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Aims

O

O

O

The concept of least squares estimation (LSE), a method which is
indispensable in areas ranging from finance through to neuroscience

Geometry of LS: The the orthogonality principle 3 signal and noise
subspaces, ordinary least squares (OLS)

Measurement space, basis functions, constrained least squares, order
recursive least squares, nonlinear least squares, separable least squares

Establish parallels with the ML estimation, BLUE, MVUE, and CRLB

Move from block-based estimation to estimation based on streaming
data: Sequential Least Squares (SLS), link with state space models

Incorporating prior knowledge and domain knowledge: Weighted least
squares, confidence levels in data samples

Role of estimator memory & forgetting factor and online adaptation

Practical applications (regression, Noise Canc. headphones, finance, ..

)
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The method of Least Squares

This class of estimators has, generally, no optimality properties

o But, do we necessarily require optimality & an optimal estimator may
be mathematically intractable or computationally too complex

o Makes good sense for many practical problems & this dates back to
Gauss who in 1795 introduced the method to study planetary motions

o LS is not statistically based 3~ no probabilistic assumptions are made
about the data, no need for knowledge of a pdf or second order stats

o We only need to assume a deterministic signal model

o Usually easy to implement, either in a block—based or sequential manner
% this amounts to the minimisation of a quadratic cost function

o Within the (LS) approach we attempt to minimise the squared difference
between the observed data and the assumed model of noiseless data

o Rigorous statistical performance cannot be assessed without some
specific assumptions about probabilistic structure in the data
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Motivation: A simpler model often generalises better

Consider two models for x|n| = A+ Bn + q|n]

(g ~» noise)
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I'= Model is more useful than an exact fit!
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But, careful with over—fitting (see Appendix 1)

Least_squares_overfitting.m Least_Squares_Order_Selection_Interactive.m

Data considered was a noisy line: xz[n] = A+ Bn +q[n], q~ N(0,0?)

I’&  So, the correct data model was LS of order-1 (blue line in the figures below)
Observations of x[n] = A + Bn + w[n] (blue dots) New observations of x[n] = A + Bn + w[n] (orange dots)
5 and LS estimates of varying order 5 and old LS estimates of varying order

o~
T

S~
T

single-parameter model, s[n]=A

single-parameter model, s[n]=A

wW

PO

Experimental data and LS models
o

Experimental data and LS models

* Raw data * Raw data
= Order-0: error power =177.09 ,— Order-0: error power =165.95
A —Order-1: error power =130.7 1 . —Order-1: error power =100.1
_ —Order-7: eror power =122.94 —Order-7: error power =115.13
two-pframeter mfdel,s[n]-ﬁ+Bn 1 1 1 1 —Oﬁder-15:errorﬁower=106 | tWOX'ParameterlmodeL S[HITA*‘B“ | 1 1 1 —0rdfr-15:errorp?wer=120.65J
2 u B
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Sample index, n Sample index, n

I’= Order—7 and Order—15 Least Squares (LS) fits to the data gave a lower “within—sample”
training error power than the correct Order—1 fit (122 and 106 versus 130) (left panel)

I’= But this leads to overfitting, i.e. worse extrapolation (inference) on “out-of-sample” test
data from the same generative model (120 for Order—15 vs 100 for Order-1) (right panel)

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 5



Data model and the Least Squares Error (LSE) criterion
no probabilistic assumptions made about the data

The signal s[n] is assumed to be generated by a deterministic model which
depends upon an unknown parameter 6 or a vector parameter 6.

signal sinl | pertur— x[n]
model bation
0 noise model

inaccuracies

Least squares data model

The observed signal z[n| is subject to:

o external noise g[n]

o model inaccuracies
No probabilistic assumptions!

Only signal model assumed 3 wide
range of applications.

-’ assumed : '
2 o signal | sIn] e[n]
' deterministic del , > —_
\ signal model moae N T F g error

------- \ T observed [ =-.
"=~ 19 thoisy_input | XIn.;

N—-1 N—-1
_ 2 _ 2
J(0) =) en]=> (z[n] - sn))

LSE objective: mein J(0) = arg mein J(0)

o The LS estimator of 6 finds that value
of 6 which makes the model output s[n]
closest to the observed data x[n];

o The closeness is measured by LS error
criterion (error power) J(e?) = J(6).
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Example 1: DC Level in WGN

Our old example: DC level in WGN (cf. MLE needs an assumed pdf)
Data model: sln; 0] = A
Measurement model:  z[n| = s[n; 0] + q[n| = A+ q[n|, q[n] + any noise
LSE formulation: N1
J(A) = ) (a[n] — A)?
LSE solution: " .
set the derivative to zero d{Z—Ef) = —2 nz_:o (x[n] — A) =0

N-1
~ 1
the LS estimator : A= N nz::O x[n] is a MVU estimator

We cannot claim optimality in the MVU sense, except for the
Gaussian noise ¢ ~ N (0,0%). All we can say is that the LSE
estimator minimises the sum of squared errors (error power).

5  Still, this leads to a very powerful and practically useful class of estimators.
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The method of Least Squares is very convenient
how do we use it in practice?

1. Problem with signal mean. If the noise is not zero-mean, then the
sample mean estimator actually models x[n] = A 4+ q[n] + q’[n]

q[n] ~ nonzero mean noise ¢'[n] ~ zero mean noise —  FE{xz[n|} = A+ E{q[n]}

I’= The presence of non-zero mean noise ¢|n] biases the LSE estimator, as
the LS approach assumes that the observed data are composed of a
signal (described by a deterministic model) and zero mean noise.

2. Nonlinear signal model. For instance s[n| = cos 2m fyn, where the

frequency fj is to be estimated. The LSE criterion
N-1

T(fo) = 3 (wln] — cos 2m fon)?

n=0
is highly nonlinear in fy — closed form minimisation is impossible.

o However, for s|n] = A cos2n fon, if fo is known and A is unknown,
then we can still use the LS method, as A is “linear in the data”

o Separable least squares. When estimating both A and fj, the error
is quadratic in A and non-quadratic in f; ~ minimize J wrt A
for a given fj, reducing to minimising J over fy only (see Slide 23).
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Geometric interpretation & Example 2: Fourier analysis

Recall, our cost function: J(0) = > e’[n] = >0 (z[n] — s[n])* = e’e
e[n)

Consider a signal model s[n]=a cos 27 fon+bsin 27 fon, with fo known.
Task: Determine the unknown parameters, that is, the amplitudes a and b.
Solution: With fy known and @ = [a, b]!, we have

" sl0] ] 1 0
cos 27 fo sin 27 fy
s[1] B | : | _moh a
: = - ' p | =lalhe) |y
. COS 27Tf0[N — 1] sin 27Tf0[N — 1] —— H ——
LsV =1 ]| N 7 > g 0 0
~- | 1 2 -

