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Motivation for Best Linear Unbiased Estimator (BLUE)
and Maximum Likelihood Estimation (MLE) (see Appendix 5)

o In many applications, signals exhibit sharp spikes
o This results in heavy-tailed distributions (e.g. a-stable distributions)
o There may not be a general form of pdf for such distributions
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o If an efficient estimator does not exist, it is still of interest to be able
to find an MVU estimator (assuming, of course, that it exists), as in BLUE
o To achieve this, we need the concept of sufficient statistics and the
Rao—Blackwell-Lehmann—Scheffe theorem

I'= The BLUE assumptions are also called the Gauss—Markov assumptions
o It is possible in many cases to determine an approximate MVU estimator
(MVUE) by inspection of the PDF, using Maximum Likelihood Estimation
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Motivation for Maximum Likelihood Estimation (MLE)

What do you think these applications have in common?
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Overview

o It frequently occurs that the MVU estimator, even if it exists, cannot be
found (mathematical tractability, violation of regularity conditions, ...)

o For instance, one typical case is that we may not know the pdf of the
data, but we do know the 1st and 2nd moment (mean, variance,
power). In such cases pdf based methods cannot be applied

o We therefore have to resort to suboptimal solutions & by imposing
some constraints (domain knowledge) on the estimator and data model

o If the variance of a suboptimal estimator meets our system
specifications, the use of such estimators is fully justified

o The best linear unbiased estimator (BLUE) 9 restricts the estimator to
be linear in the data 3 finds a linear estimator that is unbiased and
has the minimum variance among such unbiased estimators

o Alternatively, if the MVU estimator does not exist or BLUE is not
applicable, we may resort to Maximum Likelihood Estimation (MLE)

o We first need to look at which data samples are pertinent to the
estimation problem in hand ~~ the so called sufficient statistics
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The notion of a statistic

Def: Any real valued function, T'(x) = f(z[0],z[1],...,z[N — 1]), of the
observations in the sample space, {x}, is called a statistic. Importantly,
there should not be any unknown parameter, 6, in a statistic.

= The mean T = Nzn 0 " 2[n], median, and max{z[0],z[1],...,z[N — 1]}
are all statistics. However, z[0] + 6 is not a statistic if 6 is unknown.

Let us now reflect on the estimators we have considered so far:
. N—-1
=Ly ] 6=+ " Nan] - p)?  max{z[0],...,z[N — 1]}

I'= These estimators are a function of random observations, x, and not of the
unknown paramater, 8 & each of these estimators is a valid statistic.

o Observe that the above estimators “compress” the available information,
e.g. the sample mean takes IV datapoints in x and produces one sample, .

o In the best case, such compression is “loss-less”, as it contains the same
amount of information as that contained in the IV original observations, x.

= We call such statistic a sufficient statistic, as it summarises (absorbs) all
information about an unknown parameter, 6, and reduces “data footprint".

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 5



An insight into the ‘sufficiency’ of the data statistics

Which data samples are pertinent to the est. problem? Q: 3 a sufficient dataset?

Consider two unbiased estimators of DC level in WGN:

0.2

N—1
;o 1 T - N9
A= Z) o], var(d)=— & A=2[0], var(d)=o

= Although A is unbiased, its variance is much larger than that of A. This is
is due to discarding samples z[1],...,z[N-1] that carry information about A.

Consider now the following datasets:
S1=A{=z[0],z[1],...,z[N — 1]} Sy = {z[0] +z[1], z[2],..., =[N — 1]} Ss—{z

The original dataset, Sy, is always sufficient for finding A, while S5 and
S5 are also sufficient. In addition, S3 is the minimal sufficient statistic!

In a nutshell, sufficient statistics answer the questions:

Q1: Can we find a transformation T'(x) of lower dimension that contains

all information about 67 (the data, x € RN*1 can be very long)
Q2: What is the lowest possible dimension of T'(x) which still contains all
information about 67 SN (minimal sufficient statistic)

For example, for DC level in WGN, T'(x) = ) z[n| (one-dimensional)
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Aim:

Sufficient statistics: Putting it all together

In layman’s terms, sufficiency is saying that 7'(x) is informative enough

A statistic T'(x) is sufficient if it allows us to estimate the unknown par. 6
as well as when based on the entire data set x. So, we no longer need to
consider data, x, after using it to calculate T'(x), it becomes redundant.

Def: A statistic T'(x) = f(«[0],z[1],...,z[N — 1]) is a sufficient statistic, if for

any value of Tj the conditional distribution of z[0], z[1], ..., z[N — 1]
given T' = Ty, that is, p(x = x¢|T'(x) = Tp; 0), does not depend on the
unknown parameter 6. In other words, after observing the statistic 1, the
data x will not give us any new information about 6. (see Appendix 1)

p &x =0 | Xy #ln] = To; A) p (x=x0 | 32,75 «ln] = To; A)
0 2

| p(x|Tp; A) depends on A [ p(x|Ty; A) does not depend on A o Knowledge of T\ changes
2O thus Ty s not suffcient 1.5} thus T is sufficient the PDF to the conditional one
- A | p(x| SN aln] = To; A).
02! o If a statistic is sufficient for
0.1} 051 estimating A, this conditional
0 J A k - 0 A PDF should not depend on A

Information present in observations No information in observations

0

(as in the right hand panel).

after T(x) observed after T(x) observed
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Sufficient statistics: Neyman-Fisher factorisation
Recall: The Gaussian p(x; A) = —N/2 expi- 53 SV (z[n] — A)?)

Finding the conditional distribution p(x| ano x|n] = TO;A) can be
extremely difficult. An intuitive way to deal with this is through the
factorisation of p(x|7T'(x); A).

Th: Neyman-Fisher factorisation. Consider a set of random samples, x, with
a PDF p(x;60) which depends on the unknown parameter 6. Then, the
statistic T'(x) is sufficient for 6 iff the PDF can be factored as

p(x;0) = g(T(x),0)h(x) — g (parameters & data) x h (data only)

where ¢(-) depends on x only through 7T'(x), and h is a function of only x.

T (x)

I'= For a DC level in WGN —

p(x; A) = (2#012)]\7/2 exp{— TCQ Z x eXp{— 2%‘2[]\[142 — 2A( Z x[n]) ]}

n=0

\ A 4

ne 9T
Therefore, the sufficient statistic is T'(x) = >, _; z[n]  (minimal & linear)

I’ Any 1-2-1 mapping of T'(x) is also a sufficient st. e.g. T} (x)= Nzn 0 'z [n)
and T5(x) = (Z)? are sufficient, but T5(x) = (Z)? is not as T = £+/T3(x).
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More examples of sufficient statistics &~ Estimating the
power of white Gaussian noise

Consider the parametrised PDF for DC level estimation in WGN, given by

p(x; A) = (27T012)N/2exp{ = 2%2 - (x[n] — A)*}

n=0

2

where A=0 and the noise power, o, is the unknown parameter.

I’ To find the sufficient statistic for the estimation of o2, we factorise
T (x)

~

N—1
1 1
C2) — 2
p(X,a)—(27m2)N/2 exp{—zf‘2 g z?[n] } . 1),
n=0 h(x

A\ 7

9(T(x),0?)
This gives the sufficient statistic for the estimation of the unknown o2 as

T(x)= ijz_ol x?[n] which, of course, makes perfect physical sense.

