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Motivation (from Lecture 3)

A natural criterion to define optimal estimators is the

Mean Square Error (MSE): MSE(θ̂) = E
{

(θ̂ − θ)2
}

which measures the average mean squared deviation of the estimate, θ̂,
from the true parameter value, θ.

R We desire to minimise the error power (see Lectures 3, 6 and 7)

MSE (θ̂) = var(θ̂) +B2(θ̂)

MSE = VARIANCE OF THE ESTIMATOR + SQUARED BIAS

Of particular interest are unbiased estimators for which

min
θ̂
MSE(θ̂) ≡ min

θ̂
var(θ̂)

so that we can use our available degrees of freedom to minimise one
performance metric (variance), instead of two (bias, variance).

R We now establish a theoretical bound on the optimality of MVU estimators.
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Motivation: Practical example from High Definition TV

There are so many ways SSP&I can help with sustainability.
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Objectives

◦ Learn the concept of minumum variance unbiased (MVU) estimation

◦ Investigate how the accuracy of an estimator depends upon the
relationship between the unknown parameter(s) and the PDF of noise

◦ Study the requirements for the design of an efficient estimator

◦ Analyse the Cramer–Rao Lower Bound (CRLB) for the scalar case

◦ Extension to the Cramer–Rao Lower Bound (CRLB) for the vector case

◦ Optimal parameter estimation, linear models, General Linear Model

◦ Dependence on data length (motivation for ’sufficient statistics’)

◦ Examples:
~ DC level in WGN (frequency estimation in smart grid, bioengineering)
~ Regression as in Capital Asset Pricing Model (CAPM) in finance
~ Finding parameters of a sinusoid, e.g. in communications, radar,

sonar, bioengineering (scalar case, vector case)
~ A new, statistical, view of Fourier analysis, performance bounds
~ System identification
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What is the Cramer–Rao Lower Bound (CRLB)

R The CRLB is a lower bound on the variance of any unbiased estimator.

In other words, if θ̂ is an unbiased estimator of θ, then

σ2
θ̂
≥ CRLBθ̂(θ) or σθ̂ ≥

√
CRLBθ̂(θ)

Therefore, the CRLB is a benchmark which tells us the best we can
ever expect to be able to achieve with an unbiased estimator.

The CRLB is a must–check quantitative bound for:

◦ Feasibility studies (sensor relevance, if we met problem specifications)

◦ Assessment of the quality (goodness) of any derived estimator (we can
only do as good as CRLB)

◦ It can sometimes provide the form of the MVU estimator (we just read
it out from the CRLB theorem)

◦ It may be used to demonstrate the importance of physical/signal
parameters to the estimation problem (e.g. optimum freq. for power)
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The need for the “parametrised” pdf, p(x[0]; θ)

p(x; θ) # a function of θ for fixed observed data x (i.e. a family of distributions)

Q: What determines how well we estimate the unknown θ from the
observed data x?

A: Since the data x is a random process which depends on θ, it is the
parametrised pdf which describes that dependence, denoted by p(x; θ)

R Clearly, if p(x; θ) depends strongly/weakly on θ, then this implies that we
should be able to estimate θ well/poorly.

Left: Strong dependence on θ Right: Weak dependence on θ

R The mean of the parametrised pdf (red & blue slices) depends on the observed point x[0].
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Example 1: Consider a single observation x[0] = A+w[0],
where w[0] ∼ N (0, σ2)

The simplest estimator of the DC level A in white noise w[0] ∼ N (0, σ2) is

Â = x[0] ⇒ estimator Â is unbiased, with the variance of σ2

To show that the estimator accuracy improves as σ2 decreases:

◦ Consider
pi(x[0];A) = 1√

2πσ2
i

exp
[
− 1

2σ2
i
(x[0]−A)2

]
for x[0] = 3︸ ︷︷ ︸

fundamental step, we are fixing the data value

and i = 1, 2 with σ1 = 1
3 and σ2 = 1

Case II

σ =1
1σ =1/3

p (x[0]=3;A)
1

p (x[0]=3;A)
2

A A3 3

Case I

2

Clearly, as σ1 < σ2, the DC level A is estimated more accurately with p1(x[0];A)

Likely candidates for values of A ∈ 3± 3σ ⇒ therefore [2, 4] for σ1 and [0, 6] for σ2.
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Can we resort to (approximately) Gaussian distribution?
Yes, very often, if we re–cast our problem in an appropriate way (see Appendix 2)

Top panel. Share prices, pn, of Apple (AAPL), General Electric (GE) and
Boeing (BA) and their histogram (right). Bottom panel. Logarithmic
returns for these assets, ln(pn/pn−1), that is, the log of price differences at
consecutive days (left) and the histogram of log returns (right).