S

I'= We must assume that H is full rank otherwise multiple @ map to the same s

s = ah;+bhy (linear combination of hy & hy); error e =x—s=x—H®6

T
In general, s=HO & s= [1{11 KR \hB} 61,....0,] =>"_, 6;h;
Colum;lrs of H
I’= Signal model is a linear combination of “signal space” basis vectors {h;,...,h,}

and the Least Squares (LS) cost is given by J(0) = (x — HH)T (x — HO)

Imperial College
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Geometric interpretation & continued

the signal vector s is a linear c

ombination of the columns of H

This can be rewritten in a more elegant form. Assume 0 = [04,...,0,

Recall that the Euclidean le

"

ngth || - |2 of a general N x 1 vector

qa=1q1,q,--. ,qN]T c RY¥*! is given by

lall=y

N
Y ¢=Vd'q=V<q,q>
1=1

Then, for g = a — b, the square distance between a = x and b = HO is

p
J(6) = (x —HO)" (x — H) =[x —H6||, = [x — > i,

1=1

I”& The LSE attempts to minimise the square of the distance between the
measured (noisy) data vector, x, and the signal estimate, §, given by

I'= The signal estimate, S, resid

S = 2521 éz’hi

es in a p—dimensional subspace, S?, spanned by

the columns hy, ..., h, of H (range of H). For LS estimation, N > p.

Imperial College
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Geometry of LSE: Vector space projections

signal dimension is lower than measurement dimension (signal lives in a subspace)

' The observation, x € RV *! resides in RY, while signal vector, s, lies in a
g
p-dimen. subspace SP C RY. For example, for N=3 and p = 2, we have:

® The vector in S? which is closest
subspace  spanned X to x in the Euclidean sense is the

by {hy,hol=S2 component § € S?, that is, the
orthogonal projection of x onto
S? § = Px, P % projection matrix.

® Two vectors are orthogonal if their
scalar product xTy = 0

h ‘ . A
2 ® Therefore, to determine §, we use
L so-called orthogonality condition:
’ e=(x—%) LH & (x—8) LS
a) Signal subspace b) Orthogonal projection to determine signal estimate

el S o elh &elhy, (a): (x—8)Lh = (x—8)h =0
(b): (x—8)Lhy = (x—8) hy=0

Imperial College
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Finally: LS solution for our Fourier example

Observe: § = projection of x onto Range(H)

Letting § = O1hy + O;hy = HO (here Hinxz2,02x1)

and based on the orthogonality conditions (a) and (b) (previous slide)
(x—6hy —fh)'hy = 0 = e'h =0
(x—6Oihy —fh) ' hy = 0 = ehy=0

Since H = [h; | hy), 8 = [a, b]T, and e = x — HO, the above conditions

can be combined into a vector/matrix form as  (use u’v = v'u)

e'H=0" so that H'e=0 and H”(x —HO) =0

= The equivalent system H'H 6 = H”x is called the LS normal equations.

Solve for the unknown vector parameter, é, to yield the general Least
Squares Estimate (LSE) for any dimension, p, of the parameter space

A~ —1 A~
6= (H'H) H'x (Hxsp, Opx1)

In our Fourier example, 8;, = [a, ] is 2 x 1-dimensional, and H is (N x 2)-dim.

Imperial College
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Back to the geometry of Least Squares: General case

We know that in a general case, 8 = [0y, ...,0,]"

In general s =0:hy +60ha+---+0,h, =HEO

Model: Matrix H multiplies true parameters, 8 € RP, to yield the signal s.

RP H RN

Range(H)cR" N > p

s lies in SP, a subspace of RN
x can lie anywhere in R

(HTH)™'HT <« Acts as an inverse from R" back to R”

The estimated parameter vector, 0 € R? is obtained from the noisy
observations, x =s+q, X € RY in the form

éls :\(HTH)_lH,Z;X (HNijépX1)

R
pseudoinverse of H

Imperial College
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Benefits of orthogonal basis functions (geometry)

Orthogonal basis Non—orthogonal basis

.1 Wil <1 X3 W < 1
3 i

VOLUME<1
VOLUME=1 AR

X X1

o Largest volume is possible only for an orthogonal set of bases!

o This also greatly simplifies the maths related to the various estimation
algorithms which rest upon vector space projections (see e.g. Slide 16).
o The best scenario is if we have orthonormal bases (orthogonal and unit
length), as elaborated in the sequel.

This also justifies our preference for linear systems and orthogonal
bases, wherever possible.

Imperial College
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Computational advantages of having orthogonal bases
(columns of H)

For a general case of 8 = [0;,...,0,]", the LS estimator finds
0= (H'H) H"x where H=[hi|hy| - |hy]y, ~ sothat
 hih; hihy -+ hih, | " (hy,h;) (hy,hy) - (hy,hy) ]
HTH — hih; hZh, --- hih, _ | (hg,hy) (hg,hy) -+ (hp,hy)
' h/h; h'h; -+ hlh, (hl,hy) (hl hy) --- (b hy)
1 0 --- 0]
- 01 --- 0
for orthonormal columns  (h;,h;) =46;; = HH=| = =1
00 --- 1

In that case 6 = HTx and s =HO = HH x

I'= Easy, no inversion needed! Also, for every unknown parameter, 6; = hfx

I'= 0; = h!x is a projection of the observed data x onto each column of H

Imperial College _
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Example 2: Fourier analysis &~ continued (we have H = [h; |h,))

For more detail see Example 9 in Lecture 4  (NB: power of A coswn is A*/2)

For fo =k/N, with k =1,2,...,N/2—1, and large N, the scalar product
of the columns of the observation matrix H becomes (orthogonality)
N—1

k k
hih, = ngzo COS (QWNN) sin (27rﬁn) =0 < h; | hy (orthogonal)
N N
while hih, = - hih, = - (from power of cos and sin)

Combining the above results gives H'H = %I and therefore

. [a T Ty 2T — | % o @ln] cos(2mn)
b — [ : ] = (HH) Hix= GHOx= | B ork
N £4n=0 N

I’ For orthonormal columns, (HTH)_ll‘ITX —H"x and § = HO = HH %

In general, the columns of H are not orthogonal, and the signal estimate

s=H6= H(H'H) H” x=Px (Appendix 8)

projection matrix P

Imperial College
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Linear least squares in a nutshell

Assume a linear observation model x = HO + q. Then the cost function

J(0) = Z n] —sn,0))" = (x—H8)" (x-HE) (¥

= xTx—2x"HO+0"H'HO (H is full rank)

The gradient of the cost function is then
0.J(0)
00

1. The LSE estimator of @ becomes 0 = (HTH)_lHTX

VoJ(0) = = 2H'x+2H'HO =0

2. The minimum LS cost (replace 8 into J(0) in (*) above) is therefore

Trin = J(é) —x7 [I —H (HTH)_lHT]X:XT(X — Hé) —xTx —xTHH
> ~ d 5 T AN
o H{_/ power of X cross-corr(x, §)
~~ power of §

I's  J,.in represents the error power which is not explained by the model for §

Imperial College
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Linear least squares in a nutshell, continued

Matlab: Least_Squares_Order_Selection_Interactive.m

o The LS approach can be interpreted as the problem of approximating a
data vector x € RY by another vector § which is a linear combination of
vectors {hy,... h,} that lie in a p-dimensional subspace S € R? C RY

o The problem is solved by choosing S so as to be an orthogonal projection
of x on the subspace spanned by h;,i =1,...,p (S=range of H)

o The LS estimator is very sensitive to the correct deterministic model of
s, as shown in the figure below for the LS fit of x[n] = A + Bn + q|n].

