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Motivation (from Lecture 3)

A natural criterion to define optimal estimators is the
Mean Square Error (MSE):  MSE(0) = E{(0 — 0)?}

A

which measures the average mean squared deviation of the estimate, 0,
from the true parameter value, 6.

= We desire to minimise the error power (see Lectures 3, 6 and 7)

MSE () = var(0) + B2(0)

MSE = VARIANCE OF THE ESTIMATOR 4+ SQUARED BIAS

Of particular interest are unbiased estimators for which

A

min M SE(0) = min var(0)
6 0

so that we can use our available degrees of freedom to minimise one
performance metric (variance), instead of two (bias, variance).

I'= We now establish a theoretical bound on the optimality of MVU estimators.
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Luminance

Motivation: Practical example from High Definition TV

There are so many ways SSP&I can help with sustainability.

Principle of HDTV: In HDTV, a 1000x1000 = 106 pixel image at 60 frames per sec
analysed using a 8 x8 DCT

10° pixels x60 fps

~ 106
64 pixels per FFT =10 FFT/S

Intensity

If 1.4% of world’s 7x10° population watches TV at any given time,
then (1.4% of 7x10° = 108)

108 FFT/s x 108 TVs = 10% FFT/s

Pixel Am plitudes DCTAmplitudes (the same as the number Of CE”S in human bOdy)
DFTs are everywhere:
- 4G mobile Now, there are 3600s in an hour and 30x10° sec in a year
- LANSs = # DFT/year = 10 X 40 x 10% for TV only

- OFDM & SC-OFDM

- MP3 and MPEG (audio-video In a hardware implementation, the computation of a single FFT takes

) 52.82 nJ/FFT.
source coding)
- Radar (FMCW) Therefore, the power consumption, per second, for FFTs for HDTV is
-  Computer axial tomography 52.82x 109x 10 ) = 5.282 MW.
(projection theorem) This corresponds to the energy consumption of 20 GWh or 166 TJ per year.
- crystralography
Imperlal COIIege © D. P. Mandic Statistical Signal Processing & Inference 3
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Objectives

O

O

Learn the concept of minumum variance unbiased (MVU) estimation

Investigate how the accuracy of an estimator depends upon the
relationship between the unknown parameter(s) and the PDF of noise

Study the requirements for the design of an efficient estimator

Analyse the Cramer—Rao Lower Bound (CRLB) for the scalar case
Extension to the Cramer—Rao Lower Bound (CRLB) for the vector case
Optimal parameter estimation, linear models, General Linear Model
Dependence on data length (motivation for 'sufficient statistics’)

Examples:

® DC level in WGN (frequency estimation in smart grid, bioengineering)

® Regression as in Capital Asset Pricing Model (CAPM) in finance

® Finding parameters of a sinusoid, e.g. in communications, radar,
sonar, bioengineering (scalar case, vector case)

® A new, statistical, view of Fourier analysis, performance bounds

® System identification

Imperial College
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What is the Cramer—Rao Lower Bound (CRLB)

The CRLB is a lower bound on the variance of any unbiased estimator.

In other words, if 0 is an unbiased estimator of 0, then

02> CRLBy(0)  or 05> \/CRLB;())

Therefore, the CRLB is a benchmark which tells us the best we can
ever expect to be able to achieve with an unbiased estimator.

The CRLB is a must—check quantitative bound for:

o Feasibility studies (sensor relevance, if we met problem specifications)

o Assessment of the quality (goodness) of any derived estimator (we can
only do as good as CRLB)

o It can sometimes provide the form of the MVU estimator (we just read
it out from the CRLB theorem)

o It may be used to demonstrate the importance of physical/signal
parameters to the estimation problem (e.g. optimum freq. for power)
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The need for the “parametrised” pdf, p(z[0]; 0)

p(x;0) 3+~ a function of 6 for fixed observed data x (i.e. a family of distributions)

Q: What determines how well we estimate the unknown 6 from the
observed data x?

A: Since the data x is a random process which depends on 0, it is the
parametrised pdf which describes that dependence, denoted by p(x; )

I”= Clearly, if p(x;60) depends strongly /weakly on 8, then this implies that we
should be able to estimate 6 well /poorly.

03 w w w 0.06

125 . S

3: A)
=
=3

p(x[0]; A)
p(x[0]; A)

p(x[0]

0.05

-5
100410 -10 35 0 § 10 100410 -0 5
A x[0] A A 1[0]

Left: Strong dependence on 6 Right: Weak dependence on ¢
IS The mean of the parametrised pdf (red & blue slices) depends on the observed point x[0].

|
|
|
002 |
|
|
0
A

Imperial Coll
LOﬁ(eZIOan Co €ge © D. P. Mandic Statistical Signal Processing & Inference 6



Example 1: Consider a single observation x[0] = A + w|0],
where w[0] ~ N (0, %)

The simplest estimator of the DC level A in white noise w[0] ~ N (0,0?) is

A= z|0] = estimator A is unbiased, with the variance of o2

To show that the estimator accuracy improves as o2 decreases:

o Consider
1 1 2
(z[0]; A) = ex [— x|0] — A }
pilal0]; 4) = —eap [~ by (al0] - 4)
for z|0] = 3 and i = 1,2 with 01 = 5 and 05 = 1
N——
fundamental step, we are fixing the data value
1 p(x[0]=3;A) 1 p,(x[0]=3;A)
Case | Case Il
cFl/3 o051
3 A 3 A

Clearly, as o1 < o2, the DC level A is estimated more accurately with p;(x[0]; A)

Likely candidates for values of A € 3 +£30 = therefore [2, 4] for 1 and [0, 6] for os.

Imperial College
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Can we resort to (approximately) Gaussian distribution?

Yes, very often, if we re—cast our problem in an appropriate way (see Appendix 2)

Top panel. Share prices, p,, of Apple (AAPL), General Electric (GE) and
Boeing (BA) and their histogram (right). Bottom panel. Logarithmic
returns for these assets, In(p,/pn—_1), that is, the log of price differences at
consecutive days (left) and the histogram of log returns (right).