Clearly, by a suitable data transformation, we may arrive at symmetric
distributions which are more amenable to analysis (bottom right).
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Putting this into context # Sharpe ratio in finance

In financial modelling, the Sharpe Ratio (SR) models the risk-adjusted
returns, whereby the volatility (risk) is designated by the variance of the
distribution of returns. return = price(t)/price(t− 1)

Sharpe ratio. The blue asset (narrower pdf) is less profitable but also less
risky. To balance between the risk and profit, we can use the Sharpe ratio

SR1:T =
√
T
E[r1:T ]

V ar[r1:T ]
or for a single asset SR =

µ

σ
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Here, SRblue =
√
T 1

1 which is smaller than SRred =
√
T 4

3.

R We therefore choose the red asset.
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Likelihood function

When a PDF is viewed as a function of an unknown parameter (with the

dataset {x} = x[0], x[1], . . . fixed) it is termed the “likelihood function”.

◦ The “sharpness” of the likelihood function determines the accuracy at
which the unknown parameter may be estimated.

◦ Sharpness is measured by the “curvature” # a negative of the second
derivative of the logarithm of the likelihood function at its peak.

Example 2: Estimation based on one sample of a DC level in WGN

ln p(x[0];A) = − ln
√

2πσ2 − 1

2σ2

(
x[0]−A

)2
then ∂ ln p(x[0];A)

∂A
=

1

σ2

(
x[0]−A

)
and the curvature − ∂

2 ln p(x[0];A)

∂A2
=

1

σ2

Therefore, as expected, the curvature increases as σ2 decreases.

R Curvature ↗ V PDF concentration ↗ V Accuracy ↗
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Likelihood function: Curvature

Since we know that the variance of the estimator equals σ2, then

var(Â) =
1

−∂
2 ln p(x[0];A)

∂A2

and the variance decreases as the curvature increases.

Generally, the second derivative does depend upon one data point,
x[0], and hence a more appropriate measure of curvature is the
statistical measure (average over many random x[0])

−E
[
∂2 ln p(x[0];A)

∂A2

]
A=true value

which measures the average curvature of the log-likelihood function

Note: The likelihood function is a random variable, due to x[0]

Recall: The Mean Square Error # MSE = Bias2 + variance

R It makes perfect sense to look for a minimum variance unbiased (MVU) solution!
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Link between the curvature and human perception
In the 50s, a psychologist Fred Attneave recorded eye dwellings on objects

Example 3a): The drawing of a bean (top)

and the histogram of eye dwellings (bottom) Example 3b): Read the words below ...

now read letter by letter ... are you still

sure?

Example 3c): Is the drawing on the left still a penguin?

So, what is the sufficient information to ’estimate’ an object?
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THE KEY: Cramer-Rao Lower Bound (CRLB) for a
scalar parameter (performance of the theoretically best estimator)

The Cramer–Rao Lower Bound (CRLB)

Theorem: [CRLB] Assumption: The PDF p(x; θ) satisfies the
“regularity” condition

E

[
∂ ln p(x; θ)

∂θ

]
= 0, ∀θ

where the expectation is taken with respect to p(x; θ).

Then, the variance of any unbiased estimator, θ̂, must satisfy

var(θ̂) ≥ 1

−E
{
∂2 ln p(x;θ)

∂θ2

}
↑ average curvature

where the derivative is evaluated at the true value of θ.
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CRLB for a scalar parameter, continued

Moreover, an unbiased estimator may be found that attains the bound for
all θ, if and only if for some functions g and I

∂ ln p(x; θ)

∂θ
= I(θ)

(
g(x)− θ

)
This estimator is the minimum variance unbiased (MVU) estimator,
for which θ̂ = g(x)

and its minimum variance 1

I(θ)

—— end of CRLB theorem ——

Remark: Since the variance var(θ̂) ≥ 1

−E
{
∂2 ln p(x;θ)

∂θ2

}, the evaluation of

the “curvature term” gives

E

[
∂2 ln p(x; θ)

∂θ2

]
=

∫
∂2 ln p(x; θ)

∂θ2
p(x; θ)dx

Obviously, in general the bound depends on the parameter θ and the data length
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Example 4: Physical relevance of CRLB

R Point 3 from Slide 5: “CRLB can sometimes provide the form of MVU”

Shall we therefore compare the form of regularity condition with Example 3

Regularity condition:
∂ ln p(x; θ)

∂θ
= I(θ)

(
g(x)− θ

)
inverse of the minimum achievable variance ↑ ↑ form of the optimum est.