5(?bservations of x[n] = A + Bn + q[n] (blue dots) and LS estimates of varying order

7single-parameter model, s[n]=A

» Raw data

= Order-0: error power =195.05

two-parameter model, s[n]=A+Bn : — Order-1: error power =98.39

. —Order-7: error power =94.11
_2 | | | | | | | | J

|
0 10 20 30 40 50 60 70 80 90 100
Sample index, n

Experimental data and LS models
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Summary: The role of the model order p
Recall the AR process order x(n) = ajx(n — 1) +--- + apx(n — p) + q(n)

Follows naturally from the problem of fitting a polynomial to the data
(recall the Weierstrass theorem 9 any continuous differentiable function
can be approximated arbitrarily well with a high-enough order polynomial)

o Observe from the previous slide that J,,;, is a non-increasing function
of the model order p.

o The choice p = N is a perfect fit to the “in-sample” data, but overall
we overfit, that is, we also fit the noise (see Slide 18 and Slide 5).

o Recall the penalty-based MDL and AlC strategies in AR modelling &
we choose the simplest model order p that is adequate for the data.

o In practice, if we have a specified J,,;,, then we can gradually
increase p until we reach the required J,,;,.

o To save on computation, we can further exploit the geometry of
learning in OLS, and use an order-recursive LS algorithm to compute
the model of order (p 4+ 1) from the model of order p. (see Appendix 7)

Imperial Coll
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Other forms of Least Squares &~ towards weighted LS

(assigning importance to data samples)

Recall that the LS estimator aims to minimise J = Y"_"e?(n) = eTe.

2 =
"1
0

€0 0 0 €0
T €1 | _ oT7e — 1 O e:
e e—[eg,el,...,eN_l] = e e—[eo,el,...,eN_l] : :
| EN—1_ _0 0 1__€N—1_

We can also assign weighting to the errors, J = Z

o wne?(n) = eTWe

wg O 0 €o
leo, €1, .-y eN—_1] O Ufl O 6:1 —e We
0 0 w1 Jlen—1.

L 0 o l. .

1 [ 0 ||

For wnzg = e We= leo, €1, ..., eN—_1] | 0':1 | 1
Tn see Slide 21 and L4 Example 5 0O 0 012\[1_1 LEN -1
= If w is a forgetting factor, A, then J(n)=3>"7_ A" ""e*(k) and W= diag()\’, ..., \")
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Weighted Least Squares (WLS)

see also Example 5 in Lecture 5, and Quadratic Forms in Appendix 6b & in Lec. 1

To emphasize the contribution of those data samples that are deemed to
be more reliable, we can include an N x N positive definite (and hence
symmetric) diagonal weighting matrix, W, so that

J(0) =e"We = (x—H6) W(x—Hb)
It is now straightforward to show that the weighted least squares solution
6= (H'WH) "H'Wx & Jppn =x" (W-WH(H"WH) 'H"W )x
Example 3: For a diagonal W with elements [W];; = w; > 0, the LS
error of the DC level estimator becomes

2
an

If x[n] = A+ q[n|, where the zero- mean uncorrelated noise (not i.i.d., any

distribution) g[n] ~ (0,02), it is reasonable to choose w,, = 1/02, to give
) N-1 2[n] N1y
A= (X)X 5)
n=0 "7 n=0 "

Remark: If we take W = C~!, then the WLS vyields the BLUE estimator.

Imperial College
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Exponentially weighted LS &~ LS with a “forgetting
factor” or “fading memory” (see Slide 20)

o The standard LS cost function is best suited for statistically stationary
environments, as it takes into account the whole data history.

o In the original cost function all the errors are weighted equally. This is
not adequate in statistically nonstationary environments, where distant
past is not contributing to learning nor is it statistically relevant.

o In order to deal with nonstationary environments, we can modify the LS
error criterion to promote forgetting of old data (weighted LS), as

20 0 ... e,
~ nek 2 0 At e T
J(n):Z)\ e’(k) = [ensen—1,...,e0l| . 7 _ | =e We
k=0 0 ... )\ | e

o The forgetting factor A € (0, 1], but typically A > 0.95.

o Through the forgetting factor, A, the 'old" and often irrelevant/unreliable
information is gradually forgotten 3- suitable for non—stationary environ.

o The forgetting factor introduces an effective data window length of %

Imperial College
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LSE: Opportunities in practical applications &~ numerous

o Constrained least squares. We can incorporate a set of linear
constraints in the form A6@ = ¢, to have a constrained LS criterion

J.(8) = (x —HO)' (x — HO) — (A6 — )
using e.g. Lagrange optimisation as above (first term & LS solution é)

o Nonlinear least squares. The signal model is nonlinear, i.e. s # HO
We can either linearise the problem (e.g. using Taylor series expansion)
or solve it numerically in some iterative or recursive fashion. These
methods are often prone to convergence problems if highly nonlinear.

o Dealing with nonlinear least squares &~ parameter transformation.
Example: Consider a nonlinear problem of estimating the amplitude
and phase of a sinusoid s[n| = Acos(wn+¢), n=0,...,N—1

~» Transform the problem into A cos(wn 4+ ¢) = A cos ¢ coswn — Asin ¢ sinwn
Variable swap. Let a; = Acos¢ and ag = —Asin ¢, and a = [a1, as]?
Now, the signal model becomes linear in a, that is, s = Ho

. A —1
Use LS to obtain a = (HTH) H'x (see Lecture 5 Example 10)

where A = \/a?+ a3 and ¢ = arctan(—as/ay)

© D. P. Mandic Statistical Signal Processing & Inference 23
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LS estimation in the big picture of estimators

Consider the linear model x = HO +w

Estimator Model Assumption Estimate

LSE x = HO +q no probabilistic assumptions 6, = (HTH)_lHTx
BLUE x =HO+q SOS of ¢, unknown pdf Opne = (HTH) 'H”x
MLE x = HO 4+ q need to assume pdf of ¢ 0,10 = (HTH)_1HTX
MVUE x = HO +q need to know pdf of ¢ Omvu = (HTH)_lHTx

LSE and orthogonal projections:
Signal model is s = HO 3 the estimate is a projection of x onto S? € RP ¢ RY

s=HO=H(H"H) H'x = Px

where P = H(HTH)_lHT is called the projection matrix. Since the
estimated signal s = Px € SP, it follows that P(Px) = Px.

Therefore, any projection matrix is idempotent, that is P2 =P, and it is
symmetric and singular with rank p  (many x(n) can have the same projection).