Homework: Prove that 3.7 ' 22[n] is a sufficient statistic for o2 by using
the definition that p(x | 3.0 2%[n] = Tp; 02) does not depend on &2 (no
information left in observation after Ty is observed). (see Slide 8)
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How to find the MVU from a sufficient statistic?

Raw data x = [z[0],...,z[N —1]]* € RV*! & an N-dim. sufficient statistic

Neyman-Fisher Th.: For T'(x) to be a sufficient statistic, we need to be
9(T'(x),0)h(x)

able to factor p(x;#) as

p(x;0) =

‘ Finding the MVU from sufficiency I

We can do this in two ways:
1. Find any unbiased estimator,
say 6, of 6 and determine

6 = E[6|T(x)]
(often mathematically intractable)
2. Find a g(-), st. 0 = g(T(x))
Is an unbiased estimator of 6

(preferable in practice)

Then: If g(+) is unique, we have a
complete statistic and MVU est.

If g(-) is not unique — no MVUE

‘ Rao-Blackwell-Lehmann-Scheffe Th: I

Assume that 6 is an unbiased
estimator of 6 and T(x) is a
sufficient statistic for 8. Then,
the estimator § = E[0|T(x)] is:
o valid (not dependent on 6)

o unbiased

o of < variance than that of 0
In addition, if the sufficiAent

statistic is complete, then 0 is
the MVVU estimator.

Def: Complete stat. There is only one
function of the statistic that is unbiased.
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Best Linear Unbiased Estimator: BLUE

Motivation: When the PDF of the data is unknown, or it cannot be
assessed, the MV U estimator, even if it exists, cannot be found!

o In this case methods which rely on the PDF cannot be applied

Remedy: Resort to a sub-optimal estimator 9 check its variance and
ascertain whether it meets the required specifications (and/or CRLB)

Common sense approach: Assume an estimator to be:

o Linear in the data, that is, éBLUE = Zg:_ol anx[n|, with a, as

parameters,

o Among all such linear estimators, seek for an unbiased one,

o Then, minimise the variance of this unbiased estimator.

Such an estimator is termed the Best Linear Unbiased Estimator (BLUE)
which requires only knowledge of the first two moments of the PDF.

We will see that if the data are Gaussian, the BLUE and MVUE are equivalent
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The form and optimality of BLUE

Consider the data x = [z[0], z[1], ...

,z[N —1]]", for which the PDF

p(x;0) depends on the unknown parameter 6.

The form of BLUE I

The BLUE is restricted to have the
form (a = {a,})
N—1
0 = Z anzn] = al'x
n=0 T

Constants to be determined

o We choose a = {a,, } which yield
an unbiased estimate E{0} =6

o Then, we perform min(var)

3 the BLUE estimator is that
which i1s unbiased and has the
minimum variance.

‘ Optimality of BLUE I

Note, the BLUE will be optimal
only when the actual MVU
estimator is linear!

This is the case, for instance, when
estimating the DC level in WGN

which is clearly linear in the data.

Then, BLUE is an optimal MVU
estimator giving a,, = 1/N.
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The place of BLUE amongst other estimators

We illustrate this on the estimation of a DC level in noise of different distributions

Consider the space of all unbiased o The MVU estimator for the

estimators of DC level in noise: mean 0 = g of uniform noise,
vt - . e Gaussian ZIZ‘[TL] ~ U(O,B), IS npnlinear
.§ LmtEe:trir:;ltbC:?:ed e Uniform in the data, and is given by
5 e ) =% =MVU = BLUE ~ N+1
S
= mean: § = ——— max{x|n
- max{z[n]}
N 52
variance: var(0)=
(9) AN (N + 2)

Nonlinear Unbiased

Estimators The sample mean estimator of

~ 2
0 uniform noise gives var(f) = —1§N

o For white Gaussian noise, the MVU So, sample mean is not an MVU
is linear in the data and is given by | estimator for uniform noise!
the sample mean Z. (see Problem 4.1 in your P&A sets)

IS The difference in performance between the BLUE and MVU estimators
can, in general, be substantial, and can only be rigorously quantified
through the underlying data generating pdf.
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Example 1: How useful is an estimator of DC level in
noise? (see Appendix 7)

In fact, very useful. It is up to us to provide a correct data representation.

‘ Sinusoidal frequency estimation | ‘ Practical example: Real-world speech I

A x(t) A X(f)

t|me freq uency representatlon

=

frequency

time—frequency spectrogram

frequency

(T-F representation of a sinewave)

m —- aaaaa — ttt— Il — aaaaa—bb

— horizontal axis: time vertical: frequency
ime

o Sinusoid in time & DC level in | This is a speech waveform of the
time—frequency utterance of word “matlab”

o Chirp in time & ramp in T-F Observe DC-like harmonics for “a

Imperial College
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Example 2: Problems with BLUE

(are often surmountable!)

Its direct form is inappropriate for nonlinear prob. &~ population dynamics example

Owing to the linearity assumptions, the BLUE estimator can be totally

inappropriate for some estimation problems.

[Power of WGN estimationj

The MVU estimator &2 Z xT

is nonlinear in the data. Forcmg the
estimator to be linear, e.g. by

| N1
= ]_VZ Ay |1
=0

yields FE{6?} = 0, which s
guaranteed to be biased!

A non-linear transformation of the
data, ie. y[n] = 2?[n], could
overcome this problem.  (next Slide)

[Example Rabbit populatlon]

— Parent rabb|ts
=== Baby bunnies

Rabbit population
B {2} o ) 8

n
=)
T

Rabbit pairs

The time evolution of the rabbit
population is nonlinear (exponential)

However, the number of parent pairs

Is linear in timel
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Example 3: Nonlinear transformation of data often helps

Left: Original data (nonlin. separab.)  Right: Linear separab. after nonlin. tran.

Original space, X Transformed space, Z

@o %@@ * Class 1
e} O Class 2
8 o
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How to find BLUE?
Recall:

BLUE is linear in data

0 =3 0o anzln] =ax

Consider a scalar linear observation z[n| = 0s[n|+ w[n|

and notice that

1. Unbiased constraint
N-—1
E{0}=) a,E{z[n]} =a’s0=0
n=0 Os[n]
alsf=0 = als=1
unbiased constraint 7
where the scaled data vector
s = [s[0], s[1],...,s[N —1]]"

I'= In other words, to satisfy the

unbiased constraint for the estimate
0, E{x[n]} must be linear in 6, or

E{x[n]} = sn] 6

E{H} = HZ 0 ans[ ] sln]  ~

=  FE{x[n]} = 0s[n]
scaled mean

2. Variance minimisation
0 =alx

var(f) = F{0%} = F{aTxxTa}

‘ BLUE optimisation task I

Minimise:
var(d) = a’ E{xxT}la = a’Ca
subject to the unbiased constraint

als =1

This is a constrained minimisation problem

Imperial College
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Some remarks on variance calculation

A closer look at the variance yields

var(f) = E{(szl anxn] — E{ szl anx[n]})Z} =F { (a’x — aTE{X})Q}

With a= [ag,a1,...,an—1]", y2 =y x yT, and (aTx)T = xTa, we have
E{ a' (x — BE{x}) (x — E{x})Ta} = a'Ca like var(aX) = a*var(X)
K yT

Also assume

E{x[n]} = s[n]f, easy to show from z[n]= E{z[n]} + [a:[n] — E{az[n]}}
by viewing w|n|] = z[n] — E{x[n|}, we have x[n] = 0s|n] + w[n]