Asset Prices: Time-Series Asset Prices: Distributions
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Date Asset Log Retumns, p;

Clearly, by a suitable data transformation, we may arrive at symmetric

distributions which are more amenable to analysis (bottom right).
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Putting this into context &~ Sharpe ratio in finance

In financial modelling, the Sharpe Ratio (SR) models the risk-adjusted
returns, whereby the volatility (risk) is designated by the variance of the
distribution of returns. return = price(t)/price(t — 1)

Sharpe ratio. The blue asset (narrower pdf) is less profitable but also less
risky. To balance between the risk and profit, we can use the Sharpe ratio

Elry.q] p
SR+ =vT : or for a single asset SR = —
Var|ry.r] o
Simple Returns: Equal Returns Level Simple Returns: Unequal Return Levels
Sl N1 1) 204 N1, 1)
203l N(1,9) |/ a N(4,9
[ORR o] 0.3F
A A
> >
g 02 2 02f
[} [}
= 3
&0.1 g 0.1
~ ~
i i
0.0 -6 -4 =2 (I) 2I 4 § 8 0.0 -2.5 0.0 215 5.0 715 10.0 125
Simple Returns, r; (%) Simple Returns, r; (%)

Here, SRpjye = \/T% which is smaller than SR,.; = \/T%
I'= We therefore choose the red asset.
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Likelihood function

When a PDF is viewed as a function of an unknown parameter (with the
dataset {z} = z[0], z[1], ... fixed) it is termed the “likelihood function” .

o The “sharpness” of the likelihood function determines the accuracy at
which the unknown parameter may be estimated.

o Sharpness is measured by the “curvature” % a negative of the second
derivative of the logarithm of the likelihood function at its peak.

Example 2: Estimation based on one sample of a DC level in WGN

Inp(xz[0]; A) = —InV2mo? — 2%‘2(90[0] — A)2
then Olnp(x[0]; A) 1
and the curvature B 0° In p(z[0]; A) _ 1
0A? o’

Therefore, as expected, the curvature increases as ¢ decreases.

&= Curvature /4 = PDF concentration ~ = Accuracy

Imperial College
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Likelihood function: Curvature

Since we know that the variance of the estimator equals o2, then

A 1
var(A) = _ 92Inp(z[0;A)

A2

and the variance decreases as the curvature increases.

Generally, the second derivative does depend upon one data point,
x|0], and hence a more appropriate measure of curvature is the
statistical measure (average over many random z[0])

0° In p(z[0]; A)
—F
8"42 A=true value

which measures the average curvature of the log-likelihood function

Note: The likelihood function is a random variable, due to x[0]
Recall: The Mean Square Error 9  MSE = Bias® + variance

It makes perfect sense to look for a minimum variance unbiased (MVU) solution!

Imperial College
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Link between the curvature and human perception

In the 50s, a psychologist Fred Attneave recorded eye dwellings on objects

Example 3a): The drawing of a bean (top)

and the histogram of eye dwellings (bottom) Example 3b): Read the words below ...
now read letter by letter ... are you still

c sure?

2 TAR
AT

0D 0y

Example 3c): Is the drawing on the left still a penguin?

So, what is the sufficient information to 'estimate’ an object?

Imperial College
London
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THE KEY: Cramer-Rao Lower Bound (CRLB) for a
scalar parameter (performance of the theoretically best estimator)

The Cramer—Rao Lower Bound (CRLB)

Theorem: [CRLB] Assumption: The PDF p(x;#) satisfies the
“regularity” condition

i [am p(x: )

o ]:o, .

where the expectation is taken with respect to p(x;6).

A

Then, the variance of any unbiased estimator, #, must satisfy

A 1
var(6) >

- 02 In p(x;0)
R

1" average curvature

where the derivative is evaluated at the true value of 6.

Imperial College
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CRLB for a scalar parameter, continued

Moreover, an unbiased estimator may be found that attains the bound for
all 8, if and only if for some functions g and Z

01np(x;6)
D) — 1(6) (9(x) — 0)
This estimator is the minimum variance unbiased (MVU) estimator,
for which 0 — g(x)
and its minimum variance L
7(9)

end of CRLB theorem ——

e : A 1
Remark: Since the variance var(0) > - {GQIM(X;H)

062

}, the evaluation of

the “curvature term” gives

0*Inp(x;0)] [0°lnp(x;0) ,
E[ 502 ] —/ 502 p(x;6)dx

Obviously, in general the bound depends on the parameter ¢ and the data length

Imperial College
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Example 4: Physical relevance of CRLB

I”= Point 3 from Slide 5: “CRLB can sometimes provide the form of MVU"

Shall we therefore compare the form of regularity condition with Example 3

Regularity condition: (9111](;(9}(; 0) =7(0)(g(x) — 6)

inverse of the minimum achievable variance 1 T form of the optimum est.

Compare with what we have derived for z[0] = A + w[0] (Slide 9)

0
Olnp(x[0]; A) 1 balxloh
on ol =4)
inverse of the Fisher information 1 the unknown parameter

[= By inspection, the optimum estimate is A = g([z[0]) = z[0]

I'= From the CRLB theorem the optimum variance of this estimator: ﬁ = 0?
Therefore: Good estimator = variance \, and curvature
Poor estimator = variance " and curvature \ (see Slide 9)

Imperial Coll
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Example 5: DC level in WGN for N data points

for the validity of the Gaussian assumption, see Appendix 2 and Lecture 3 (S 21)

Consider the estimation of a DC level in WGN, assume N observations

x|n] = A + w(n| n=0,1,2,..., N —1

unknown DC level ice with known pdf

where w[n] ~ N(0,0?).
Determine the CRLB for the unknown DC level A, starting from (6 = A)

N—-1 1 .

p(x;0) =p(x;A) = nl;IO \/2;76@ [—272(:1;[71] — A)Q_
B (27T012)N/265’7p [—2}‘2 > (z[n] — A)2

I'= Estimation of a DC level is very useful, e.g. in the time-frequency plane a
sinusoid of frequency f is represented by a straight line (specgramdemo)

Imperial College
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Example 5: DC level in WGN for N data points &~ contd.