Imperial College
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From Autoregression to Least Squares regression

Auto-regression whereby we regress a variable x[n] onto its own past
values z[n — 1],...,xz[n — p|, in the form (with ¢[n| as driving white noise)

Model: x[n] 1z[n — 1] + agz[n — 2] + - - - + apx|n — p] + q|n|

Estimate: Z[n]

|
S

1z[n — 1] + agz[n — 2] + - - - + apxn — p|

I
Q>

Multiple regression onto p different variables. The population model
has the following general form, where e[n] are the residuals

Model: y[n] = a+ Biz1[n| + Baze[n| + - - - + Bpxyn] + en]
The estimate g[n| based on the multiple regression model is then
gln) = & + Brxi[n] + Sawaln] + -+ + Byzy[n]
As before, o represents the intercept, but the 3's are now the partial

correlation coefficients

Imperial College
London
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Least Squares Regression (LSR): A brief summary

Linear regression &~ relationship between two variables based on a line of best fit

Consider a line fit: y=px+e<—=y,=0x;+¢ i1€{l,...,N}

Least Squares Regression o Least Squares regression (LSR)
Observed Data points o . . . .
Regressed S|ope=2_89 alms to mlnlmlse the sum Of the
Regressed Intercept = 1.10 .
squares of the differences between
the observed and predicted values

w
o

N
w

N
o

’\ Regression line argmin ||y—pBz||3 <= argmin|le||3

Dependent Variable (y)

o We say that we regress y onto z,
with (3 as the regression coefficient.

0 2 10

4 6
Independent Variable (x)

Common terminologies for Least Squares Regression

Econometrics Statistics Machine Learning
Y Dependent Var., Estimate Explained V., Response, Regressand | True Label, Criterion
I5] Coefficients Coefficients Parameters
x | Independent Var., Predictor Explanatory Var. Regressor Features, Predictors
e Residual Error Prediction Error

Imperial College
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Example 4a: Capital Asset Pricing Model (CAPM)
W. Sharpe was awarded the Nobel Prize for economy in 1990 for CAPM

The CAPM is given by the regression model
E(R;) = Ry + 8 (E(Rm) — Ry) +¢

expected return of asset ¢ 7 risk-free 1 T exposure to market N residual (unpredictable)

0.3 —e— Nvidia Monthly Log Return

arising from government bonds; R is assumed
—<— S&P 500 Monthly Log Return

to be 3% Annual Percentage Rate (APR);

o B (the beta) 3 sensitivity of the expected
excess asset returns, E(R;)-Ry, to excess market

0.2

0.1

0.0

Monthly Log Return

returns, E(R,,)-R, (8=exposure to market).

-0.1

o (E(R;) — Ry) is known as the risk premium;

o E(R,,) is the expected return of the market;

o (E(Rm) — Ry) is the market premium or
3 We assume that the market is the

S&P 500 index and regress for 3.

excess return of the market (difference between
the expected market return and the risk free).

I'= So CAPM is actually fitting a line to noisy data! 3~ LS regression

Large 8 & a less resilient company Small 8 & lower exposure to market risk

Imperial College
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Example 4a: Capital Asset Pricing Model (CAPM), cntd.

Notice that we employ a block-LS approach, over blocks of 22 days

Asset return R;, risk-free interest rate Ry, and market return R,,
(S&P500 return) are all known. We consider log-returns.

I”& We can now perform LS regression to obtain the value of 3.
Each month has 22 trading days. Then, the CAPM states that
_Ri;dayl — Rf_ _Rm;dayl — Rf_ _61 |
1;da — R Rm a — R
Fooz =0 | g | Ptz =8 12 o g = By e

| Risday22 — Ry | | Riniday22 — Ry | | €22 ]
Therefore, the LS estimate: 8 = (7 rum) "1rm T s
erefore, the estimate: 08 =(Tm Tm) Tm Ti
Monthly CAPM Beta of Nvidia vs. S&P 500 Distribution of Residuals

—
15 K

—e— Beta_CAPM

Residual Value

—-0.10 —0.05 0.00 0.05 0.10 0.15 0.20
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Example 4b: Fama-French three-factor model (Problem Sets)

NB: 3 here is not equal to 3 in CAPM, due to two additional factors

The model is given by (E. Fama won Nobel Prize in Economics in 2013)
Ri=R;y+0(Rn—Ry)+bs-SMB+bv-HML +e
where SMB measures the historic excess returns of small caps over big

caps and HML the value stocks over growth stocks. bs and bv are coeffs.

LS Regression of Fama-French: We regress for the three beta'’s: The
market is the S&P 500 index; Ry is assumed to be 3% APR; Intercept = 0.

Monthly Fama-French Betas of Nvidia vs. S&P500 . Distribution of Residuals
4 T
1 —e— Beta_MarketExcess —— Fama-French Residuals
1
3 ! —+— Beta_SMB CAPM Residuals
| Beta HML 20
2 1
1
] \/0——/
@ 1 ! >15
] ! G
m 1 g
0 : /\——'\ O 10
X 1
1 | V N\
i 5
) :
|
F P F P PSP PN A 0 N o S
R S S S S SR S S S M. A
RN A G I IR S LG N S PN o7 o o¥
Date Residual Value
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Sequential least squares (SLS)

Oftentimes data are collected sequentially (streaming data), namely one
point at a time. To process such data, we can either:

o Wait until all the data points (samples) are collected and make an
estimate of the unknown parameters & block-based approach, or

o Refine our estimate as each new sample arrives & sequential approach
We shall now modify the LS method from a batch to a sequential mode.
Objective:

Suppose we have a least squares estimate, O _1, which is based on
the full signal history {x[0], z[1],...,z[N — 1]}.

We wish to produce a new estimate, éN, upon observing the new
data sample, z|[N|, but without using full dataset {x[0],...,z[N]}.

Question: Can we update the existing solution On_1 sequentially,
based only on 8x_;1 and z|[N], that is

éN = f(éN_1,$[N])

Imperial College
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Example 5: DC level in uncorrelated zero mean noise

(new notation, A[N] = “estimate of A at a time instant N")

Consider the problem of LS estimation the DC level in noise, for which we

have obtained ) 1 N
A[N — 1] = ~ nZ:O x[n]

If we now observe the new sample z[N], then the new, enhanced, estimate

N | N-1
AN = S = L %)
N = g Lol = g (X atel +al
AN] = N AN —1] + [N] 9 a recursive estimate!
- N+1 Nt1" |
I”= Similarly, to compute the minimum LS error recursively (Appendix 2)
N-1
from  Jpi[N -1 =Y (a[n] — AN 1))’
n=0
N
. A 2
Upon arrival of xz[N]|, re-arrange Imin|N| = Z (z[n] — A[N])
n=0
Imperial COIIege © D. P. Mandic Statistical Signal Processing & Inference 31
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Example 5: DC level in noise &~ a more convenient form
of the sequential estimator and the associated MSE

A

Clearly, the new estimate A[NN| can be calculated from the old estimate
A[N — 1], upon receiving the new observation x[N].