Compare with what we have derived for x[0] = A+ w[0] (Slide 9)

↓ g(x[0])
∂ ln p(x[0];A)

∂A
=

1

σ2

(
x[0]−A

)
inverse of the Fisher information ↑ ↑ the unknown parameter

R By inspection, the optimum estimate is Â = g([x[0]) = x[0]

R From the CRLB theorem the optimum variance of this estimator: 1
I(θ) = σ2

Therefore: Good estimator V variance ↘ and curvature ↗
Poor estimator V variance ↗ and curvature ↘ (see Slide 9)
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Example 5: DC level in WGN for N data points
for the validity of the Gaussian assumption, see Appendix 2 and Lecture 3 (S 21)

Consider the estimation of a DC level in WGN, assume N observations

x[n] = A︸︷︷︸
unknown DC level

+ w[n]︸︷︷︸
noise with known pdf

n = 0, 1, 2, . . . , N − 1

where w[n] ∼ N (0, σ2).

Determine the CRLB for the unknown DC level A, starting from (θ = A)

p(x; θ) = p(x;A) =

N−1∏
n=0

1√
2πσ2

exp

[
− 1

2σ2

(
x[n]−A

)2]

=
1

(2πσ2)N/2
exp

[
− 1

2σ2

N−1∑
n=0

(
x[n]−A

)2]

R Estimation of a DC level is very useful, e.g. in the time-frequency plane a
sinusoid of frequency f is represented by a straight line (specgramdemo)
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Example 5: DC level in WGN for N data points # contd.

Upon taking the first derivative, we have

∂ ln p(x;A)

∂A
=

∂

∂A

[
− ln

[
2πσ2

]N/2 − 1

2σ2

N−1∑
n=0

(
x[n]−A

)2]

=
1

σ2

N−1∑
n=0

(
x[n]−A

)
=
N

σ2

(
x̄−A

)
↑ g(x), we can read out the estimator

where x̄ is the sample mean.

CRLB connection: x̄ = 1
N

∑N−1
n=0 x(n) = g(x), var(Â) = 1

I(A) = σ2

N

Upon differ. again ↓ does not depend on x, so no E{·}
∂2 ln p(x;A)

∂A2
= −N

σ2

Therefore var(Â) = σ2

N = CRLB, which implies that the sample mean
estimator attains the Cramer-Rao LB and must, therefore, be an
MVU estimator of a DC level in WGN.
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Example 5: DC level in WGN (spelling out the previous slide)

Upon taking the first derivative, we have

∂ ln p(x;A)

∂A
=

∂

∂A

[
− ln

[
2πσ2

]N/2 − 1

2σ2

N−1∑
n=0

(
x[n]−A

)2]

=
1

σ2

N−1∑
n=0

(
x[n]−A

)
=
N

σ2

(
x̄−A

) CRLB Th
= I(A)

(
g(x)−A

)
I(A) ↑ ↑ g(x)

CRLB connection: x̄ = 1
N

∑N−1
n=0 x(n) = g(x), var(Â) = 1

I(A) = σ2

N

Upon differentiating again ↓ does not depend on x, so no E{·}

∂2 ln p(x;A)

∂A2
= −N

σ2

Therefore var(Â) = σ2

N = CRLB, which implies that the sample mean
estimator attains the Cramer-Rao LB and must, therefore, be an
MVU estimator of A in WGN. (for any other estimator, Ã, var(Ã) ≥ σ2/N)
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Let us have a closer look at the CRLB for N data points

The figures below illustrate the behaviour of

CRLBN = var(Â) = σ2

N (cf. CRLB1 = σ2)

with a change in the DC level, A, data length, N , and noise variance, σ2.