Upon taking the first derivative, we have

Jdlnp(x; A 0 214V/2 ?
gil ) = o7 —ln[27m] / —LZ(IE[H]_IAD

= LY (el - 4) = S )

= X ), we can read out the estimator
where 7 is the sample mean. T 9(x)

\V]

A

CRLB connection: 7 = Zn 0 gg(n) =g(x), wvar(A)= ﬁ =2

Upon differ. again 1 does not depend on x, so no E{-}
O*lnp(x;A) N
0A? - o2

Therefore var(A) = %2 = CRLB, which implies that the sample mean
estimator attains the Cramer-Rao LB and must, therefore, be an
MVU estimator of a DC level in WGN.

Imperial College
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Example 5: DC level in WGN (spelling out the previous slide)

Upon taking the first derivative, we have

Jlnp(x; A 0 o1 N/2 1 2
gil ) — A —1n[27r0] / —ﬁ;(ﬂf[n]—fl)
_ %z—: (z[n] — A) :g(x—fl) TN I(A) (9(x) - A)

Z(A) T T gx)

CRLB connection: =3, z(n) = g(x), var(d) =5 =%

(\v}

Upon differentiating again 1 does not depend on x, so no E{-}
O*lnp(x;A) N
0A? g2

Therefore var(A) = %2 = CRLB, which implies that the sample mean
estimator attains the Cramer-Rao LB and must, therefore, be an
MVU estimator of A in WGN. (for any other estimator, A, var(A) > ¢?/N)

Imperial College
London
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Let us have a closer look at the CRLB for N data points

The figures below illustrate the behaviour of

A 2
_ _ 2
CRLBy = var(4) = % (cf. CRLBy; = 07)
with a change in the DC level, A, data length, IV, and noise variance, o2.
4 CRLB 4 CRLB 4 CRLB
For Fixed N & o? For Fixed N For Fixed o?
> > |
A o? N

Properties of CRLB for DC level estimation from NN noisy data points:
o It does not depend on the DC level A

o The CRLB increases linearly with the noise variance, o*

o The CRLB decreases as an inverse in the data length, V. For
example, doubling the data length halves the CRLB

Imperial College
London
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Efficient estimator &~ concept cf. consistent est.

Def: An estimator which is unbiased and attains the CRLB is said to be
efficient. In other words, an estimator is efficient if:

o It is an Minimum Variance Unbiased (MVU) estimator, and
o It efficiently uses the data.

Avar(é) var(é)
N N
05 02
N N
63 03
VAN
N /91
—____.-'__/91 .-"“"
CRLB  heecmmameemmntT CRLB
s e
3] 0

él Is efficient and MV U, ég, ég are not él may be MVU but is not efficient

I Not all estimators (phase est.) & not all MVU estimators are efficient

Imperial College _
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Fisher information and a general form of MVU estimator
(measures the “expected goodness” of data for making an estimate)
0% Inp(x;0)
062
in the CRLB theorem is referred to as the Fisher information.

The term 7(0) = —F [

Intuitively:
the more information available ~> the lower the bound ~ lower variance

I’ Essential properties of an information measure:
I'= Non—negative
I'= Additive for independent observations

I’ General CRLB for arbitrary signals in WGN (cf. 0?/N, see the next slide)

0.2

2
N—-1 ([ 0s[n;0]
Yo (254

7T sensitivity of signal to parameter change

var(f) >

Accurate estimators: A signal is very sensitive to parameter change.

Therefore % above acts as a “sensitivity” term. (see Appendix 1)
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General case: Arbitrary signal in noise

CRLB via parameter sensitivity (for alternative forms, see Appendix 1)

Consider a deterministic signal s[n; 0] observed in WGN, w ~ N(0, 0%)

x[n] = s[n; 0] + wn], n=0,1,...,N—1
Then, the PDF for x parametrised by @ has the form
. L LN (alnl—sme])
p(X, 0) = (27-‘-0-2)]\7/26 202 =0 ( )
and so N1
0lnp(x;0) 1 0[N 0]
80 T 2 —~ (x[n] o S[”? (9]) 69
0% In p(x;0) 1 — 0?%s[n; 0] 0s|n; 0]\ 2
062 T o2 [( 2lnl = 5[0 0] ) =5 - ( 00 ) }

n=0  E{z[n]}=s[n;0]}

Therefore, the Fisher information
N-1

0% 1n p(x; 9 1
106) = B[] = 75 3 (Tgp)
00 o
n=0
Imperial COIIege © D. P. Mandic Statistical Signal Processing & Inference 22
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Example 6: Sinusoidal frequency estimation

(the CRLB depends both on the unknown parameter f;, and the data length N)

Consider a general sinewave in noise:  x[n] = Acos (2m fon + @) + wn]

If only the frequency fy is unknown, then

1
sin; fo] = A cos(2mfon+ P ), 0< fo< 5 (norm. freq.)
known known
2 2
From Slide 20: var(fy) > 2 L .
ZN—_ol (88(([972;9]) A2Y" 5 [2mn sin(27 fon + D)

Note the preferred
frequencies, e.g.

f ~0.03, and that

for fo — {0,1/2} the
CRLB — o0

Cramer—Rao lower bound

| Parameters: N = 10,

| | | | |
0 005 01 015 02 025 03 035 04 045 05
Frequency (I) — O, SNR — ].

1 1

|
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Example 6: Sinusiodal frequency estimation (contd.)

Practical context: Frequency estimation in power (smart) grids, fs = 1000 Hz

To illustrate the bias—variance—consistency, consider some recent frequency
estimation algorithms (see Lecture Supplement). For convenience, the
performance was evaluated against the signal to noise ratio (SNR).

Observe that both bias, variance and CRLB are a function of SNR.