The solution can be rewritten in a more physically insightful form, as

" " 1 o
AIN] = AIN-—1 ( N—AN—l)
N = AN -1+ eIV - AV - 1
new estimate = old estimate + gain X error
corrggtion

The minimum LS error then becomes (show yourselves, or see Appendix 2)

TuinlN] = T[N = 1] + <2 (2[N] = AN 1))

N +1

I”e= Notice that Juiy 1S ‘cumulative” and increases with the number of data
points, NV, as we are trying to fit more points with the same number of

parameters (over-determined system).

Imperial College
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Example 6: Weighted LS for the estimation of DC level
in noise in a sequential form (see Example 9 in Lecture 4 & Slide 21)

Start f Nl
tart from J(A) = Z wn(a:[n] _A)Q
n=0

If x[n] = A + q[n|, where the zero-mean uncorrelated noise (any

distribution) g[n] ~ (0,02), it is reasonable to choose w, = 1/02, to givel

Standard LS solution : A[N] = “172%

lts corresponding sequential form then becomes

. . o2 .
AN] = AIN-1] + " (=[N]-A[N —1])
anO o2
or new estimate = old estimate+ gain X error

In practice, we may employ a forgetting factor A < 1, to give J(A):Zf,:[:_()1 AN=I=1 62 ()

lin standard weighted LS, with a diagonal weighting matrix W we would have [W];; = %
)

(o)
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Observations about weighted LS: Noisy sample

How does a new noisy sample, z[N], with a large o3, influence the estimation?

Notice that the gain reflects a relative match between the current
estimate and the new data, and depends on our confidence in the

new data sample, z[N], given by 1/0%;.

Two extreme cases:

o If 0%, — 00, i.e. the new sample is extremely noisy, then we
automatically do not correct the previous LSE

o If 02, — 0, that is, the new sample is noise—free, then A — z[N], and
all previous samples are discarded

I’ If we assume x|n| = A + ¢[n], with {q|n|} zero mean uncorrelated noise

for which the variance of each ¢[n] is 02, n=0,...,N — 1, then the
LSE is also the BLUE and
~ 1
var (AN —1]) = ~ (Lecture 5 slide 23)
1
2.
n=0 "

Imperial College
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A

Weighted LS: Influence of “goodness” of the estimate A

o The gain for the N-th update can be rewritten as (0 < K[N]<1)
s P, AN -1
K[N] _ Z]\(;N — = T N 1 _ ’UCLT( [_ ]) -
n=0 ‘7_7% J]2V var( A[N—l]) var (A[N 1]) * ON

o Bad estimate, good data. If var(A[N — 1]) > 0%, then new data is
very useful, K|[N] ~ 1, and the correction based on new data is large

o Good estimate, bad data. Conversely, is var(fl[N —1]) < o3, then
new data has little use, K[IN| =~ 0, and the correction is small

o The recursive expression for the variance can be calculated as

AN

var (A[N]) = (1 — K[N]var(A[N — 1]))

I”= Notice that the gain K[n] is also a random variable.

Imperial College
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Summary of sequential DC level estimators, both

weighted and standard DClevel.m
Estimator update: A[N] = A[N — 1] + K[N] (:I:[N] — AN — 1])
var (A[N —1]) 1

Weighted: K|N| =

- 5 Standard: K[N]=——
var (AN —1]) + oy

Variance update:  var(A[N]) = (1 — K[N]) var(A[N — 1))

Initialisation: ~ A[0] = 2[0], war(A[0]) = o2

Example 7: Perform sequential DC level estimation for A = 10, 02 =5

0.1 =—
= \Variance
% —Gain
> .08
@ 10.2
=)
> .06
=10 - -~
o
P .04
=
= 98 .02
L
9.6 ‘ ‘ ‘ ‘ 0
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Sample number, n Sample number, n
Evolution of the estimate A Variance and gain
Imperial College
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Towards the vector parameter case: A noisy line example
(see Slides 26 — 28 here, and Lecture 4)

The observed data: x[n] = A+ Bn + q(n) = x=H6O+q
where x = [zg,21,...,2n-1]1, A= [q0,q1,...,qn-1]*, and @ = [A B]*
Then, for N data points while, for N 4 1 data points

1 0 ] 1 0

1 1

HN_l: : : HN — 1 1

1 N_l_Nx2 1 N_(N+1)><2

x[n] 4
”O‘SV{‘e Thus, for (N + 1)th data point

- 0 -
1 1
A | , | Hy-1
HN = : : = 1 N
ideal noiseless line 1 N —1 (N+1)x2
0 - |1 N K. grows with N
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Sequential LSE for a vector parameter

Consider an input x[n|= [z[0],z[1],...,z[n]]” ~ Hn]=

hT[n]lxp i

Note that the size of the observation matrix H grows with time.

o Estimator update:

d[n] = Bn — 1] + K[n] (éc[n] — b [n] B[ — 1l)

new estimate 1 T old estimate '\ gain error

where the gain factor is given by

K[n] = C[n — 1]h[n] [ag+hT[n]C[n _ 1]h[n]}

1 var. of the most recent sample

—1

o Covariance matrix update:

Cln] = (I _ K[n]hT[n])C[n ]

o Initialisation: C|—1] = al, «a — large, 0[—-1] =0

Imperial College
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Example 8: Sequential LS for the parameters of a line

zero- and first-order sequential least-squares estimator for z[n]| = A + Bn + q[n]

. . T
o Measurement x[n] = A + Bn + g[n| and the vector parameter 8[n] = [A, B]
o Estimator update: §[n] = O[n — 1] + K[n] (:U['n,] — WT[n]®[n]f[n — 1])

where ®[n] = [ N } and h[n] = [ 0 }

o Initialisation: C[—1] = I, «a > 10002, 6[-1] =0, 0]7
o Update (Ricatti equations):
Mn] = ®[n]C[n — 1]"[n)
K(n] = M(n]h{n] [b"[n]M[n]h[n] + 02|
Cln] = (1 - K[n]h"[n] ) M)

2(2n—1)
o The gain factor is updated as K[n| = [ "("6+1) ]

n(n+1)
2(2n—1 2
H H 7§(n—i—1)) g, 0
and the covariance matrix as C[n| = 19 5
0 5—— O
n(n<4+1) 1
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Example 8: Continued

Matlab: Sequential_LS_Order_Interactive_Local.m

Observations of x[n] = A + Bn + g[n] (blue dots) and sequential LS estimates

* Raw data
"= LS Order-0: error power =195
| = SLS Order-0: error power =189.9
= LS Order-1: error power =98.4
| —SLS Order-1: error power =86.7

N w A~ 00 OO N

Experimental data and LS models

_2 | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Sample index, n
i s Order-0 SLS estimator i s Order-1 SLS estimator
- —Variance - —Variance
1+ —Gain 1 —Gain
0.5 r\/ 0.5 K
0 0 ~
-0.5 -0.5
-1 ‘ ‘ -1 ‘ ‘
0 50 100 0 50 100
Sample index, n Sample index, n
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Example 9: Least Squares (LS) and Sequential Least
Squares (SLS) for non-stationary data LS_and_SLS_1.ipynb

Consider the case where the DC level changes its value from A = 2 to
A =4, at the sample index n = 125. This is a source of non—stationarity.

