2

Thus, for (N + 1)th data point

HN =


1 0
1 1
... ...
1 N − 1
1 N

=

[
HN−1

1 N

]
(N+1)×2

↖ grows with N

c© D. P. Mandic Statistical Signal Processing & Inference 37



Sequential LSE for a vector parameter

Consider an input x[n]=
[
x[0], x[1], . . . , x[n]

]T
 H[n] =

H[n− 1]n×p

hT [n]1×p


Note that the size of the observation matrix H grows with time.

◦ Estimator update:

θ̂[n] = θ̂[n− 1] + K[n]
(
x[n]− hT [n] θ̂[n− 1]︸ ︷︷ ︸

error

)
new estimate ↑ ↑ old estimate ↖ gain

where the gain factor is given by

K[n] = C[n− 1]h[n]
[
σ2
n+ hT [n]C[n− 1]h[n]

]−1

↑ var. of the most recent sample◦ Covariance matrix update:

C[n] =
(
I−K[n]hT [n]

)
C[n− 1]

◦ Initialisation: C[−1] = α I, α→ large, θ[−1] = 0
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Example 8: Sequential LS for the parameters of a line
zero- and first-order sequential least-squares estimator for x[n] = A+Bn+ q[n]

◦ Measurement x[n] =A+Bn+ q[n] and the vector parameter θ̂[n] =
[
Â, B̂

]>
◦ Estimator update: θ̂[n] = θ̂[n− 1] + K[n]

(
x[n]− hT [n]Φ[n]θ̂[n− 1]

)
where Φ[n] =

[
1 n

0 1

]
and h[n] =

[
1

0

]
◦ Initialisation: C[−1] = α I, α > 100σ2

0, θ̂[−1] = [0, 0]T

◦ Update (Ricatti equations):

M[n] = Φ[n]C[n− 1]Φ
T
[n]

K[n] = M[n]h[n]
[
h
T
[n]M[n]h[n] + σ

2
n

]−1

C[n] =
(

I−K[n]h
T
[n]
)

M[n]

◦ The gain factor is updated as K[n] =

[
2(2n−1)
n(n+1)

6
n(n+1)

]

and the covariance matrix as C[n] =

[
2(2n−1)
n(n+1) σ

2
n 0

0 12
n(n2+1)

σ2
n

]
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Example 8: Continued
Matlab: Sequential LS Order Interactive Local.m
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Example 9: Least Squares (LS) and Sequential Least
Squares (SLS) for non-stationary data LS and SLS 1.ipynb

Consider the case where the DC level changes its value from A = 2 to
A = 4, at the sample index n = 125. This is a source of non–stationarity.

LS: Â =
1

N

N−1∑
n=1

x[n] SLS: Â[N ] = Â[N − 1] +
1

N + 1

(
x[N ]− Â[N − 1]

)
Sliding window LS: Calculate the LS estimate over an L=20 samples long
sliding window, termed Sliding LS, start as Â[19] = 1

20

∑19
n=0 x[n]. Plot the

estimate, then shift the window by one sample, and repeat until N = 250.
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Case study: Adaptive Noise Canceller (ANC)
a common application of adaptive learning in order to reduce unwanted noise

Example 1: A common problem is the removal of artefacts in sensor data
in biomedicine, or removal of 50 Hz interference in instrumentation.

Example 2: We may wish to remove background noise in aircraft and car
audio systems (noise cancelling headphones, road noise cancellation).

In our case:

θ = [hn(0), . . . , hn(p− 1)]T

Configuration of a general noise canceller

◦ The reference channel takes the role of the traditional input

◦ The primary channel, that is the noisy signal of interest, takes the role
of the desired input (teaching signal).