CRLB

𝑨𝑨

CRLB

𝝈𝝈𝟐𝟐

CRLB

𝑵𝑵

For Fixed 𝑵𝑵 & 𝝈𝝈𝟐𝟐 For Fixed 𝑵𝑵 For Fixed 𝝈𝝈𝟐𝟐

Properties of CRLB for DC level estimation from N noisy data points:
◦ It does not depend on the DC level A

◦ The CRLB increases linearly with the noise variance, σ2

◦ The CRLB decreases as an inverse in the data length, N . For
example, doubling the data length halves the CRLB
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Efficient estimator # concept cf. consistent est.

Def: An estimator which is unbiased and attains the CRLB is said to be
efficient. In other words, an estimator is efficient if:

◦ It is an Minimum Variance Unbiased (MVU) estimator, and

◦ It efficiently uses the data.

θ

^

^
θ

θ
^

θ
^

θ
^

θ
^

θ
^ )var(^

θvar( )

33

22

1

1

CRLBCRLB

θ

θ

θ̂1 is efficient and MVU, θ̂2, θ̂3 are not θ̂1 may be MVU but is not efficient

R Not all estimators (phase est.) & not all MVU estimators are efficient
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Fisher information and a general form of MVU estimator
(measures the “expected goodness” of data for making an estimate)

The term I(θ) = −E
[
∂2 ln p(x; θ)

∂θ2

]
in the CRLB theorem is referred to as the Fisher information.

Intuitively:
the more information available ; the lower the bound ; lower variance

R Essential properties of an information measure:

R Non–negative

R Additive for independent observations

R General CRLB for arbitrary signals in WGN (cf. σ2/N , see the next slide)

var(θ̂) ≥ σ2∑N−1
n=0

(
∂s[n;θ]
∂θ

)2

↑ sensitivity of signal to parameter change

Accurate estimators: A signal is very sensitive to parameter change.
Therefore ∂s[n;θ]

∂θ above acts as a “sensitivity” term. (see Appendix 1)
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General case: Arbitrary signal in noise
CRLB via parameter sensitivity (for alternative forms, see Appendix 1)

Consider a deterministic signal s[n; θ] observed in WGN, w ∼ N (0, σ2)

x[n] = s[n; θ] + w[n], n = 0, 1, . . . , N − 1

Then, the PDF for x parametrised by θ has the form

p(x; θ) =
1

(2πσ2)N/2
e
− 1

2σ2

∑N−1
n=0

(
x[n]−s[n;θ]

)2

and so
∂ ln p(x; θ)

∂θ
=

1

σ2

N−1∑
n=0

(
x[n]− s[n; θ]

)∂ s[n; θ]

∂θ

∂2 ln p(x; θ)

∂θ2
=

1

σ2

N−1∑
n=0

[(
x[n]− s[n; θ]︸ ︷︷ ︸
E{x[n]}=s[n;θ]}

)∂2s[n; θ]

∂θ2
−
(∂s[n; θ]

∂θ

)2]
Therefore, the Fisher information

I(θ) = −E
[∂2 ln p(x; θ)

∂θ2

]
=

1

σ2

N−1∑
n=0

(∂s[n; θ]

∂θ

)2
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Example 6: Sinusoidal frequency estimation
(the CRLB depends both on the unknown parameter f0 and the data length N)

Consider a general sinewave in noise: x[n] = A cos
(
2πf0n+ Φ

)
+ w[n]

If only the frequency f0 is unknown, then

s[n; f0] = A︸︷︷︸
known

cos(2πf0n+ Φ︸︷︷︸
known

), 0 < f0 <
1

2
(norm. freq.)

From Slide 20: var(f̂0) ≥ σ2∑N−1
n=0

(
∂s[n;θ]
∂θ

)2 =
σ2

A2
∑N−1
n=0

[
2πn sin(2πf0n+ Φ)

]2
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Note the preferred
frequencies, e.g.

f ≈ 0.03, and that

for f0 → {0, 1/2} the
CRLB →∞
Parameters: N = 10,
Φ = 0, SNR = 1
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Example 6: Sinusiodal frequency estimation (contd.)
Practical context: Frequency estimation in power (smart) grids, fs = 1000 Hz

To illustrate the bias–variance–consistency, consider some recent frequency
estimation algorithms (see Lecture Supplement). For convenience, the
performance was evaluated against the signal to noise ratio (SNR).