LS: A= % Z_ z[n]  SLS: A[N]= A[N —1]+ N1+ . (33[]\7] — A[N — 1])

Sliding window LS: Calculate the LS estimate over an L=20 samples long

sliding window, termed Sliding LS, start as A[19] = 50 L9 o z[n]. Plot the
estimate, then shift the window by one sample, and repeat until N = 250.

LS and SLS, Block and Sliding Window Approaches

—— Noisy DC Level
= == S| S Growing w., forg. fact=0.9
1 === SLS Growing w., forg. fact=0.99
LS Estimate X4

= Sliding w. LS, length=20 ,

b
=3

=,
\
\

Estimated Value

N
o
L

(') 5'0 1(')0 1_%0 2(')0 25;0
Sample Index
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Case study: Adaptive Noise Canceller (ANC)

a common application of adaptive learning in order to reduce unwanted noise

Example 1: A common problem is the removal of artefacts in sensor data
in biomedicine, or removal of 50 Hz interference in instrumentation.

Example 2: We may wish to remove background noise in aircraft and car
audio systems (noise cancelling headphones, road noise cancellation).

Em
x[n] ¥ "]
{2 |——
Primary channel \“
xXgr[n] x[n] In our case:
> Hn(Z) r—1 T
Reference channel H,(z) = z h,Dz! i 0 =1[h,(0),..., hn(p—1)]
=0 s

Configuration of a general noise canceller

o The reference channel takes the role of the traditional input

o The primary channel, that is the noisy signal of interest, takes the role
of the desired input (teaching signal).

o The residual, €, takes the role of the “system output”.

Imperial College
London
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ANC 3~ line interference removal

O

Primary channel: 'signal’ 4+ 'noise to be cancelled’ (for example, the
50 Hz mains interference in an acquired ECG signal)

Reference channel: Noise source which is related to the noise in the
primary channel (non-zero correlation)

Filter coefficients are updated sequentially to make z[n] as close to x|n|
as possible, in the LS sense, with z|n] = Zf:_ol ho(Dxr(k —1)
We therefore desire to minimise the power of the residual, €[n|, that is
- 1y 2
Jln] = Zs = (x[k] - 2[k])
k=0
i 2
= > (ol Z (D) rlk 1))
k=0

Filter coefficients (weights) can then be determined as a solution to the
sequential LS (SLS) problem

Imperial College
London
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ANC & some practical considerations

The signal and noise are typically statistically nonstationary, and to deal
with that we introduce the weighting in the form of a “forgetting factor”
A, for which the range 0 < A < 1, so that the cost function becomes

I = Y An—’f(a;[k] ~ N ha(Qaglk - z])2
k=0 =0

The solution will not change if we minimise instead (see S. Kay's book)

n

I = Z%(x[k]—lz_%hn<z>mk—u)2

k=0

Notice that J[n| is different from J'[n], but the solutions are identical.
I’& This is also the form of the standard weighted LS problem.

The sequential LS vector estimator of the filter coefficients is denoted by

0[n] = [hn(0), hn(1),..., hn(p—1)]"
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ANC summary 3 Follows from Slide 35

Notice that here h[n] from Slides 42-43 is replaced by 6, to avoid confusion

T
Input reference vector: xg[n] = |zg[n],zrn—1],...,zrn—p+1]|
Weights: 0‘7% = A" weighting coefficients w  I'& forgetting factor \
Error:

A

eln| = x[n| — Zf:_ol hn_1(Dxg[n — 1] = x[n] — xE[n] 6[n — 1] = €nln—1

error at time [n] based on parameters at time [n-1] 7

Estimator update: 0[n] = O0[n — 1] + K[n]e[n]
where: eln] = zn] = ho_1(Dzgn—1]
1=0
Kin — Cn — 1]xg[n]

A" 4+ x%[n]Cln — 1]xg[n]
Cln] = (I-K[n]x'[n])Cln—1], typically 0.9<A<1

In LS methods we typically do not know the variances o> for every x[n]. They may be
replaced with a forgetting factor A". This favours most recent samples. (see Slide 22)
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Example 10: Line noise removal ANC_Line_Noise_Complex_Valued

reference x is correlated with interference but has different amplitude and phase

Consider interference estimation only, that is, Interference — line noise.
s|n; 0] = 0 and q|n] = 10 cos(27(0.1)n + 7 /4. {\ [\ {\ [\ {\ [\ {\ [\ p
Primary ch.: x[n] = 10 cos(27(0.1)n + 7/4)

Reference chanPeI: rr[n] = cos(27(0.1)n) \} v v v v v
Initialisation: 6[-1] = 0, C[-1] = 10°1, oo rurBer n ©
and A = 0.99. Error — output of ANC

o We need two filter coefficients to model the of
amplitude and phase of the interference, that R(w“
S Hlexp(27(0.1))] = 10 exp(ym/4)

The noise canceller must increase the gain of
the reference, xr[n|, by 10 and phase by 7/4 =

to match the interference. f o
Upon solving  (ANC performance is on the right)
h|0] + h|l]exp(—2y7(0.1)) = 10exp(ym/4) L | | hi11)
which results in h[0] = 16.8 and h[l] = —12. ™  ® saidenunBer.n ©

Imperial College |
London

a
—

o

| Interference
SCJJJJ— ‘

Error
b

[0} 2‘0 40 60 8‘0 100
Sample number. n

Evolution of filter coefficients

o 6]
T

Filter coefficients
|

L
o
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Applications: Adaptive noise cancellation with reference

(such as in noise-canceling headphones on an airplane)

In the adaptive noise cancellation configuration (below right), the variables in the

adaptive filter have the following roles.
£

Headphones - R
x(n) Learning | y(n) = Nq = estimate of cockpit noise
System

Reference e(n) Y-
microphone, N1 (~

Y

©
Speech or music
plus additive noise N1 (n) $(n) +No(n) d(n)

s+NO

Reference input = cockpit noise  Primary input = what you hear

Input to the filter, is the Reference Noise signal, that is, z(n) = Ni(n). The only
requirement is that V7 is correlated with the measurement noise, Ny, but not with the
signal of interest, s(n). The filter aims to estimate Ny from Ny, that is, y = Nj.

Teaching signal, d(n), is the noise-polluted signal of interest, s(n) + No(n), which
serves as the Primary Input to the filter. Since s L NNy, the filter can only yield y = Nj.

Filter output, y = No, provides the best MSE estimate of the measurement noise, IV,
from the reference noise, IN;. The more correlated N1 and Ny the faster the convergence.