BLUE is linear in the unknown parameter 6, which corresponds to the

amplitude estimation of known signals in noise (to generalise this, a
nonlinear transformation of the data is required). (see Slide 16)
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BLUE as a constrained optimisation paradigm

For Lagrange optimisation see Lecture 1 and Appendix 12

Task: minimize the variance subject to the unbiased constraint

{nin {aTCa}j subject to als=1

equality constraint

optimisation task

‘ Method of Lagrange multipliers I [Solve for the Lagrange multiplier )\J

4. From the constraint equation

1. J=a'Ca— \a's—1) als — % sTOo1g = 1
2. Calculate s i _ 1
o.J 2 sTC-ls
9a 2Ca — As 5. Replace into Step 3, with the
constraint satisfied for
3. Equate to zero and solve for a C-lg
A 4 dort = TC-1g
a=—-C""s o
2 These are the coefficients of BLUE

Imperial College
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Summary: BLUE
Recall that 0 =alx var(

=
|
@
~
0
o

BLUE of an unknown parameter:

T s'C™! Cls

é —a ,X=—X where
opt sI'C—1g

BLUE variance:

A 1
I A _
var (9) = a,, C Aopt = T 1<

To determine the BLUE we only require knowledge of
s %  the scaled mean

C 3 the covariance matrix (C~1is called the “precision
matrix”, see also Slide 42 in Lecture 4)

That is, for BLUE we only need to know the first two moments of the PDF

Notice that we do not need to know the functional relation of PDF

Imperial College
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Example 4: Estimation of a DC level in unknown noise

Notice that the PDF is unspecified and does not need to be known

Consider the estimation of a DC level in white noise, which is of an

unspecified PDF and with variance o?.

We know that
z[n] = A+ wnl, n=0,1,...,N -1

where {w[n]} is any white noise with known variance o2 (power).

In other words, {w(n]} is not necessarily Gaussian 3 there may be some

statistical dependence between samples (although they are uncorrelated)
Task: Estimate the DC level, A.

Solution: From the assumptions of BLUE, we have
E{zn]} =sn]A=A and therefore sin] =1

T
so that s=1=[1,....,1]" =1xx1
N elements

Follows from E{x[n]} being linear in 8 =  E{xz[n]} = s[n]l.
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Example 4: DC level in white noise of unknown PDF,

contd. Recall that a,,; = -5, var(f) = A, and § = al x
For any uncorrelated white noise {w} with power o2
A [ 5 - 0]
C=|: . : |=01 = Cl=]|: - 1 |=%I
1
i 0 0'2 | i 0 -

The BLUE for the estimation of DC level in noise then becomes (see Slide 20)

.17 L1 1
AleaiZIlX = N;x[n]:x

and has minimum variance (CRLB for a linear estimator) of

- 1 o
) =TI TN

o The sample mean is the BLUE, independent of the PDF of the data
o BLUE is also the MVU estimator if the noise {w} is Gaussian

If the noise is not Gaussian (e.g. uniform) the CRLB and MVU
estimator may not exist, but BLUE still exists! (P&A sets and Slide 13)
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Some help with the quadratic forms of the type a’ Aa
We shall analyse the expressions 1711 and 17Ix

111 1 1
1xN 1
1] Nx1
111 1 x[0]
1xN x[1]
X[N-1] Nx1

111 1111
1xN 1
1 Nx1
111 1| | x[0]
1xN x[1]
X[N-1]

It is useful to visualise any type of vector—matrix expression.

= 2xn]

Nx1

It is now obvious that e.g. the scalar a’ Aa is 'quadratic’ in a.

This is easily proven by considering x’Tx in the diagrams above.
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Example 5: DC Level in non-iid but uncorrelated zero

mean noise with var(w[n]) = o2

(de—emphasising bad samples)

Notice that now the noise
variance depends on the
sample number!

As before, s = 1.

The covariance matrix of the noise

02 0 0 |
C— 0 o7 0
0 0 o%r_1 |
and thus
(o, 0 0
o-1_| O oy’ 0
|0 0 ‘7;72—1 i

‘ The BLUE solution: I

N—1
I\mn
2
A B 17 Ct _ n=0 On,
1T C-11 N-1 1
2
n=0 On

N-1
o The term > "~ -5 ensures
o

n
that the estimator is unbiased

o BLUE assigns
weights to samples
smaller variances

o Notice that
var(A) =

greater
with

1
Zg:_ol 1/‘77%,
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BLUE: Extension to the vector parameter (see Appendix 6)
System model: 0, = ij;ol ainxinl,i=1,...,p = 0 = Ax

For every 0, € 0 = [0y, ...,0,]" we have (ain % weighting coefficients)
N-1

Scalar BLUE: 0; = Y ajzln], i=1,2,....p "5 6=Ax
n=0

Now: Unbiased constraint
Scalar BLUE:  E{6;} = SN L anE{zn)} =60, "5 E{6} =AE{x} =6

Scalar BLUE: E{z[n]} = s[n]d 23" pi{x}=HO — E{0}=AHO

where the coefficients A = [a;,|,x~ and H is a vector/matrix form of {s[n|} terms

= Unbiased constraint: AH = I and we wish to minimise: var(f;) = al Ca,
The vector BLUE becomes:
0 = (HTC_lI‘I)_lHTC_lX with the covariance Cg4 = (HTC_1H)_1
If the data are truly Gaussian, as in
x=HO+w with w~N(0,C)

then the vector BLUE is also the Minimum Variance Unbiased estimator.
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The Gauss — Markov Theorem

Consider the observed data in the form of a general linear model
x=HO +w

with w having zero mean and covariance C, otherwise an arbitrary PDF.

Then, the vector BLUE of 0 can be found as
6=MHTCc'H) H' C'x
and for every éz € 0. the minimum variance of éz IS

var(6;) = {(HTC_1H) _1]

X}

with the covariance matrix of 6 given by

C;=(H'C'H)"

Imperial College
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Example 6: Sinusoidal phase estim. (DSB, PSK, QAM)
Motivation for Maximum Likelihood Estimation (MLE)

Signal model: x|n] = Acos(2w fon + @) + w|n] w ~ N(0,0%)
Signal to noise ratio (SNR): SNR = M = %

2
_27];[:_01 (:t:[n]—A Cos(27rf0n—|—<13))
Parametrised pdf: p(x; ®) = (277012)]\,/2 e 202

Regularity condition within CRLB: 0lnpxs0) — 1(9)[g(x) — 6]
In our case: (see Example 8, slide 36)
0lnp(x; D) A=

oP o2

n=0

(z[n] sin(27 fon + @) — gsin(élwfon + 2<I>))2

I'= We cannot arrive at the above regularity condition, and an efficient
estimator for sinusoidal phase estimation does not exist

Remedy: Using MLE, we can still obtain an ~ CRLB for freq. far from 0 and 1/2

1
Approximate CRLB: var(®) > see Example 8
PP (®) 2 vrong | ple 8)
Imperial CO"ege © D. P. Mandic Statistical Signal Processing & Inference 27
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Maximum Likelihood Estimation (MLE): A familiar
example from HDDs in our computers

Spindle  Head

Platter
Actuator Arm

Hard drive read/write head

: ‘ Electromagnetic
Read head |_/ write head

10100101

Actuator Axis

Actuator

o The spindle spins the HDD platter

o The actuator arm moves across the magnetic medium

o R/W head changes the polarity to either the North or South pole
o This is very much like our usual binary coding of 0's and 1's

One method for recovering digital data from a weak analog magnetic
signal is called the partial-response maximum-likelihood (PRML)

= A more advanced, and currently used method, is the correlation-sensitive
maximum likelihood sequence detector (CS-MLSD) (Kavcic and Moura)

Imperial College
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Towards Maximum Likelihood Estimation (MLE)

Effects of parametrisation on the shape of a PDF: An example from finance

oV 2w

Recall that px(x; p, 0%) =
Simple Returns: Unequal Return Levels

204r M1,1) H
% N(4,9)
A 0.3r
&
g 0.2
)
=}
g 0.1F .
o
LL‘ anisenens wedeneanal

0.0 -2.5 .0 2.5 5.0 7.5 10.0 12.5

Simple Returns, r; (%)

_ (z—p)?