1 01 T T T T T _30

—e— ACLMS
—&— |-MVDR

—&6— AI-MVDR]
—— CRLB

Estimation bias (Hz)
Estimation variance (dB)

-af[ —e—AcCLMS
—e— I-MVDR

—&— AlI-MVDR
107 ' : ' ' : -10Q ' ' ’ ' ’
20 25 30 35 40 45 50 20 25 30 35 40 45 50
SNR (dB) SNR (dB)
Left: Bias in frequency estimation Right: Variance against the CRLB

The AI-MVDR algorithm was asymptotically unbiased and also consistent,

as it approached the CRLB for frequency est. with an increase in SNR.

Imperial College
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CRLB Theorem: Extension to a vector parameter

2 .

we now have Fisher Information Matrix Z, whereby [Z(0)],; = —FE [a gég(ex',e)]
197

Formulation: Estimate a vector parameter 0 =1[01,0o,... ,QP]T

o Recall that an unbiased estimator 0 is efficient (and therefore an MVU
estimator) when it satisfies the conditions of the CRLB

o It is assumed that the PDF p(x; @) satisfies the regularity conditions

Olnp(x;0)|
[mrme)] Lo

o Then, the covariance matrix, Cg, of any unbiased estimator 0 satisfies

Cs;—Z '(0)>0 (symbol > 0 means that Cy is positive semidefinite)

o The Fisher Information Matrix is given by [Z(0)];; = —F [823(;59(;?0)}

[= An unbiased estimator @ = g(x) exists that satisfies the bound
Cy =Z '(0) if and only if
0lnp(x;0)
00

=Z(0)(g(x) —0)

Imperial College
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Extension to a vector parameter: Fisher information
matrix

Some observations:

o Elements of the Information Matrix Z(80) are given by

Z(0)):; = —F [82 gleng}ecj H)]

where the derivatives are evaluated at the true values of the
parameter vector.

o The CRLB theorem provides a powerful tool for finding MVU estimators
for a vector parameter.

MVU estimators for linear models are found with the Cramer—Rao
Lower Bound (CRLB) theorem.

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 26



Example 7: Sinusoid parameter estimation &~ vector case

Consider again a general sinewave
s[n] = Acos (27 fon + @)

where A, fo and ® are all unknown. Then, the data model becomes

z[n] = A cos(2m fon + @) + w(n] n=0,1,...,N—1

where A >0, 0 < fo < 1/2, and w[n] ~ N (0, 0?).
Task: Determine CRLB for the parameter vector 8 = [A, fy, ®]T.

Solution: The elements of the Fisher Information Matrix become (P&As)

8%In p(x; A, fo,P) 8%In p(x; A, fo,P) 8%In p(x; A, fo,P)
0AZ ¥ v 0Ad fy ' ~ AP
N/2 0 0
_ L 0 ey Nolpe payNod
I(e) — ; n=0 TL ™ n=0
O 7TA Zn:O n 2 i
5In p(x; A, fo, ) 0°In p(x;A, fo,®) 0°In p(x;A, fo, )
ODPOA - T T 8<I>8f00 \ Od2 -

Imperial College
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Example 7: Sinusoid parameter estimation & continued
since C; = Z~'(0) (see Slide 22) make an inverse of the FIM

After inversion of Z(6), its diagonal components are (n = 2 £+ is SNR):
i < 207 : 12 . 22N —1)
A > Pb) >
var(A) > N var(fo) > (22N (N2 — 1) var(®) > NN 1)
CRLB for Sinusoidal Parameter Estimates at

SNR = -3dB (Dashed Lines) and 10dB (Solid Lines)

|
f
[«
=]

+Amplltude —— Frequency —a— Phase

CRLB [dB]
|
5

—260 -

—3001 T T T T
0 20 40 60 80
Number of data samples, N

CRLB of var(A) with Fixed o

CRLB [dB]

|
Iy
(=}

!

CRLB [dB]
g

|
(o]
o
|
&

5 15 25 35 45 55 65 75 85 95
Number of data samples, N ° Ndmber of data samples, N

I”& The variance of the estimated parameters of a sinusoid behaves o« 1/7 and
o 1/N3, thus exhibiting strong sensitivity to data length
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Need for Linear Models (regression models)

(see Lecture 6)

These underpin many areas e.g. the CAPM and Fama-French models in finance

Daily Returns of Crude Oil vs. Energy Sector

Residuals of Linear Fit, Oil vs. Energy

e Data from Apr. 2024 o° " i 00104 @ Residuals o®
0.0101 Regression Line » ° ®
= °
'-'; 0.0051 o
0.005
g r_u; ¢ ® ® o ©
c > | N . e
W S 0.0001 . ]
0.0001 G
'E (0]
© o (]
(o))
< _0.005 1 —0.005+ ° ®
2
[ X )
-0.010 ® -0.0101 °
~0.03 ~0.02 -0.01 0.00 0.01 0.02 ~0.03 ~0.02 -0.01 0.00 0.01
Crude Qil X
S&P 500 vs. Gold Prices in April 2024 Residuals of Both Fits, S&P500 vs. Gold
2400 751 t Y
501 ()
i [ ]
; 2350 5] @ : d e
(O] w ® L] (]
.! © [ ] °
£ 23001 S5 Oy Rl Junia L I
o ° 8 °
i u -254 °
3 & o d
O 22504 o
e Data —501 e p
5200 Linear Fit _751 e Linear Fit Residuals, sum(Res2)=47375
—— Quadratic Fit oo e _100, ® Quadratic Fit Residuals, sum(Res?)=42270
5000 5050 5100 5150 5200 5250 5000 5050 5100 5150 5200 5250
S&P 500 X
Imperial College . . .
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Linear Models

Generally, it is difficult to determine the MVU estimator.

o In practice, however, a linear data model can often be employed 3~
straightforward to determine the MVU estimator.