Output error, ¢ = s + Ny — Ny, serves as a “system output”, whereby the adaptive

filter aims to achieve ¢ = § = s.
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Example 11: Noise cancelling headphones (A = 0.99)

Denoising_SLS_GUI.m

Signal of Interest, s(n)

0.05 sec of the Noise, v(n)

Measured Signal, s(n)+v(n)
2 ]

0.5 ST
@ @ @
= = =
= = =
g g’ g’
-1t
-0.5 : : : -2 :
0] 2 4 0] 0.02 0.04 0] 2 4
Time [sec] Time [sec] Time [sec]
Weights Denoised Signal, e(n) Residual, e(n)-s(n)
@ ] S o
- = =
> =0 £ 05
@ -0.
= Z Z
-1 -1
0] 2 4 0] 2 4
Time [sec] Time [sec] Time [sec]
Signal of interest Measured signal Denoised signal
5 4 T 4 T 4
i -50 i -50 i -50
2y & o)
= = =
(=N o o
L O = == O
(T -150 w gL g — = -150 w9 -150
1 2 3
Time [sec] Time [sec] Time [sec]
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Example 12: Acoustic feedback cancellation () = 0.995)

Denoising_SLS_GUIl.m

Signal of Interest, s(n)

o
~

o 021
=
=
= U
L
02
04 : : :
0 2 4 6 8 10
Time [sec]
: Weights

10
Time [sec]

Signal of interest

2000

Frequency (Hz)
o o o
(=) =] (=]
(=] ) o

=

2 4 6 8
Time [sec]

0.05 sec of the Noise, v(n)

T
HL il

Amplitude
o

-05L : : : : .
0 2 4 6 8 10
Time [sec]

Measured signal

2000 -20
N -30
£ 1500
§ 1000 0
% -50
g
i 900 -60

0 -70
2 4 6 8
Time [sec]

Measured Signal, s(n)+v(n)

o 05
=
=
=
5
-0.5
0 2 4 6 8 10
Time [sec]

. | Resiqual, e(n)-s(n) |

Amplitude

0 2 4 6 8 10
Time [sec]

Denoised signal

2000 -20
N -30
T 1500
E; 1000 “
% -50
g
i 900 -60

0 -70
2 4 6 8
Time [sec]

More in the Adaptive Signal Processing and Machine Intelligence course
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Example 12: Acoustic feedback cancellation & role of

the forgetting factor )\ Denoising_SLS_GUIl.m
Top panels: Forgetting factor A = 0.9
Signal of interest Measured signal ‘ - Denocised signal
S 1 2 3 n:m[s:d L T 8 01 02 03 “ml][:acl 05 06 ar
Signal of interest Measured signal ) Dencised signal

Time [sec]

Bottom panels: Forgetting factor A = 0.995
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Lecture summary

o The method of least squares is extremely important for practical
applications. Least Squares does not mean fitting a line to the data!

o Do not need: Any assumption on the PDF or any other statistics.

o Do need: The assumed signal model (which is deterministic). If the
signal model is inaccurate, the LS estimator will be biased & not MVU.

o Principle of orthogonality & underpins any subspace method.
o Method of LS is easy to implement and straightforward to interpret.

o Sequential solutions to the LS problem are very practical, while
Weighted Least Squares allows us to assign “confidence” to samples,
that is, to de—emphasise the contribution from unrealiable samples.

o We can also use a forgetting factor to deal with time-varying statistics.
o Established methods for dealing with outliers in data (see Appendix 9)

o A number of applications of LS theory: Factor models in finance, noise
cancellation, Prony type spectral estimation, and many more, ...
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Summary: Least Squares vs MLE NB: The optimal

MVU estimator and CRLB do not always exist or are impossible to find

‘ Least Squares Estimator I ‘ Maximum Likelihood Estimator I

o LSE operates when the pdf of o Can always be applied once the

data is unknown; instead, it
assumes a data model

Quite intuitive and has rigorous
geometrical interpretation

No MVU guarantee, but tends
to work well for N > p

Recursive ways to calc. standard
LSE, also admits sequential LS

Allows for the incorporation of
prior— and domain—knowledge
(forgetting factor A, uncertainty)

Sliding window LS and A-SLS
can work on non-stationary data

pdf is assumed, and does not
restrict the data model (cf. LSE)

It is asymptotically optimal and
MVU (for large data size)

Can be computationally complex
(numerical methods required)

Often biased for small data size;
no guarantee to obtain MVU

Sensitive to outliers, can produce
biased estimates in the presence
of extreme events

It is always possible to find an
MLE, but it may be suboptimal
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Appendix 1: Choosing the correct model order (see Slide 5)

Least_squares_overfitting.m

Observations of x[n] = A + Bn + w[n] (blue dots)
and LS estimates of varying order

o
1

~
T

single-parameter model, s[n]=A

Experimental data and LS models
d o — o w

T

two-parameter model, s[n]=A+Bn

|

|

|

|

— Order-0: error power =177.09
—Order-1: error power =130.7
—Order-7: error power =122.94
—Oﬁder-15: eror ﬁower =106

|

) 1 1 1
0 10 20 30

40

50

Sample index, n

60

70

80 90 100

E=N o

w

Experimental data and LS models
o

-2

ro

New observations of x[n] = A + Bn + w[n] (orange dots)

and old LS estimates of varying order

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
! |

|

|

|

|

|

,— Order-0: error power =165.95
—Order-1: error power =100.1
—Qrder-7: error power =115.13
—Or({er-1 5: error polwer =120.65 |

0

10 20 30

40

50

Sample index, n

60

70

80 90 100

I’= The LS cost J =) . e? is monotonically non—increasing with an increase in
p. In our example: Jy =177.09, J; = 130.7, J; = 122.94, J;5 = 106, ...

Reason: Model order p = N defines a polynomial ag + a1x + - -- + anzx
Warning: It also fits the noise!

which will perfectly fits NV data points.

N

I”&> Indeed, when these models are applied to unseen data (inference), the LS
costs are Jy = 165.95, J; = 100.1, J; = 115.13, J15 = 120.65, ...