◦ The residual, ε, takes the role of the “system output”.
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ANC # line interference removal

◦ Primary channel: ’signal’ + ’noise to be cancelled’ (for example, the
50 Hz mains interference in an acquired ECG signal)

◦ Reference channel: Noise source which is related to the noise in the
primary channel (non-zero correlation)

◦ Filter coefficients are updated sequentially to make x̂[n] as close to x[n]

as possible, in the LS sense, with x̂[n] =
∑p−1
l=0 hn(l)xR(k − l)

◦ We therefore desire to minimise the power of the residual, ε[n], that is

J [n] =

n∑
k=0

ε2[k] =

n∑
k=0

(
x[k]− x̂[k]

)2
=

n∑
k=0

(
x[k]−

p−1∑
l=0

hn(l)xR[k − l]
)2

◦ Filter coefficients (weights) can then be determined as a solution to the
sequential LS (SLS) problem
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ANC # some practical considerations

The signal and noise are typically statistically nonstationary, and to deal
with that we introduce the weighting in the form of a “forgetting factor”
λ, for which the range 0 < λ < 1, so that the cost function becomes

J [n] =

n∑
k=0

λn−k
(
x[k]−

p−1∑
l=0

hn(l)xR[k − l]
)2

The solution will not change if we minimise instead (see S. Kay’s book)

J
′
[n] =

n∑
k=0

1

λk

(
x[k]−

p−1∑
l=0

hn(l)xR[k − l]
)2

Notice that J [n] is different from J ′[n], but the solutions are identical.

R This is also the form of the standard weighted LS problem.

The sequential LS vector estimator of the filter coefficients is denoted by

θ̂[n] =
[
ĥn(0), ĥn(1), . . . , ĥn(p− 1)

]T
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ANC summary # Follows from Slide 35
Notice that here h[n] from Slides 42–43 is replaced by θ̂, to avoid confusion

Input reference vector: xR[n] =
[
xR[n], xR[n− 1], . . . , xR[n− p+ 1]

]T
Weights: σ2

n = λn weighting coefficients w R forgetting factor λ

Error:
e[n] = x[n]−

∑p−1
l=0 ĥn−1(l)xR[n− l] = x[n]− xTR[n] θ̂[n− 1] = en|n−1

error at time [n] based on parameters at time [n-1] ↑

Estimator update: θ̂[n] = θ̂[n− 1] + K[n]e[n]

where: e[n] = x[n]−
p−1∑
l=0

ĥn−1(l)xR[n− l]

K[n] =
C[n− 1]xR[n]

λn + xTR[n]C[n− 1]xR[n]

C[n] =
(
I−K[n]xT [n]

)
C[n− 1], typically 0.9 < λ < 1

R In LS methods we typically do not know the variances σ2
n for every x[n]. They may be

replaced with a forgetting factor λn. This favours most recent samples. (see Slide 22)
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Example 10: Line noise removal ANC Line Noise Complex Valued

reference xR is correlated with interference but has different amplitude and phase

Consider interference estimation only, that is,
s[n;θ] = 0 and q[n] = 10 cos(2π(0.1)n+π/4.

Primary ch.: x[n] = 10 cos(2π(0.1)n+ π/4)

Reference channel: xR[n] = cos(2π(0.1)n)

Initialisation: θ̂[−1] = 0, C[−1] = 105 I,
and λ = 0.99.

◦ We need two filter coefficients to model the
amplitude and phase of the interference, that
is H[exp(2π(0.1))] = 10 exp(π/4)

The noise canceller must increase the gain of
the reference, xR[n], by 10 and phase by π/4
to match the interference.

Upon solving (ANC performance is on the right)

h[0] + h[1]exp(−2π(0.1)) = 10exp(π/4)

which results in h[0] = 16.8 and h[1] = −12.

R

0 20 40 60 80 100
−10

−5

0

5

10

Sample number, n

In
te

rf
er

en
ce

Interference − line noise

0 20 40 60 80 100
−6

−4

−2

0

2

Sample number, n

E
rr

or

Error − output of ANC

 

 

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

20

Sample number, n

F
ilt

er
 c

oe
ffi

ci
en

ts

Evolution of filter coefficients

h[1]

h[0]

c© D. P. Mandic Statistical Signal Processing & Inference 46



Applications: Adaptive noise cancellation with reference
(such as in noise-canceling headphones on an airplane)

In the adaptive noise cancellation configuration (below right), the variables in the

adaptive filter have the following roles.

Headphones

Reference
microphone, N1

Speech or music
plus additive noise
          s+N0

ANC

BABET.FI?as*..B.oqaBBBBBB
§

z%Ég•!¥÷¥¥¥③B•z@
go

= N̂0 = estimate of cockpit noise

= what you hear= cockpit noise

Input to the filter, is the Reference Noise signal, that is, x(n) = N1(n). The only

requirement is that N1 is correlated with the measurement noise, N0, but not with the

signal of interest, s(n). The filter aims to estimate N0 from N1, that is, y = N̂0.