A
Example 8: Linear model of a xIn]

straight line in noise

noisy line

xln] = A+ Bn+ win]
n=20,1,...,.N -1

where
o wln] ~ N (0, 0?),
o B - slope and ideal noiseless line
o A - intercept. 0 -
n
Imperial COIIege © D. P. Mandic Statistical Signal Processing & Inference 30
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Linear models: Compact notation (Example 8 contd.)

This data model can be written more compactly in the matrix notation as

known | " known pdf
x=HO0+w or x=H6O +w
where observed 1 unknown
[ z[0] (1 0 ]
x — z(1] = [2[0],21],...,z[N —1]]] H= 1 1
_x[N—l]_ 1 N-1
and
0 = [A B]'
w = [w[0],w[l],...,w[N —1]]"
w ~ N(0,0°T)
1 0 --- 0
I = P e = diag(1,1,...,1)
Imperial CO"ege © D. P. Mandic Statistical Signal Processing & Inference 31
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From a scalar to the vector/matrix notation

The “spelled out” form of the likelihood function for 8 = [A, B]*
2 (gl = A= Bn)’

| T 552 24n=0 =
(2r02)N/2 € v ()
To arrive at the vector form, swap the variables as w|n| = x[n] — A — Bn.
Then, with w = [w(0), ..., w(N — 1)]7, the term S0 0 " w2(n), which
appears in the above likelihood function can be written as
Yo wi(n) = wlw.

This applies to any vector, so that for w = x — HO we have

p(x; A, B) =

N—1
S (2ln] = A-Bn)’ = (x - HH) (x—HO)
This gives =Y w?[n] wl w
1 _ (x—H0)T (x—H6)
. _ . — 2 I
p(x; A, B) = p(x;0) = (QWOQ)N/QG 20 equivalent to ()
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Linear models: Fisher information matrix
_ (x—H0)T (x—H0)

NB: p(x;0) = > 202

(QWUZ)N/26
I’ The CRLB theorem can be used to obtain the MVVU estimator for 0

The MVU estimator, 8 = ¢(x), will then satisfy

0lnp(x;0)
00

=Z(6)(g(x) — 0)

where Z(0) is the Fisher information matrix, whose elements are

0% In p(x;0)
T = —E
= ~E[ =555,
Then, for the Linear Model
Olnp(x;0) 0 | N 0 1 T
f) 8_9[ T n(2mo?) 5 (x - H6)” (x - HO)
_ 19 [Na In(270 )+xTx—2xTH9+9THTH9}
20200

Note that only the quadratic term in @ involves the matrix H
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Linear models: Some useful matrix/vector derivatives

the derivations are given in Lecture Supplement

Use the identities (remember that both b”@ and ' A0 are scalars)

oble OxTHO
— b _ TH T _ HT
90 T 5 — X H) X
00" A0O 00" HTHO
— 2A0 — 2HTHO
90 " 90

(which you should prove for yourself), that is, follow the rules of
vector/matrix differentiation.

As a rule of thumb, watch for the position of the (-)! operator

Then, the form of the partial derivative from the previous slide becomes

Olnp(x;0 1
(x:6) _ - [H'x — H'H0)|
00 o
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Linear models: Cramer-Rao lower bound
Find the MVU estimator: alngé’(;e) =Z(0)(g(x) —0)

Similarly to the vector CRLB, 9~ recall that (H'H)! = H'H

1ol : 1
(o) = —ge [8 ng(HX, 9)] = EHTH < does not depend on data
Therefore
Olnp(x;60) 1 . T\ " g7
o — = —sH'H| (H"H) "H'x-6

Z(0) g?;)
By inspection, the linear MVU estimator is then given by
0=g(x)= (HTH)_1 H'x

provided (HTH)_1 is invertible (it is, as H is full rank, with orthogonal
rows and columns).

The covariance matrix of & now becomes C, = T (0) = o? (HTH)_1
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Back to Example 8

*LZN 1( [n]—A— Bn)2
Start from p(x;0) = p(x; A, B) = m e 252 2n=0

To find the eIements of the Fisher Information Matrix (FIM) start from

dlnp(x;0) 1 dlnp(x;0) 1
— — A — Bn = — A— B
0A o2 nZ% ) 0B o2 nzg n)n
0% Iln p(x; 0) N 0% In p(x; 0) 1 = 0% ln p(x; 0) 1 3=,
- -2 LY
0A2 o2 0AOB o2 o 0 B2 o? £~
Then, the Fisher Information Matrix, Z(8), is given by
1 N ZN_—l n N N(N 1) » , %L—l) 6
Z(0)=—| n_ =0 L= v on.n| — ZTTNO)=06 NIED  NIV-D
(0) 5 ij:oln ZTJ:fzol nz] [N(]\; 1) NN 1%(2N 1) (0) _N(J\67—1) N(N2 -
It now follows that the CRLB is
~ 2(2N — ].) 2 - 12 2
var(A) = var(B) =
A= wD° B) =Nz —1)°

I’ B is easier to estimate as its CLRB is decreasing as 1/N* as opposed to
the 1/N dependence for the CRLB of A.

I'= CRLB always increases as we estimate more parameters (compare the CRLB of

o?/N for the estimation of DC level A only, with the CRLB for the intercept A here).
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Theorem: CRLB for linear models

o We have seen that the MVU estimator for the linear model is
efficient &~ it attains the CRLB

o The columns of H must be linearly independent for (H?H) to be
easily invertible

Theorem: (Minimum Variance Unbiased Estimator for the Linear Model)

If the observed data can be modelled as
x=HO +w

where

x is an Nx1 “vector of observed data”

H is an Nxp “observation (measurement) matrix" of rank p
@ is a px1 unknown “parameter vector”

w is an Nx1 additive “noise vector” ~ AN (0, o*I)
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Theorem: CRLB for linear models (contd.)

Then, the MVU estimator is given by
0= (HTH) Hx
for which the covariance matrix has the form
C; =02 (HTH)

Note that the statistical performance of 0 is now completely described
because 0 is linear transformation of a Gaussian vector x, i.e.