202

(parametrised by © and o?)

Effects of parametrisation:

ue(®; 1, 1) = e
Phiue( ) 1 x 271

pred(x; 47 9) —

1

1

3 X V21

(z—1)2
T 2x1

(z—4)°
6_ 2%9

& Virtue of imposing a distribution: return(t) = price(t)/price(t — 1)

Frequency Density

BA Prices: First Order Moments
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pdf
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MLE: Which distribution to assume for a given data?
Let us consider an example from financial modelling

Consider the S&P 500 stock market index, which tracks performance of
500 largest companies listed on stock exchanges in the US. It serves as a
benchmark in quantitative finance, as it indicates “market movement” .

Observe log-returns of S&P 500: log return = log price(t)/price(t — 1) }

NN

Normal Exponential Gamma
—0—0GO0G0—C0—0—
S&P 500
Log-Return

Q: Which of the three distribution is most natural to impose on the data?
I’ So, it is all about Maximising the Likelihood of obtaining the observed data!
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Intuition: Finding the mean and variance of the assumed
distribution 3~ parametrising the MLE

Finding the mean (location) of distribution

Location which maximizes
the likelihood

Likelihood
of observing [e)
the data @) @)

@ @
@) @)

([ I

Location

Finding the variance (spread)

Spread which maximizes
the likelihood

Likelihood
of observing 0]
the data () @)

o o
@) @)

[ I

I Spread

S&P 500 S&P 500
Log-Return Log-Return
Q: Which of these functions best Q: Which of these functions
approximates the mean? best approximates the variance?
A: “Read-out” the value of A: Employ a similar procedure as
likelihood function for data mean. for fitting the mean.
I'= In other words, we desire to find 8,,;. so that p(x; émle) is largest!
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Putting it all together: MLE as an alternative to MVU
Effectively, we treat 6 as a variable, not as a parameter, 6 = arg maxy p(x;0)

Rationale for Maximum Likelihood Estimation (MLE):
o The MVU estimator often does not exist or it cannot be found
o BLUE may not be applicable, that is, x # HO + w
I’ However, if we assume a likely pdf of the data, MLE can always be used!

o This yields an estimator which is generally a function of x, while
maximisation is performed over the allowable range of 0.

Def: The probability of observing the data, x, given the model parameters
0 =101,0-,... ,Hp]T, is called the likelihood function, L, and is given by

L(64,0,,...,0,x = observed) = L(0;x = fixed)
Unknown parameters, 8 N known, observed data x
While pdf p(x; @) gives the probability of occurrence of different possible
values of x, the likelihood function, L, is a function of the parameters 0
only, with the observed (known) data x held as a fixed constant!

= Mathematically, L(0;x) = p(x;0), so a more intuitive form of MLE is

0, = arg max L(0;x) = arg mgxpmodel(x; 0) = aryg mgxp(x; 0)
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Principle of Maximum Likelihood Estimation (MLE)

The unknown parameters, 8, may be deterministic or random variables.

Principle of ML estimation: We aim to determine a set of parameters,
0, from a set of data, x, such that their values would yield the highest
probability of obtaining the observed data, x.

I'=> NB: Data are “probable” and parameters are “likely” & two equivalent
statements: “likelihood of the parameters” and “probability of the data”.

No a priori distribution assumed & MLE A priori distribution assumed 9~ Bayesian

MLE assumptions (the i.i.d. assumption): With L(0;x) = p(x;0), it is
often more convenient to consider the log—likelihood, 1(8;x), given by

[(0;x) =log L(0;x) =log L(61,...,0,;2[0],...,2[N —1]) £ H Pdata(x[N]; 0)

I'= Conditional MLE: Supervised Machine Learning employs conditioning
between data labels y and input data x, with p,,.q4e; dictated by a chosen
architecture. Such conditional max. likelihood function is L(8;y|x), and

émle = arg maxg quj:_ol 108 Prmodel (Y™ |x™; 0) (Lecture 7, Appendix 9, P&A sets)
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Example 7: MLE of a DC level in noise

Consider a DC level in WGN, where w[n] ~ N(0, 0%)
z[n] = A + w[n] n=0,1,...,N-1
T

A is to be estimated

Step 1: Start from the PDF

p(x; A) = (mg)N gexp [~ ok 22

Step 2: Take the derivative of the Iog—llkellhood functlon

01 A)
npx 22

Step 3: Set the result to zero to yield the MLE (in general, no optimality)

;| V-1
=~ TLZ:O x[n]

Clearly this is an MVU estimator which yields the CRLB (efficient)
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Maximum Likelihood Estimation: Brief summary

MLE: Makes the data you did observe the most likely data you have observed

MVU vs MLE: MLE is a particular estimator which comes with a “recipe”

for its calculation. MVU property relates to the properties of any estimator

(unbiased, minimum variance). So, MLE could be an MVU estimator,

depending on the chosen model and problem in hand.

o If an efficient estimator does exist (which satisfies the CRLB), the
maximum likelihood procedure will produce it (see Example 7)

o When an efficient estimator does not exist, the MLE has the desirable
property that it yields “an asymptotically efficient” estimator (Example 8)

If 6 is the parameter to be estimated from a random observation x, then
the MLE 0,,,;c = argmaxg p(x; 0) is the value of 6 that maximises p(x; 0)

o The function L(0;data) = p(data; ) does integrate to 1 when
integrated over data (property of PDF), but does not integrate to 1
when integrated over the parameters, 6 (property of likelihood fn.)

o So, p(x;0) is a probability over the data, x, and a likelihood function
(not probability) over the parameters, 6. (see Appendix 8)

' MLE is a “turn-the-crank” method which is optimal for large enough data.

It can be computationally complex and may require numerical methods.
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Example 8: MLE sinusoidal phase estimator (cf. Ex. 6)
Recall the Neyman-Fisher factorisation: p(x;0) = g(T'(x), 0)h(x)

MLE of sinusoidal phase. No single sufficient statistic exists for this
case. The sufficient statistics are: (see Slides 6, 7 and 8, and Appendix 3)

T (x) = Zf,::ol x[n]cos(2m fon) Th(x) = ij:_ol x[n]sin(2w fon)

The observed data:
x[n] = Acos(2mfon +®) +wn] n=0,1,...N -1 wn] ~N(0,0?)