Teaching signal, d(n), is the noise-polluted signal of interest, s(n) +N0(n), which

serves as the Primary Input to the filter. Since s ⊥ N1, the filter can only yield y = N̂0.

Filter output, y = N̂0, provides the best MSE estimate of the measurement noise, N0,

from the reference noise, N1. The more correlated N1 and N0 the faster the convergence.

Output error, ε = s+N0 − N̂0, serves as a “system output”, whereby the adaptive

filter aims to achieve ε = ŝ ≈ s.
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Example 11: Noise cancelling headphones (λ = 0.99)
Denoising SLS GUI.m
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Example 12: Acoustic feedback cancellation (λ = 0.995)
Denoising SLS GUI.m

↖ 1000 Hz interference

More in the Adaptive Signal Processing and Machine Intelligence course
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Example 12: Acoustic feedback cancellation # role of
the forgetting factor λ Denoising SLS GUI.m

Top panels: Forgetting factor λ = 0.9

↖ 1000 Hz interference

↖ 1000 Hz interference

Divergence↗

Bottom panels: Forgetting factor λ = 0.995
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Lecture summary

◦ The method of least squares is extremely important for practical
applications. Least Squares does not mean fitting a line to the data!

◦ Do not need: Any assumption on the PDF or any other statistics.

◦ Do need: The assumed signal model (which is deterministic). If the
signal model is inaccurate, the LS estimator will be biased & not MVU.

◦ Principle of orthogonality # underpins any subspace method.

◦ Method of LS is easy to implement and straightforward to interpret.

◦ Sequential solutions to the LS problem are very practical, while
Weighted Least Squares allows us to assign “confidence” to samples,
that is, to de–emphasise the contribution from unrealiable samples.

◦ We can also use a forgetting factor to deal with time-varying statistics.

◦ Established methods for dealing with outliers in data (see Appendix 9)

◦ A number of applications of LS theory: Factor models in finance, noise
cancellation, Prony type spectral estimation, and many more, ...
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Summary: Least Squares vs MLE NB: The optimal

MVU estimator and CRLB do not always exist or are impossible to find

Least Squares Estimator

◦ LSE operates when the pdf of
data is unknown; instead, it
assumes a data model

◦ Quite intuitive and has rigorous
geometrical interpretation

◦ No MVU guarantee, but tends
to work well for N > p

◦ Recursive ways to calc. standard
LSE, also admits sequential LS

◦ Allows for the incorporation of
prior– and domain–knowledge
(forgetting factor λ, uncertainty)

◦ Sliding window LS and λ–SLS
can work on non–stationary data

Maximum Likelihood Estimator

◦ Can always be applied once the
pdf is assumed, and does not
restrict the data model (cf. LSE)

◦ It is asymptotically optimal and
MVU (for large data size)

◦ Can be computationally complex
(numerical methods required)

◦ Often biased for small data size;
no guarantee to obtain MVU

◦ Sensitive to outliers, can produce
biased estimates in the presence
of extreme events

◦ It is always possible to find an
MLE, but it may be suboptimal
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Appendix 1: Choosing the correct model order (see Slide 5)

Least squares overfitting.m

Sample index, n
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Observations of x[n] = A + Bn + w[n] (blue dots)
and LS estimates of varying order

Raw data
Order-0: error power =177.09
Order-1: error power =130.7
Order-7: error power =122.94
Order-15: error power =106

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
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New observations of x[n] = A + Bn + w[n] (orange dots)
and old LS estimates of varying order

Raw data
Order-0: error power =165.95
Order-1: error power =100.1
Order-7: error power =115.13
Order-15: error power =120.65

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn

R The LS cost J =
∑
i e

2
i is monotonically non–increasing with an increase in

p. In our example: J0 = 177.09, J1 = 130.7, J7 = 122.94, J15 = 106, . . .

Reason: Model order p = N defines a polynomial a0 + a1x+ · · ·+ aNx
N

which will perfectly fits N data points. Warning: It also fits the noise!

R Indeed, when these models are applied to unseen data (inference), the LS
costs are J0 = 165.95, J1 = 100.1, J7 = 115.13, J15 = 120.65, . . .