6~N(6,0°(H™H) )

End of Theorem O
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Example 9: Fourier analysis as a linear estimator

Recall that we need to calculate § = (HTH)_1 H'x

The data model is given by (n =0,1,..., N — 1, w[n| NN(O,UQ))

M M
2mkn . [ 2mkn
:E_lak cos( I >+E b sm( N )er[n]

k=1

where the Fourier coefficients, a; and by, that is, the amplitudes of the
cosine and sine terms, are to be estimated.

o Frequencies are multiples of the fundamental f; = % that is, f,, = %

o Then, the parameter vector is 0 =lai,az,...,ap,b1,00,...,0p]

and the observation matrix H is N x 2M —dimensional, and takes the form

p
I 1 s 1 0 s 0 |
H — cos 2% Ce cos .27JTVM SlIl. s Ce sin 27;\,M
27;(N—1) ) 27r]:\4(N—1) . 27r.(N 1) N . 27r];4(N—1)
i cos—x— ... COS—py— S N e SN/ 4 Nxom
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Example 9: Fourier analysis, geometric view

M 2mkn M 2mkn
Data model: z[n] = Zak cos ( N ) + Zbk sin < N ) + w(n|

1" parameters to estimate T WGN 1
Parameter vector: 0 = [a,ai,...,anr, b1, b9, ..., 000" (Fourier coeffs.)
this picture is for k=1
hy hy howm
z-plane
| n=0
H - 1 >
O 0O 0O o0O
° . \
. n=N-1
n=0,1,...,N-1 samples
A vy Y| down each column
2wkn s 2mwkn
cos sin <757
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Example 9: Fourier analysis & continued

(see also Lecture 6)

For H not to be under-determined, it has tosatisfy N >p =M < %
I”= For mathematical convenience, the columns of H should be orthogonal

This is because the columns of H form a basis of a new representation
space, which is obvious if we rewrite the measurement matrix in the form

H = [hl‘h2’ |h2M}

where A, = h; is the i-th column of H.

Then, for a large enough number of data points, N, due to the
orthogonality properties of products of sines and cosines of different

frequencies, we have

h/h, =0  for i#j

In other words, h; L h;, that is, the columns of matrix H are orthogonal
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Example 9: Fourier analysis &~ contd. contd.

The orthogonality of the columns of H (for large N) follows from the
properties of sines and cosines of different frequencies:

—  (2min 2mjn N
nz:% cos ( N ) cos ( ]\‘; ) = ?5@- (as power of a sinusoid is A*/2)
N-1
271 279 N
2 sin ( 7;\;%) sin ( 7;\‘;”> = E(Sij (as power of a sinusoid is A*/2)
N-1
2mIn 219N N
i — 0 Vi, st.ij=12.... M<=>—
nocos<N>s1n(N) i, J, s.t.4,7 5
where the Kronecker delta
s [ 1 =]
Y 0, 17

In other words: (i) cosia L sinja, Vi, 7, (ii) cosia L cosja, Vi # j,
(iii) sinia L sinja, Vi # j
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Example 9: Fourier analysis — measurement matrix

Therefore (orthogonality)

H'H =

_ 1ﬁf

T
_h2A4_

[h1|-~

[ hopr] =

N
2
0

0

0
N
2

0

0
0

N
2

N 2
— _I HTH —1 — —I
;1 7 HH7 ==

and the MVU estimator of the Fourier coefficients is given by

= (H™H) "
By

-
.2 2 | ™
0=_—H'x=_ :
N N | 7

| T2M

H'x

=

21T

2 hZMX

A 2
Orvu = NHTX

Nzn 0 ZU[ ].COS <2WX$)

Nzn 0 x[ ]Sin (QWX%VMXn)

2 Fourier coefficients of a “signal + WGN" are MVU estimates of the Fourier
coefficients of the noise—free signal.
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Example 9: Finally &~ Fourier coefficients (Fourier coefficients

of “signal + AWGN” are MVU estimates of Fourier coeff. of noise—free signal)

Therefore, the Fourier analysis represents a linear MVU estimator, given by

i = & Yono @ [n] cos (¥R")

by, = 2 300 @ [n] sin (25hn)

where the a; and by are the discrete Fourier transform coefficients.

From CRLB for Linear Model, the covariance matrix of this estimator is

~1 2
C,=o2(HTH) ' = ; I
. decreases with N
i) Note that, as 0 is a Gaussian random variable and the covariance

matrix is diagonal, the amplitude estimates are statistically independent;

ii) The orthogonality of the columns of H is fundamental in the
computation of the MVU estimator (invertible parsimonious basis);

iii) For accuracy, the measurement matrix H is desired to be a tall matrix
with orthogonal columns.
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Example 10: The concept of “linear in the parameters”
models (e.g. like neural networks) (see also Lecture 8)

' Recall that the notion “linear” in the term “Linear Models” does not arise
from fitting straight lines to datal

4 x[n]

Observed data
Model is quadratic in time "n’'
Model is "linear in the parameters!’

True signal of interest

Observations:

° 0 (quadratic in n)
i i i i i i —>
1 2 3 4 5 6 n

z[n] = 0o+ 01n + 0on? +wn] = x=HO+w

linear in parameters 6

1 0 02 ]
[ 0, | 1 1 12
where 6= 0, H=| 1 2 22
0o ; : :
- 1 N-1 (N-1)2
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The need for a General Linear Model (GLM)

We shall now consider a general case where:
1) the observed signal may contain a known but non-white component, s

2) the observation noise, w, may be non-white, that is, C # N(O,O‘QI).

Case 1) Often in practical applications (e.g. in radar), the observed signal
consists of some known signal, s, and another signal whose components are

not known, HO, so that the linear model of the observed signal becomes

x=HO+s+w (here, noise is assumed to be white)

The MVU estimator is determined immediately from x’ = x — s, so that

x' =HO+w
0= (H"H) H(x—s)
Cg4=0" (HTH)_1 (covariance matrix of 0)

An example may be a DC level observed in random white noise, but also
with a known sinusoidal interference (e.g. from the mains).
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Incorporating coloured (correlated) noise into GLM

Case 2) For coloured noise, w ~ N (0, C), where C # 0“1, that is, C is not a
scaled identity matrix!