Task: Find the MLE estimator of & by maximising

N-—-1

p(x; @) = (2%012)N/2 exp | — 2%2 > (wln] — Acos(2mfon + 2))’]

or, equivalently, minimise

N—1
2
J(P) = Z (z[n] — Acos(2m fon + @))
n=0
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Example 8: MLE sinusoidal phase estimator (cf. Ex. 6)
Recall the Neyman-Fisher factorisation: p(x;0) = g(T'(x), 0)h(x)

For the minimum, differentiate w.r.t. the unknown parameter ® to yield

('9J — _9 Z — Acos(27 fon + (I)))A sin(27 fon + @)

and set the result to zero, to give

N—-1 N-—-1
(SP1) Z z[n] sin(27 fon+®) = A ? sin(27 fon + <I>) cos(2m fon + <I>)
n=0 n=0 jinner product of sine and cosine

Recall that (use sin(2a) = 2sin(a)cos(a), see also Example 9 in Lecture 4)

N—-1 N—-1
]. 2 A 1 A
(SP2) N ; sin(27 fon+®) cos(27 fon+P) = oN nEZO sin(4r fon+2®P) ~ 0

that is, it vanishes provided f, is not near 0 or =, and for a large enough N.
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Example 8: MLE sinusoidal phase estimator (cf. Ex. 6)
Recall the Neyman-Fisher factorisation: p(x;0) = g(T'(x), 0)h(x)

Thus, the LHS of (SP1) when divided by N and set equal to zero will yield

an approximation (see Appendix 2)
N-—1
0J (P .
% =0 oS nEZO x[n]sin(2w fon + @) ~ 0

Upon expanding sin(27 fon + (iD), we have (sin(a+b) = sin a cos b + cos a sin b)

N-1
Z z[n] sin(27 fon) cos ® = — Z ] cos(27 fon) sin @
n=0
N-1
x|n| sin(2w fon)
so that the ML Estimator & = —arctan ;i?
x[n] cos(27 fon)
n=0

= The MLE d is clearly a function of the two sufficient statistics, which
are Ty (x) = SN~ 2[n] cos(27 fon) Tyo(x) = S x[n] sin(27 fon)
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Example 8: Sinusoidal phase &~ numerical results

The expected asymptotic PDF of the phase estimator: ~ ®%¥ ~ N(CID,I_l(CI)))

% so that the asymptotic variance var(®) = 1 s = b
NA nIN
20°

P ) 2 . 66 _°® . . 7
where = Fnad — Agf (SNR) s the “signal-to-noise-ratio

noise

Below: Simulation results with A=1, fy = 0.08, ® = /4 and 02 = 0.05

Data record length Mean, E(®) N,x variance, N var(®)
10 0.732 0.0978

40 0.746 0.108

60 0.774 0.110

80 0.789 0.0990

Theoretical asymptotic values ®=0.785 % = 0.1

IS For shorter data records the ML estimator is considerably biased. Part of

this bias is due to the assumption (SP2) on Slide 37.
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Example 8: MLE of sinusoidal phase &~ asymptotic mean
and variance (performance vs SNR for a fixed V)

For a fixed data length of V = 80, SNR was varied from -15 dB to +10 dB

o The asymptotic variance (or CRLB) then becomes

. 1
10log,q var(®) = 10logy, N —10log;y N — 10logyo 1
Ui

o Mean and variance are also functions of SNR
o Asymptotic mean is attained for SNRs > -10dB

Actual vs. asymptotic variance for phase estimator

Actual vs. asymptotic mean for phase estimator

0.9 ‘ ‘ : ‘
= Actual mean — Actual variance
0.851 = = Asymptotic mean|| - - Asymptotic variance

08p
0.75r
% 0.7r

0
2 0.65-

10log variance
1 I

0.6

0.55

05

0435 -1‘0 !3 6 é 10 s -10 5 0 5 10
SNR (dB) SNR (dB)

Observe that the minimum data length to attain CRLB also depends on SNR
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Asymptotic properties of MLE

We can now formalise the asymptotic properties of éﬁj‘% (see the previous slide).

Theorem (asymptotic properties of MLE): If p(x;0) satisfies some “regularity”
conditions, then the MLE is asymptotically distributed as

0v ~ N (0,771(9))

where “regularity” refers to the existence of the derivative of the
log—likelihood function (as well as Fisher information being non—zero), and
7 is the Fisher Information evaluated at the true value of the unknown
parameter 6.

I'= The Maximum Likelihood Estimator is therefore asymptotically:
o unbiased

o efficient (that is, it achieves the CRLB)

= For a small N, there is no guarantee how the MLE behaves

We can use Monte Carlo simulations to answer “how large an N do we

need for an appropriate estimate ?” (see Appendix 9 for more detail)
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MLE: Extension to vector parameter

I’& A distinct advantage of the MLE is that it can always find it for a given
dataset numerically, as the MLE is a maximum of a known function.

o For instance, a grid search of p(x;0) can be performed over a finite
interval [a, b].

o If the grid search cannot be performed (e.g. infinite range of #) then we
may resort to iterative maximisation, such as the Newton-Raphson
method, the scoring approach, and the expectation-maximisation (EM)
approach. MLE depends on a good initial guess of the underlying PDF.

o Since the likelihood function to be maximised is not known a priori and
it changes for each dataset, we effectively maximise a random function.

I’ Extension to the vector parameter is straightforward: The MLE for a
vector parameter @ is the value that maximises the likelihood function
L(0;x) = p(x;0) over the allowable domain of 6.

alngfgx; 0) _ 0 then 6 ° ~N(6,274(9))

Asymptotic properties: If
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Example 9: MLE of a DC level in WGN. Both the DC
level A and the noise variance (power) o are unknown

Consider the data z[n| = A+w[n], n=0,1,...,N —1, w[n] is zero—mean
The vector parameter @ = [A, 02]! is to be estimated (var(w) is unknown too).

Solution: Assume p(x;0)=p(x; A, o )—mexp{ 202 Zn 0 (a: A)Q}
| 0lnp(x;0) 1 —
Now: A = 5 z:: (z[n] —
| Olnp(x;0) N 1 —
and: 80'2 — _20_2 + 20_4 Z (CIZ[TL] o

From first equation solve for A, from second equation solve for o2 to obtain

A~ X N—o0 A .
0 = %ij:—ol (z]n] — j)g ] — [ 72 ] asymptotic CRLB

where 7 = ~ Zg:_()l x|n].

I”& Amazing, we only assumed a type the PDF, but not the mean or variance!

Imperial College
London

© D. P. Mandic Statistical Signal Processing & Inference 43



Example 10: Sinusoidal parameter estimation with three
unknown parameters & A, fy, and &  (Example 7 in Lecture 4)

Now, 6 = A, fo,CID]T, and

1 1 N—-1 5
p060) = Gmesp [~ 55 D (aln] — Acos(2nfon 1 @)° ]

=0 e need this as (x—HO)T (x—HO)

For A >0, 0 < fy < % the MLE of 8 = [A, fy, ]! is found by minimising
N—1

J(A, fo,®) = Z (z[n] — Acos(2m fon + @))2

= (z[n] — Acos ® cos 27 fon + Asin ® sin 27 fyn)?
s

n=0 a1

= The function J(A, fy, ®) is “coupled” in A and @, and thus hard to
minimise. To this end, we may transform the multiplicative terms involving
A and ® to new “linear terms” a1 = Acos ®, g = Asin ®

with the inverse mapping A = , /a% + oz% & P = tan—l(—acfz)
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Example 10: Sinusoidal parameter estimation of three
unknown parameters, cont. (see Linear Models in Lecture 4)

For convenience of notation, we shall now introduce the vectors of sampled
cos and sin terms (containing the unknown frequency fj) in the form

c= [1,C0827Tf0,...,COSQﬂ'fO(N— 1)]T S = [O,sin27rf0,...,sin27rf0(]\7— 1)}T

to yield the function J’'(a, e, fo) which is quadratic in o = [aq, ]t
T T
J' (a1, as, fo) = (X — @€ — OéQS) (X — aqC — ozgs) = (x — Ha) (X — Ha) (%)
I'= We arrive at a linear estimator of the vector parameter a = [y, ap]?
where H = [c | s] (see Example 9 in Lecture 4)

This function can be minimised over «, exactly as in the linear model
(with C =1), to give (Slide 33, Lecture 4)

0=ac= (HTH)_lHTX —  insert into (%)

to yield J'(aq, a2, fo) = (x —Ha)"' (x —Ha) =x' (I- HH'H) 'H' )x

TV
max this for min J’
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Example 10: Sinusoidal parameter estimation of three
unknown parameters, cont. cont.