In practice, increase order only if Jmin(p)− Jmin(p− 1) > user threshold
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Appendix 2: Derivation of the MMSE and variance for
the sequential estimator of a DC level in noise

Jmin[N ] =

N∑
n=0

(
x[n]− Â[N ]

)2
Jmin[N − 1] =

N−1∑
n=0

(
x[n]− Â[N − 1]

)2

=

N−1∑
n=0

[
x[n]− Â[N − 1]−

1

N + 1

(
x[N ]− Â[N − 1]

)]2
+
(
x[N ]− Â[N ]

)2

= Jmin[N − 1]−
2

N + 1

N−1∑
n=0

(
x[n]− Â[N − 1]

)(
x[N ]− Â[N − 1])

+
N(

N + 1
)2(x[N ]− Â[N − 1]

)2
+
(
x[N ]− Â[N ]

)2
Jmin[N ] = Jmin[N − 1] +

N

N + 1

(
x[N ]− Â[N − 1]

)2
var
(
Â[N ]

)
=

1∑N
n=0

1
σ2
n

=
1∑N−1

n=0
1
σ2
n

+ 1
σ2
N

=
1

1
var(Â[N−1])

+ 1
σ2
N

=
var(Â[N − 1]) σ2

N

var(Â[N − 1]) + σ2
N

=
(

1−
var(Â[N − 1])

var(Â[N − 1]) + σ2
N

)
var(Â[N − 1])

=
(
1−K[N ]

)
var(Â[N − 1])
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Appendix 3: Probability vs. Statistics
(for discrete RVs, E{X} =

∑I
i=1 xiPX(xi), where PX is the probability function)

Probability: A data modelling view, describes how data will likely behave

for example: average = E{X} =

∫ ∞
−∞

x pX(x) dx no data here

Notice that there is no explicit mention of data here # x is a dummy
variable and pX is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave

for example: average =
1

N

N−1∑
n=0

x[n] no pdf here

Vagaries of probability: P (x0 < X < x0 + ∆x) =
∫ x0+∆x

x0
pX(x)dx

)

o xo ∆x

x1P(X= )=0

x1

xo xo

p
X

x

(x)

+

but P( < X < + ∆x

x

Notice that

P (X = x1) = 0

This appears odd, but otherwise

the probabilities sum up to ∞
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Appendix 3: Statistics vs. Probability, cont.
Statistical inference # based on the observed data and supported by prob. theory

Vagaries of statistics: Consider N coarse-quantised data points,
x[0], . . . , x[N − 1]. The quantised signal has M � N possible amplitude
values, V1, . . . , VM , for which the corresponding relative frequencies are
N1 = #V1, . . . , NM = #VM . Calculate the mean, x̄.

x[n]
= #V ii

VM

V2

V1

n

N

Solution:

x̄ =
1

N

N−1∑
n=0

x[n] =
1

N

M∑
m=1

VmNm =

M∑
m=1

Vm
Nm
N︸︷︷︸

≈ P (x=Vm)

R Clearly, the factor 1/N does not imply “uniform distribution”
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Appendix 4: Statistical inference

Probability: Assumes perfect knowledge about the “population” of
random data (through the pdf).

Typical question: There are 100 books on a bookshelf, 40 with red cover,
30 with blue cover, and 20 with green cover. What is the probability of
randomly drawing a blue book from the shelf?

Statistics: No knowledge about the types of books on the shelf, we need
to infer properties about the “population” based on random samples of
“objects” on the shelf # statistical inference.

Typical question: A random sampling of 20 books from the bookshelf
produced X red books, Y blue books and Z green books. What is the
total proportion of red, blue, and green books on the shelf?