To this end, we can use a whitening approach as follows:
Since C is +ve semidefinite, so too is C~1, & it can be factored as
Cc = DTD, Dy« Is invertible
Now, D acts as a whitening transform when applied to w, since
E[(Dw)(Dw)"] = E[Dww’D”] = DCD” = DD 'D” D’ =1
I'= This allows us to transform the general linear model
from x=HO+w to x' =Dx =DH6 +Dw =H'0 +w'
I'= The noise is now whitened, as w' = Dw ~ N(0,0°I) 9 use Linear Model
6= (H"H) 'H'X = (H'D'DH) 'H’D"Dx = (H'C~'H) 'H’C %
In a similar fashion, for the variance of this estimator we have
C,= (H'H)" andfinally Cz= (H'C'H)™

I For C = 021 we have our previous results for standard Linear Estimator
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Theorem: MVU Estimator for the General Linear Model

Upon combining Case 1 and Case 2 above (non-white noise + known component)

i) General linear data model: s(6) = HO + s

known | 1 some known signal
x=HO + s + w w ~ N(0,C)
observed 1 T unknown 1 known statistics, can be non-white

i) Then, the MVU estimator has the form
6=H'C'H)'H'C!(x-s)

with the covariance matrix
Cy=(H'C'H)™!
and attains the Cramer Rao Lower Bound (CRLB).

I”& We must assume that H is full rank, otherwise for any s there exist some
@1 and 6, which both give s, that is, s = HO; = HO- (no uniqueness)
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Example 11: Adaptive noise cancellation with reference

e.g. noise-cancelling headphones (see Example 11 in Appendix & Lecture 7)

Physical intuition behind “MVU estimator is a ratio of the input-output

cross-correlation to the input autocorrelation” on a noise cancel. example.
«

Headphones x(n) . Adaptive y(n)
Filter
» Reference ’ e(n) f" u
| microphone, N1 “\ \E)
J +
Speech or music s(n) +No(n)
plus additive noise N1 (n) d(n)
s+NO Reference input Primary input

Input: The cockpit noise, x(n) = Ni(n), that is, the noise for Reference
Microphone. The only requirement is that Ny is correlated with the noise,
Ny, which you hear through the headphones, but not with the music
signal, s(n). The filter aims to estimate Ny from Ny, that is, y = N.

I'= Based on the input-output cross-correlation, the filter output can only
produce and estimate of the noise you hear, that is, y(n) = No(n), as
cockpit noise, N1, is not correlated with the music, s.

Therefore we hear d(n) — y(n) = s(n) + No(n) — No(n) ~ s(n)
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What to remember about MVU estimators

O

An estimator is a random variable and as such its performance can
only be described statistically by its PDF

The use of computer simulations for assessing the performance of an
estimator is rarely conclusive

Unbiased estimators tend to have symmetric PDFs, centred about
the true value of 6

The minimum mean square error (MMSE) criterion is natural to search
for optimal estimators, but it most often leads to unrealisable estimators
(those that cannot be written solely as a function of data)

Since MSE = Bias® + variance, any criterion that depends on bias
should be abandoned &~ we need to consider alternative approaches

Remedy: Constrain the bias to zero and find an estimator which
minimises the variance & the minimum variance unbiased (MVU) estim.

Minimising the variance of an unbiased estimator also has the effect of
concentrating the PDF of the estimation error, 6 — 6, about zero &
this makes it easier to perform the analysis
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Things to remember about CRLB

Even if the MV U estimator exists, there is no “turn of the crank”
procedure to find it.

The CRLB sets a lower bound on the variance of any unbiased estimator!

This can be extremely useful in several ways:

o If we find an estimator that achieves the CRLB 3~ we known we have
found an MVU estimator

o The CRLB can provide a benchmark against which we can compare the
performance of any unbiased estimator

o The CRLB enables us to rule out infeasible estimators. It is physically
impossible to find an unbiased estimator that beats the CRLB

o We may require the estimator to be linear, which is not necessarily a
severe restriction, as shown in the examples on the estimation of Fourier
coefficients and a quadratic curve in noise
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Some “rule of thumb” practical hints with CRLB

1. Start from the log—likelihood parametrised PDF function, which
depends on the unknown parameter 6, that is, In p(x;0)

2. Fix x and take 2nd partial derivative of the log-likelhood function, that
is, 0% 1n p(x;0)/00°

3. If the result still depends on x, then fix the # and take the expected
value with respect to x. Otherwise, this step is not needed.

4. Should the result still depend on 6, then evaluate at every specific value
of 6

5. For the CRLB, perform the reciprocal and negate

I’& Transformation of parameters: If we know the CRLB for 6, we can easily
obtain it for any function of 0, e.g. a = g(0). (see Appendix 3)

For some problems, an efficient estimator may not exist, for example
the estimation of sinusoidal phase (see your P& A sets)
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Appendix 1: An alternative form of CRLB
(via the sensitivity of p(x;6) to 0)

Sometimes, it is easier to find CRLB as

1 1

fuar(é) > cf. the original var(é) >

O 1n p(x;0)712
E{ |25 ) it
Motivation: Sensitivity analysis, ease of interpretation
For an increment in 0, i.e. 0 - 0+ A0 = p(x;0) — p(x;0 + Af)

Then, the sensitivity of p(x;#) to that change is

_E {82 In p(x;0) }

- [Apszfég)} % change in p(x;0) Ap(x;0) 0
Sp(x) = {%} 7 change in 6 B [ A6 }[p(x;ﬁ)}

.~ Op(x;0) 6 JIlnp(x'0)
Pl — Pl — _
For A§ — 0 SQ(X)—A%IHOSQ(X)— { 50 }{p(x;ﬁ)} =0 50