Hence, to find fo we need to minimise J' over fo or, equivalently
maximise x H(H H) 'H'x
I’& Using the definition of H, the MLE for frequency fo is the value that

maximises the power spectrum estimate (see your P&A sets)
2
cTx 1" [ cTe cTs 7' [ eTx 1 |~ o b .
[ T Te  oTg T | =W Z x[n]e 72T /0 <+ periodogram
=0
RCxTH HH)TY RN H'x
Use this expression to find fy, and proceed to find & (Example 9, Lect. 4)
) 23" z[n] cos 2 fon | Z z|n] sin(27 fon)
aq 2 [ cTx N - n=0
a=| . ~— | . |= d=— arctan

2 N | s™x 9 . . N-1 )

| v 2= xln)sin 27 fon | Z x[n] cos(27 fon)

n=0

and A=./a2+a2= N‘Zn 0 Z[n ]exp(—j27rf0n))
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MLE for transformed parameters (invariance property)

This invariance property of MLE is another big advantage of MLE

Following the above example, we can now state the invariance property
of MLE (also valid for the scalar case).

Theorem (invariance property of MLE): The MLE of a vector parameter
a = f(0), where the pdf p(x;0) is parametrised by 8, is given by

& = f(0)
where 8 is the MLE of 6.

= Since MLE of 6 is obtained by maximising p(x; 0), if f is a one-to-one
function this is obvious, and the MLE of the transformed parameter is
found by substituting the MLE of the original parameter into the
transformation.

For example, if z[n] = A+ w[n], w € N(0,0?), but we wish to find the
MLE of a = exp(A).

o The resulting log—likelihood is still parametrised by A, and by using
In o« = A as a transform, the resulting MLE is obtained as

a = exp(fl) (see also your P & A sets)
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Optimality of MLE for a linear model

We can now summarise the observations so far in the form of the
optimality theorem for MLE.

Theorem: Assume that the observed data can be described by the general
linear model

x = HO +w
where H is a known N X p matrix with N > p and of rank p (tall matrix),

0 is a p X 1 parameter vector to be estimated, and w is a noise vector with
PDF N (0,C). Then, the MLE of 6 takes the form

6= (H'C~'H) 'H'C 'x

In addition, @ is also an efficient estimator in that it attains the CRLB. It
is hence the MVU estimator, and the PDF of @ is Gaussian and is given by

6~ N6, H'CT'H)™)
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Example 12: MLE in Generative Artificial Intelligence
(see also Appendix 10 and Appendix 11)

We often have a limited amount of samples of the dataset of interest, e.g.
we do not know the true distribution of all male and female face images.

xi~Paata o Generative models aim to

PGAN

generate “new’ data based
on the available samples of a
dataset of interest.

o Generated data should

approximate  the “true

distribution” of unseen data,

= MLE Function Pdata, aS best as possible in

Likelihood

some statistical sense, e.g.

min dista nce(pdatcu pmodel) .

Variational GAN Transformer Diffusion

7= We examine the likelihood of the model, given the dataset (= MLE).

I'= This boils down to maximising the likelihood that the generated data will
have a similar distribution as the true data of interest.
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Example 12b: Goal of generative models

We desire to learn a probab. distribution, pg.ta(x), over data, x, such that:

Generation: If py.:q(x) is a distrib. of handwritten digit images, and we
sample Zpew ~ Prmodel, then T,e., should look like a digit  (aka sampling)
Density estimation: The probability pg.:q(x) should be high if a training
sample, x, looks like a digit, and low otherwise (maximising likelihood)
a 5 282 = 784 binary variables (BW pixels). This
* gives a total of 278 = 1023% possible BW images.

Some 28 x 28-pixel images o Even a sample space of 10° training data would
e N give an extremely scarce coverage of ground truth.

o For a more realistic 1000 x 1000 = 10°—pixel
L

frames, we would have 2%%7%YYY possible images.
L: Original, R: Generated

Sufficient sample space for p;.:.- A full ground
truth space of all 28 x 28—pixel BW images has

= So we wish to learn pmodel = Po = Pdata, to construct the “best” fit to the
available distribution pg4¢, from incomplete ground truth.
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Example 12c: Density estimation as MLE

The aim of learning is for p,,.4.:(x; 8) to become as close to p,,:,(x) as possible

Our context is density estimation & we desire to capture the data
distribution pg.ra(X), so as to enable either unconditional or conditional
generation of new data from & same distribution p,,oqe1(x; 0).

o MLE aims to pick a “good” model which incorporates domain knowledge
(structure of the data), that is, a model with a good inductive bias.

o To measure “closeness” between the training data distribution pgq:q(X)
and model distribution p,,04¢1(x; @) we use the KL divergence (Appendix 11)

— EXNP b [log pdam(X)—log Pmodel (X; 0 )}

Pdata(X) }

b — B {1
KL(pdata,| |pmodel) Pdata | 108 pmodel(x; 9)

Here, Ex.p, .. 1s the expectation over all possible training data, which is a
weighted average of all possible outcomes, with pgq:q(-) as “weights”, i.e.

DKL(pdata| |pmodel) — Zpda,ta (X) |:10g pdata(x) - log pmodel(x; 92 }

max of this = min of D,

I argmin D (Pdata||Pmodetr) = Max. Likelihood Est. arg max 1og pyoder (X; 0)
Do Do
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Example 12d: Big picture of learning data distributions
Most important general cases

o p(y|x; 0) & classification
(discriminative model), e.g.
logistic regression

o p(y|x;0) & regression,
prediction

. Machine Learning Model
Continuous

p(y | x) .
Discriminative Model Discrete

y=flx)+e
Regression Model
lassificat

p(x; 6)
Generative Model

p(x|y;0)
Conditional Generative Model

o p(x;0) I generative
model (e.g. VAE, GANN)

o p(x|y;0) ¥+ conditional
generative model

I'= The difference between classification and prediction is that in classification y takes discrete
values (typically O or 1) while in prediction vy is continuous.

Classification Model

I'= Generative models learn a joint distribution over the entire dataset. They are typically used
for sampling applications or density estimation.

X~Pdata Xnew™ pmodel(z 0)

1 ‘I
i — ‘\ . ] . . i Sampling
g / L e l'
S L Hﬁ 19 .
52
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MLE:

Summary: Maximum Likelihood Estimation (MLE)

1) Assume a model, also known as a data generating process, for your
observed data

2) For the assumed model, produce the likelihood funct. L(0;x) = p(x; )
3) Now, MLE becomes an optimisation problem

I”= Differences between p(x|0) and p(x;6). The “conditional” PDF p(x|d)

is typically denoted with the semicolon ’;’ to indicate that 8 are not
random variables but unknown parameters which “parametrise” the pdf.