Statistical inference is applied in many different contexts under the names
of: data analysis, data mining, machine learning, classification, pattern
recognition, clustering, regression, classification
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Appendix 5: Range of a matrix, span of a set of vectors
(a wide matrix transforms a vector space into another lower-dimensional one)

Consider a general 2× 3 matrix H and a 3× 1 vector u

H =

[
h11 h12 h13

h21 h22 h23

]
= [h1 |h2 |h3] where hi =

[
h1i

h2i

]
i = 1, 2, 3

Then,

v = H u = [h1 |h2 |h3]

 u1

u2

u3

 = u1h1 + u2h2 + u3h3 ∈ R2×1

1  −2   0

v
=

 H
u

T

p = Pu

x

y

z

u= [3, 2, 4]
T

(projection)

H=
0  −1   1

=
 [
−

1
, 
2
]

Example: H ∈ R2×3, u ∈ R3×1

◦ Clearly, v is a linear combination of the

columns of the matrix H, hi ∈ R2×1

◦ Vector v = [−1, 2]T therefore lies in

the span of the columns of H, i.e. in R2

R This dimensionality reduction

is not a projection p = Pu, where

P = H(HTH)−1HT
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Appendix 6: Quadratic forms and positive–(semi)definite
matrices

Quadratic forms appear often in data analysis, and are expressed as

xTHx x ∈ RN×1, H ∈ RN×N

For simplicity, consider a 2nd order case, where

x =

[
x1

x2

]
H =

[
h11 h12

h21 h22

]
↑ variable vector ↑ fixed matrix

The quadratic form QH(x) = QH(x1, x2) of a matrix H is a scalar given by

QH(x1, x2) = xT H x =

2∑
i=1

2∑
j=1

hijxixj = h11x
2
1 + h22x

2
2 + (h12 + h21)x1x2

(1 x 1)

N x 1

x
T

N x N

H

x

1 x N

=

scalar

◦ If QH(x) ≥ 0, for any x 6= 0
then the matrix H is called
positive semi-definite

◦ The matrix H is positive
definite if QH(x) > 0,∀x 6= 0
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Appendix 7: Order Recursive Least Squares (ORLS)
(If hi are NOT ⊥ ORLS is harder but possible)

For orthonormal columns of H,

θ̂ = HTx

Denote by θi the projections on the
individual columns of H (coordinates
in S). Then, we can find projections
on each of those 1D subspaces
separately, and add them to give

θ̂i = hTi x → ŝ = Hθ̂ =

p∑
i=1

θ̂ihi =

p∑
i=1

(hTi x︸︷︷︸
θi

)hi

R Can we use an p-order model to compute the (p+ 1)-order model?

Indeed, denote by H1 = h1, H2 =
[
h1 |h2

]
· · · Hp+1 =

[
Hp |hp+1

]
For p = 1 → ŝ1 = (hT1 x)h1 For p = 2 → ŝ2 = (hT1 x)h1 + (hT2 x)h2 = ŝ1 + (hT2 x)h2

Order Recursive Least Squares: ŝp+1 = ŝp + (hTp+1x)hp+1

c© D. P. Mandic Statistical Signal Processing & Inference 60



Appendix 8: What is that a matrix does to a vector?

matrix−vector   products

θ

R x A x

E x

P x

x

Ampli-twist: a matrix A which
multiplies a vector x
(i) stretches or shortents the vector
(ii) rotates the vector

A  any general matrix

R a rotation matrix (RT = R−1

and det R = 1)

Ex = λx  eigenanalysis

P  projection matrix

An example of a rotation matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
What can we say about the
properties of the matrix A, matrix
E and the projection matrix P
(rank, invertibility, ...)?

Is the projection matrix invertible?
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Appendix 9: Sensitivity to outliers of the ordinary Least
Squares (OLS) (role of regularisation and robust estimators)

Regression of daily returns of Altona Energy (ANR)

corporate bond on the credit default swap (CDX).

← outliers

↑ 95 % confidence interval

150
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-50

-100

-3  -2   -1    0     1       2        3        4

outliers↗

Regression under outliers

Huber is a robust estimator

Ridge regression: Jn(w) = (dn −wT
nxn)2︸ ︷︷ ︸

standard cost

+λ1‖wn‖22︸ ︷︷ ︸
L2 penalty

= e2
n + λ1w

T
nwn

LASSO (sparsity promoting): Jn(w) = (dn −wT
nxn)2︸ ︷︷ ︸

standard cost

+λ2‖wn‖1︸ ︷︷ ︸
L1 penalty

◦ Ridge: Penalises for large weights (but does not reduce system dimensionality)

◦ Least absolute shrinkage and selection operator (LASSO) enforces insignificant weights

to go to zero, and thus promotes sparsity and aids interpretability (λ1, λ2 # param’s.)
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Notes:

◦
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Notes:

◦
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Notes:

◦
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Notes:

◦
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