(recall the derivative rules of a log function, al%i(x) — f<1x) aj(;gc))
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Appendix 1: An alternative form of CRLB (contd.)
(via the sensitivity of p(x;6) to 0)

Therefore (Gardner, IEEE Transactions on Information Theory, July 1979)

var(6) _ ! _ !
o ep{[PET) er{|se]

Interpretation: This is an inverse mean square sensitivity of p(x;#) to 6.

o Modelling and estimation are obviously intertwined

o Unknown parameters may have a physical interpretation, such as e.g.
direction in beamforming, delay in radar, ...

o Otherwise, parameters may be part of an imposed model, such as e.g.
the fixed sine-cosine bases in Fourier analysis
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Appendix 2: The validity of Gaussian assumption

(The Gaussian data assumption leads to the largest Cramer-Rao bound)

o When there is no information about the distribution of observations,
Gaussian assumption appears as the most conservative choice

o This follows from the fact that the Gaussian distribution minimises the
Fisher information (inverse of the CRLB), or in other words the Gaussian
distribution maximises the CRLB

o Indeed, it leads to the largest CRLB in quite a general class of data
distributions and for a significant set of parameter estimation problems

o Therefore, any optimisation based on the CRLB under the Gaussian
assumption is min-max optimal in the sense of minimising the largest CRLB
(they yield the best CRB-related performance in the worst case, and over a
large class of data distributions which satisfy the regularity condition)

o Also, the Gaussian random vector maximises a differential entropy, and
also the worst additive noise lemma

For more detail see: S. Park, E. Serpedin, and K. Qaraqge, “Gaussian assumption: The
least favourable but the most useful”, IEEE Signal Processing Magazine, May 2013, pp.
183-186 and the references therein
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Appendix 3: Transformation of parameters

Suppose that there is a parameter 6 for which we know the CRLB, denoted
by CRLBy.
Our task is the estimate another parameter a which is a function of 6, i.e.
a = g(0)
Then, it can be shown that (see S. Kay’'s book on Statistical Signal
Processing)
9g(0)

2
var(a) > CRLB,, = (W) CRLBy

. sensitivity of o to 6

I’ Therefore, a large sensitivity 8%(99) means that a small error in 6 gives a large
error in a. This, in turn, increases the CRLB (that is, worsens accuracy).

It can be shown that if g(6) has an affine form, that is, g(0) = af + b,

A

then & = g(0) is efficient.

Otherwise, for any other form of g(8), the result is asymptotically efficient
for N — oc.
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Appendix 4: Modelling vs. Estimation

o Oftentimes parameters we wish to estimate have some physical
significance (e.g. heart rate, or delay in the time of arrival of the
back-scattered signal in radar).

o It is also common that the parameters of interest arise from a
non-physical model which is imposed onto data (e.g. Fourier analysis).

o However, even then, the Fourier coefficients for a signal in AWGN are
the MVVU estimates of the Fourier coefficients in the noise-free case!

o Similar reasoning applies to ARMA modelling, the coefficients may or
may not have physical meaning.

o Model & related to data generation (e.g. a generative model)
o Estimation 3~ related to both model accuracy (bias/variance) and when
using a model to e.g. future values of a signal (inference).

I”> Modelling and Estimation/Inference are intertwined. It is our goal to
understand the bounds on the best achievable performance for a
certain paradigm, and use this as a domain knowledge for inference.
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App. 5 & Example 11: System ldentification (SYS ID)

Aim: To identify the model of a system (filter coefficients {/}) from
input /output data. Assume an FIR filter system model given below

u[n] - u[n—1]= - u[n—2_]" B u[n—p]
h(0) h(1) h(2) h(p-1)
> —»@—» nan > Z 5 >
Y h(K) u[n—kK]

o The input u[n| “probes” the system, then the output of the FIR filter is

given by the convolution z[n| = i;é h(k)xn — k]

o We wish to estimate the filter coefficients [R(0),...,h(p — 1)]*

o In practice, the output is corrupted by additive WGN
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App. 5 & Example 11: SYS ID &~ data model in noise
w ~ N(0,0?)

Data model
Zh kl+wn] n=0,1,...,N—1

The equivalent matrlx—vector form is

z[0] | [ 0] 0 o 1[ noO) | [ w0 ]

z[1] | | wul[l] u[0] e 0 h(1) n wl1]
[N —1]| |[u[N—-1] u[N-2] ... ulN—-p]| | h(p—1) | [w[N—-1]
obs.‘\jec. X measuremeag matrix H coeﬂ:.‘:/ec. 6 noise‘;ec. W
that is

x = HO +w where ~ w ~ N(0,0°T)

Then, the MVU estimator

0= (HTH) H'x with Cz=o>(HTH)

This representation also lends itslef to state-space modelling
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App. 5 &+ Example 11: SYS ID & more about H

Now, HH becomes a symmetric Toeplitz autocorrelation matrix, given by

Tuu(o) Tuu(l) S ruu(p o 1) |
HTH = N "“uu:(l) Tu’cb:(o) : ruu(p —2)
i Tuu(p — 1) Tuu(p o 2) s Tuu(()) _
where
1 N—-1—k
run(k) = < n; ulnjuln + k|

For H'H to be diagonal, we must have ruu(k) = 0 for k = 0, which holds
for a pseudorandom (PRN) input sequence.

Finally, when ~ H'H = N r,,(0)I

0.2

" Nryu(0)

then var (ﬁ(z))
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App. 5 & Example 11: SYS ID & MVU estimator

For a PRN sequence, the MVU estimator becomes

6 = (H'H) 'Hx
Then
k) = Nrju 7 2 uln— klafrl
and
rue(k) N Do uln]zn+ K
Tuu(o) TUU(O)

k=0,1,...,p—1

I'= Thus, the MVU estimator is a ratio of the input-output cross-correlation to
the input autocorrelation (makes perfect physical sense).

== Compare with the Wiener filter in Lecture 7 (adaptive inference)

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 61



Notes:
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Notes:
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Notes:
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