I Differences between the likelihood function, L(0;x), and the

probability density function, p(x; 6) are nuanced but important:
o A PDF gives the probability of observing your data, given the underlying
parameters of the distribution, i.e. it maps samples to their probabilities.

o The likelihood function expresses the likelihood of parameter values,
given your observed data. It assumes that the parameters are unknown.

MLE is grounded in probability theory; it provides a rigorous theoretical
framework and underpins many probabilistic models in machine learning,
such as generative Al, logistic regression, and Gaussian mixture models.
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Summary: BLUE vs MLE

NB: The optimal MVU est. and CRLB may not exist or are impossible to find

Best Linear Unbiased Estimator Maximum Likelihood Estimator

o |t operates even when the pdf of
data is unknown

o Restricts the estimates to be
linear in the data (e.g. DC level
in noise)

o Produces unbiased etimates

o Minimises the variance of such
unbiased estimates

o Requires knowledge of only the
mean and variance of the data,
and not of the full pdf

o BLUE may be used more
generally if the data model is
linearised in an adequate way, for
example, through T-F represent.

o Basic idea: In the likelihood
function, 6 is regarded as a
variable and not as a parameter!

o Can always be applied once the
PDF is assumed: no restriction

on the data model (cf. BLUE)
o Can be computationally complex
Properties of MLE, as N — oc:
o Efficient 9~ attains the CRLB

o Consistent: Unbiased & var — 0
I.e. converges to 6 in probability.

o Optimal for the General
Linear Model, invariant to
any transformation of 6,

asymptotic normality of O,/1 5

Imperial College

London © D. P. Mandic

Statistical Signal Processing & Inference 54



=

Appendix 1: Intuition about a sufficient statistic

Denote by = the video recording of your SSPI Lecture 4 (a dataset, x),
and by y the notes you have taken about Lecture 4 (a statistic, T(x)).
The information needed to answer Assignment #3 in your Coursework is
the unknown parameter 6.

o Now, y depends entirely on x 3 video contains all info in your notes.

o If you took sufficiently good notes, T'(x) will give you same information
about 6 as x does & conditional distrib. of Lecture 4, given your notes,
p(x|y; 0), is independent of A (the information related to Assignment #3).

o Here, conditional distribution simply means the probability distribution of
the information in your notes, given the lecture 3 if the information is in
the lecture, it is also in your notes.

Once you have checked your notes, going back and listening to the lecture
will not help you solve Assignment #3 (no additional information).

I’= A consideration of both the data set x and the statistic 7'(x) does not give

any more information about the distribution of 6, than what is available
based only on the statistic 7(x) & so, we can keep T'(x) and “throw
away’ x without losing any information. (see Slide 7)
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Appendix 2: Sufficient statistic for the uniform
distribution

. T . .
Consider the random data x = [:L'O,xl, . ,xN_l] , which are uniformly
distributed on the interval [0, 8], with the parameter 6 unknown.

To find a sufficient statistic 7'(x), we employ the i.i.d. assumption to yield
p(xo,xl, . ,ZCN_1;9) = p(x;0) = 9_N1<azn <6,n=0,1,...,N — 1) =0V 1(E)
where

the indicator function: 1(E) = { 1, if the event E holds

0, if the event E does not hold

The data z,, <0,n=0,...,N — 1 iff max{zg,...,xny_1} < 0 so that

—
h(x)

p(x;0) =0"" l(max{mo,xl, o, N_1} < 9) X
9(T (x),0)

I’ By the Neyman-Fisher factorisation theorem, the sufficient statistic is
T(x) = max {z[0], z[1],...,z[N — 1]} = max{x}

I'= The sample mean, I, is not a sufficient statistic for a uniform random var.,

as 1(max{x} < ) cannot be expressed as a function of just T and 6.

Imperial College
London

© D. P. Mandic Statistical Signal Processing & Inference 56



Appendix 3: Sufficient statistics for the estimation of the
phase of a sinusoid

Problem: Estimate the phase of a sinusoid

z[n] = Acos(27 fon + @) + w|n] w ~ N(0, %)

27];7:—01 (x[n] —A cos(27rf0n—|—@)) :

Parametrised pdf: p(x; @) = (27T012)N/2 e 7072

The exponent may be expanded as

N-—-1

Zx —QAZ | cos(27 fon + P) —|—ZA2COS (27 fon + D)

n=0

N-1 N-1 N—1
— Z aj2[’n,] — QA( Z CcoS 27Tf0n> cos ® + 2A( Z sin 27Tf0n) sin & + Z A? cos2(27rf0n + P)
n=0

n=0 n=0 n=0

This pdf is not factorable as required by the Neyman-Fisher theorem.
Hence, no single sufficient statistic exists. However, it can still be
factorised as
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Appendix 3: Sufficient statistics for the estimation of the
phase of a sinusoid

2

p(x; @) = (2 12)N/2 ex p{ % O A% cos®(2m fon + ®) — 2AT(x) cos ® + 2AT,(x) sin D] }
) 9(T1(x). Ty (x). %) ’
p Nt
X eXpy — ﬁnzzgx [n]}
N ~- y
where

N-1 N—-1
= Z x|n] cos 2 fon Th(x) = Z x[n] sin 27 fon
n—0 n—0

I”& Ti(x) and T5(x) are jointly sufficient statistics for the estimation of ®.
However, no single sufficient statistic exists (we really desire a single
sufficient statistic).
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Appendix 4: Motivation and Pro’s and Con’s of BLUE

Motivation for BLUE: Except for the Linear Model (Lecture 4), the
optimal MVU estimator might:

o Not even exist,

o Be difficult or even impossible to find.

BLUE is one such sub—optimal estimator.

Idea behind BLUE:
o Restrict the estimator to be linear in data x,
o Restrict the estimate to be unbiased,

o Find the best among such unbiased estimates, that is, the one with
the minimum variance.

Advantages of BLUE: It needs only the 1st and 2nd statistical moments
(mean and variance).

Disadvantages of BLUE: 1) In general it is sub—optimal, and 2) It may
be totally inappropriate for some problems (see the next slide).

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 59



Appendix 5: More on heavy tailed distributions

o The a-stable distribution generalises the normal distribution.

o It was proposed as a distribution for asset returns and commodity prices
by Mandelbrot in the early 1960s.

PDFs of Gaussian and Alpha-Stable (alpha=1.5) Distributions Amplitude of the Signals
0.40 1 Gaussian
0.35 | ——— Alpha-Stable 104
0.30 1 51
0.251 g
S [oF]
0.201 =
o
0.15 A g s
0.10 10
0.05 4 —— Gaussian
—159 — R
0.00 Alpha-Stable
—-10.0 -7.5 —-50 —25 0.0 2.5 5.0 7.5 10.0 0 100 200 300 400 500
Time
PDFs of Gaussian and Alpha-Stable (alpha=1.1) Distributions Amplitude of the Signals
0.40 Gaussian —— Gaussian
0.35 1 ——  Alpha-Stable 601 —— Alpha-Stable
0.301 40 |
0.25 1 w
el
0.201 2 201
' g
0.15 < ol
0.10
0.05 1 —209
0.00 - —401
-10.0 -7.5 —-50 —2.5 0.0 2.5 5.0 7.5 10.0 o] 100 200 300 400 500
Time

lllustration of a-stable distributions based on synthetic data
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Appendix 6: Some observations about BLUE

o BLUE is applicable to amplitude estimation of known signals in noise,
where to satisfy the unbiased constraint, E{x|n|} must be linear in the
unknown parameter 6, or in other words, E{x[n]} = s|n|#.

o Counter-example: If E{x[n]} = cos 6, which is not linear in 6, then

from the unbiased assumption we have Zf,::ol a, cost = 0. Clearly,
there are no {a,} that satisfy this condition.

o For the vector parameter BLUE, the unbiased constraint generalises
from the scalar case as

E{z[n]} =sn]§ — a's=1 = F{x}=H68 — AH-=I1

Since the unbiased constraint yields:
E{6:;} =) amE{z[n]} =6; = E{0}=AE{x}=0
n=0

this is equivalent to al h; = ¢;; (=0 for i#j, =1 fori=j)
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Appendix 7: Some BLUE-like “estimates”
Composite faces &~ people face averages

Can we estimate a “typical looking” person from a certain region, by
taking a statistical average of a large ensemble of random faces
photographed on the street?