In practice, increase order only if Jy,in(p) —

Jmin(p — 1) > user threshold
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Appendix 2: Derivation of the MMSE and variance for
the sequential estimator of a DC level in noise

N A 5 N-1 A 5
Jmin[N] = Y (z[n] — A[N]) IJmin[N — 1] = > (z[n] — A[N — 1))
n=0 n=0
N—1 X X 5 ) )
_ [ac[n] ~ AN 1] = 5 (@[N]~ A[N ~ 1])] + (z[N] — A[N])
n=0
o N-I )
=  Jnin[N —1] — N1 z;o (z[n] — AN —1]) (z[N] — A[N — 1))
N A
T (x[N] — A[N —1])° + (z[N] — A[N])*
~ 2
sz'n[N] — sz’n[N - 1] + N +1 (:B[N] - A[N - 1])
1 1 1

var(A[N]) = ZN L:ZN_lL_FL: 1 +
n=0 o2 n=0 52 0]2\7 var(A[N—1]) o

1
2
N
_ var(A[N — 1]) 0]2\[ :( B var(A[N — 1])

var(A[N — 1]) 4 o3, var(A[N — 1]) 4 o3,

)var(A[N 1))

= (1- K[N])var(fl[N —1])
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Appendix 3: Probability vs. Statistics

(for discrete RVs, F{ X} = Zle x; Px(x;), where Px is the probability function)

Probability: A data modelling view, describes how data will likely behave
for example: average = F{X} = / rpx(x)dx no data here

Notice that there is no explicit mention of data here & x is a dummy
variable and px is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave

N-1
1
for example: average = — ZO x[n] no pdf here

Vagaries of probability: P(zg< X < xg+ Ax) = fxOJrAx px(x)dx

)
tpx() Notice that

but P(Xo< X <xo+Ax

P(X=x)=0 P(X =) =0

\
/ This appears odd, but otherwise
x1: Xo /;Co"'Ax ” the probabilities sum up to oo
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Appendix 3: Statistics vs. Probability, cont.

Statistical inference &~ based on the observed data and supported by prob. theory

Vagaries of statistics: Consider N coarse-quantised data points,
z|0],...,x[N — 1]. The quantised signal has M < N possible amplitude

values, V7, ..., Vs, for which the corresponding relative frequencies are
N1 = #Vi,..., Ny = #Vys. Calculate the mean, .
A X[n]

Y

n
Solution: | N M M N
N n=0 N m=1 m=1 \/N
~ P(x=Vp)
7= Clearly, the factor 1/N does not imply “uniform distribution”
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Appendix 4: Statistical inference

Chinese for statistics is 4tit (summarizing & counting) and

probability is #t=& (i) ((theory of) randomness & chances), "

Probability: Assumes perfect knowledge about the “population” of
random data (through the pdf).

Typical question: There are 100 books on a bookshelf, 40 with red cover,
30 with blue cover, and 20 with green cover. What is the probability of
randomly drawing a blue book from the shelf?

Statistics: No knowledge about the types of books on the shelf, we need
to infer properties about the “population” based on random samples of
“objects” on the shelf & statistical inference.

Typical question: A random sampling of 20 books from the bookshelf
produced X red books, Y blue books and Z green books. What is the
total proportion of red, blue, and green books on the shelf?

Statistical inference is applied in many different contexts under the names
of: data analysis, data mining, machine learning, classification, pattern
recognition, clustering, regression, classification
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Appendix 5: Range of a matrix, span of a set of vectors

(a wide matrix transforms a vector space into another lower-dimensional one)

Consider a general 2 x 3 matrix H and a 3 X 1 vector u

h h h hii
H=| ' 72 "5 1 —Th |hy|hs] where h;=| " | i=1,2,3
h21 h22 h23 hQi
Then, _ _
uy
v=Hu= [h1|h2|h3] (15 = u1h1 + uohs + ushs €R2X1
u3
1 -2 0
SR oo
S Example: H € R**°, u € R>”
— \ . o Clearly, v is a linear combination of the
N: u=[3, 2, 4] columns of the matrix H, h; € R?*!
0, o Vector v = [—1,2]" therefore lies in
=", I the span of the columns of H, i.e. in R?
:II:I : ,/ X I= This dimensionality reduction
> 7T p = Pu is not a projection p = Pu, where
"""" (projection) P=HH"H) 'H'
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Appendix 6: Quadratic forms and positive—(semi)definite
matrices

Quadratic forms appear often in data analysis, and are expressed as
xTHx x € RV H e RVXN

For simplicity, consider a 2nd order case, where
leﬂfl] H:[h” h12]

T ho1  hao
T variable vector 71 fixed matrix

The quadratic form Qu(x) = Qu(x1,z2) of a matrix H is a scalar given by

2 2
Qu(x1,x2) = x! Hx = Z Z hijrix; = h11ﬂ?% + h223?§ + (h12 + ho1)z122
i=1 j=1
. ! X o If Qu(x) > 0, for any x # 0
x! 1 xN scalar then the matrix H is called
H (1x1)  positive semi-definite
= 0O
o The matrix H is positive
N x N N x 1 definite if Qu(x) > 0,Vx # 0
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Appendix 7: Order Recursive Least Squares (ORLS)
(If h; are NOT L ORLS is harder but possible)

For orthonormal columns of H,
0 =H'x

Denote by 6; the projections on the
individual columns of H (coordinates
in .S). Then, we can find projections
on each of those 1D subspaces
separately, and add them to give

97; = h;FX —

= Can we use an p-order model to compute the (p + 1)-order model?
Indeed, denote by H1 = hl, H2 = [hl ‘ hg] s Hp+1 = [Hp ‘ hp_|_1]

For p = 1 — §1 = (h?X)hl For p = 2 — §2 = (h?X)hl + (th>h2 = él —+ (th>h2

Order Recursive Least Squares: Sp+1 =8 + (b 1 x)h, 4
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Appendix 8: What is that a matrix does to a vector?

4 matrix—vector products

R X A x
«

E X

/.:i

P x

Ampli-twist:
multiplies a vector x
(i) stretches or shortents the vector
(ii) rotates the vector

a matrix A which

A ~~ any general matrix

R ~~ a rotation matrix (RY = R™!
and det R = 1)

Ex = Ax ~» eigenanalysis

P ~~ projection matrix

An example of a rotation matrix

R _ [ cosf) —sinf ]

sin@ cosf

What can we say about the
properties of the matrix A, matrix
E and the projection matrix P
(rank, invertibility, ...)?

Is the projection matrix invertible?
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Appendix 9: Sensitivity to outliers of the ordinary Least

Sq uares ( O LS) (role of regularisation and robust estimators)
» Data Inside 95% Confidence Interval 150 - OLS
- Data Outside 95% Confidence Interval T ) Ridge

—Ordinary Least Squares —

—Robust Regression with Huber - 100 —— Lasso

—Ordinary Least Square Without Outliers| L
o e

—— Huber Regressor
50 « training data

e ....".":..‘ [ R
1] Po J°° o0 °
o dgaTra

-50

- + -<— outliers outliers 7
Zzz o T95 % confidence interval | 00

-0.03 -0.02 -0.01 C](;X 0.01 0.02 0.03 3 5 " ; : , \ ;
Regression of daily returns of Altona Energy (ANR) Regression under outliers
corporate bond on the credit default swap (CDX). Huber is a robust estimator
Ridge regression: TIn(w) = (d,, — ngn)%+3\1|\wn|\§ —e2 + \wliw,

stand;d cost Lo F?ernalty
LASSO (sparsity promoting): TIn(w) = (d,, — W;‘fxn)%+\)\2|\wn||L
stand;rrd cost L4 Bgnalty

o Ridge: Penalises for large weights (but does not reduce system dimensionality)

o Least absolute shrinkage and selection operator (LASSQO) enforces insignificant weights

to go to zero, and thus promotes sparsity and aids interpretability (A1, A2 & param’s.)
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