Does the so-generated estimated average face exist in real life?

: B < ' : :r-;ufﬁ.?u
Participans in Sydney, Australia, ranging from 0.83-93 years
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Appendix 7: Some BLUE-like “estimates”, contd.

Composite faces of Sydney

Composite faces of London Composite faces of Argentina
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Appendix 8: Some notions from probabilistic modelling

The data, x, are connected to all possible models, 8, by a probability
P(x;0) or a probability density function p(x;#). In other words, a pdf
gives the probabilities of occurrence of different possible values.

Sample space: The sample space of a random variable represents all
values that the random variable can take. For example, for the coin tossing
experiment the sample space is: Heads and Tails.

Parametric modelling: Parametric models represent a set of density
functions with one or more parameters. For different values of the
parameters there will be different density functions. All of these density
functions are referred to as parametric models.

Probability density function: Given a sample space, the PDF maps the
random samples to their probabilities.

Likelihood function: It is the probability of observing the values in the
sample space, if the true generating distribution was the model which uses
the particular density function parameterised by 6 (think Gen-Al).
Maximum Likelihood: MLE aims to find the parameter values of a model
which makes the observed data most probable

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 64



Appendix 9: Monte Carlo (MC) simulations

Use computer simulations to evaluate performance of any estimation method

The MC simulations are illustrated here for a determin. sig. s[n, 0] in AWGN

1. Data collection

o Select a true parameter value, 0., (usually performed over a range of
values of 6

o Generate a signal having 604,,. as a parameter

o Generate WGN with unit variance and form the measurement £ = s + w
o Choose o to obtain the desired SNR value and perform one MC
simulation for one SNR value (usually you run many simulations over a
range of SNR values)

2. Statistical evaluation

o Compute bias, B = &M (0, — 0irue)

o Compute RMS error, RM S = \/ﬁ SM (O — Orrue)?

o Compute error variance, var = -3 (0, — (& M 6,))°
o Plot histogram or scatter plot (if needed)

3. Explore (via plots)
How bias, RMS, variance vary with the value of #, SNR, number of data
points, N, etc. Q: Is bias =0, is RMS = CRLB!/2, etc.
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Appendix 10: Generative Al for speech &~ a diffusion
model

Consider an 80-band mel-spectrogram of a sample of speech of a female
speaker saying: “in being comparatively modern”.

LS
2

U] un L 1 L4

Original speech Generated speech

The speech samples are generated with a score-based model, of which the
training stage is maximising the data likelihood pi,0de1(X)

Observe that the generated sample is very close to the original one

o Diffusion models are built upon Stochastic Differential Equation (SDE)
functions

o They are solving an SDE process, which is usually either a variance
preserving or exploding SDE function

o The performance of each SDE is different for a different task
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Appendix 11: Minimising KL—divergence and
cross—entropy is equivalent to maximising the likelihood

The KL-divergence is a common loss function for training neural network
(NN) based generative models, such as VAE, GAN, and diffusion models.

pe(T)
qg(x)

Dk1(pellgs) = Epglog
where pg is the probability distribution of the true labels and g is the
probability distribution of e.g. deep neural network (DNN) predictors. In
other words, p = DPapers aNd ¢ = Gmodel-

o KL divergence measures the dissimilarity between pg and g4

o To bring g4 closer to the true pg, we minimize KL-divergence w.r.t. 6.

Goal : Minimize DKL(pOHC]é) = arg mjane(CCi)log (pe(ivz))
° x 96(z;)

= argmin > " po(xi)log (pe(zi) — qa(w:)) = arg min — > " po(zi)log (qg(z:))
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Appendix 11, contd.: Minimising KL—divergence and
cross—entropy is equivalent to maximising the likelihood

Cross-entropy, H (pe, q5), is another important objective function for
training NNs, especially for classification purposes, and is given by

H(peo,qy) = Epylogqy(x) = H(pe) + Drr(pe|

dg)

Goal: minimize H(pg, q5) = argmin — Zpe(ilfz')l()g (Clé(afi))
0

o In classification problems, the true distribution, pg(y|z;), is one-hot

encoded as 1, ify=u,
po(ylzi) =

0, otherwise

I”= The goal becomes argming — > __ log (qe(yz|xz)) which is precisely the

objective of MLE (min of the negative log-likelihood = max likelihood).
=0 — polx) ~ M(1, 1)
0.5 — q5(x) ~N(3,1)
/X\ Dki(pel|qé)
0.0
—2 0 2 4 6
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Appendix 12: Constrained optimisation using Lagrange
multipliers

Consider a two-dimensional problem:

maximize T,
[(z,y)

function to max/min

subject to  g(x,y) =c
cons?ﬁ?aint

We look for point(s) where curves f & ¢ touch (but do not cross).

In those points, the tangent lines for f and g are parallel = so too are the
gradients Vg ,f || AV.,49, where X is a scaling constant.

Although the two gradient vectors are parallel they can have different magnitudes!
Therefore, we are looking for max or min points (x,y) of f(x,y) for which

of 0 da O
Veuf(z,y) = —=AVy9(z,y) whereV, ,f = (8—£’8—§ 6—1’8—5)

We can now combine these conditions into one equation as:
F(x,y,A) = f(z,y) = Ag(z,y) —¢) andsolve V., \F(z,y,\) =0
Obviously, V \F(z,y,\) =0 < g(z,y)=c

) and V, g = (
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App. 12: Method of Lagrange multipliers in a nutshell
max/min of a function f(z,y, z) where z,y, z are coupled

Since z, ¥y, z are not independent there exists a constraint g(x,y,2) = ¢

Solution: Form a new function
F(x,y,2z,\) = f(x,y,2) — Mg(z,y,2) —¢) and calculate Fy, F,, F. F}

Set F, F,, I, F\, = 0 and solve for the unknown z,y, 2, A.

‘ Example 13: Economics I
Two factories, A and B make TVs, at a cost

fx,y) = 622 + 12¢7 where x=#TV in A & y=#TV in B

Task: Minimise the cost of producing 90 TVs, by finding optimal numbers
of TVs, x and y, produced respectively at factories A and B.

Solution: The constraint g(z,y) is given by (x+y=90), so that
F(x,y,A\)=6x*+12y*—X(x + y — 90)

Then: F, =12z — A, F) =24y — A, F\=—x—y+90, and we need
to set VF = 0 in order to find min / max.

I’ Upon setting [F, F, F\| = 0 we find z = 60,y = 30, A\ = 720
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Notes:
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Notes:
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