Observe that both bias, variance and CRLB are a function of SNR.

Left: Bias in frequency estimation Right: Variance against the CRLB

The AI-MVDR algorithm was asymptotically unbiased and also consistent,
as it approached the CRLB for frequency est. with an increase in SNR.
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CRLB Theorem: Extension to a vector parameter
we now have Fisher Information Matrix I, whereby [I(θ)]ij = −E

[
∂2ln p(x;θ)
∂θi∂θj

]
Formulation: Estimate a vector parameter θ = [θ1, θ2, . . . , θp]

T

◦ Recall that an unbiased estimator θ̂ is efficient (and therefore an MVU
estimator) when it satisfies the conditions of the CRLB

◦ It is assumed that the PDF p(x;θ) satisfies the regularity conditions

E

[
∂ ln p(x;θ)

∂θ

]
= 0, ∀θ

◦ Then, the covariance matrix, Cθ̂, of any unbiased estimator θ̂ satisfies

Cθ̂ − I−1(θ) ≥ 0 (symbol ≥ 0 means that Cθ̂ is positive semidefinite)

◦ The Fisher Information Matrix is given by [I(θ)]ij = −E
[
∂2 ln p(x;θ)
∂θi∂θj

]
R An unbiased estimator θ̂ = g(x) exists that satisfies the bound

Cθ̂ = I−1(θ) if and only if

∂ ln p(x;θ)

∂θ
= I(θ)

(
g(x)− θ

)
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Extension to a vector parameter: Fisher information
matrix

Some observations:

◦ Elements of the Information Matrix I(θ) are given by

[I(θ)]ij = −E
[
∂2 ln p(x;θ)

∂θi∂θj

]
where the derivatives are evaluated at the true values of the
parameter vector.

◦ The CRLB theorem provides a powerful tool for finding MVU estimators
for a vector parameter.

R MVU estimators for linear models are found with the Cramer–Rao
Lower Bound (CRLB) theorem.
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Example 7: Sinusoid parameter estimation # vector case

Consider again a general sinewave

s[n] = A cos
(
2πf0n+ Φ

)
where A, f0 and Φ are all unknown. Then, the data model becomes

x[n] = A cos(2πf0n+ Φ) + w[n] n = 0, 1, . . . , N − 1

where A > 0, 0 < f0 < 1/2, and w[n] ∼ N (0, σ2).

Task: Determine CRLB for the parameter vector θ = [A, f0, Φ]T .

Solution: The elements of the Fisher Information Matrix become (P&As)

∂2ln p(x;A,f0,Φ)
∂A2 ↓ ↓ ∂

2ln p(x;A,f0,Φ)
∂A∂f0

↙ ∂2ln p(x;A,f0,Φ)
∂A∂Φ

I(θ) =
1

σ2


N/2 0 0

0 2A2π2
∑N−1
n=0 n

2 πA
∑N−1
n=0 n

0 πA
∑N−1
n=0 n

NA2

2


∂2ln p(x;A,f0,Φ)

∂Φ∂A ↑ ↑ ∂
2ln p(x;A,f0,Φ)

∂Φ∂f0
↖ ∂2ln p(x;A,f0,Φ)

∂Φ2
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Example 7: Sinusoid parameter estimation # continued
since Cθ̂ = I−1(θ) (see Slide 22) make an inverse of the FIM

After inversion of I(θ), its diagonal components are (η = A2

2σ2 is SNR):

var(Â) ≥ 2σ2

N
var(f̂0) ≥ 12

(2π)2ηN(N2 − 1)
var(Φ̂) ≥ 2(2N − 1)

ηN(N + 1)
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R The variance of the estimated parameters of a sinusoid behaves ∝ 1/η and
∝ 1/N3, thus exhibiting strong sensitivity to data length
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Need for Linear Models (regression models) (see Lecture 6)

These underpin many areas e.g. the CAPM and Fama-French models in finance
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Linear Models

Generally, it is difficult to determine the MVU estimator.

◦ In practice, however, a linear data model can often be employed #
straightforward to determine the MVU estimator.

Example 8: Linear model of a
straight line in noise

x[n] = A+Bn+ w[n]

n = 0, 1, . . . , N − 1

where

◦ w[n] ∼ N (0, σ2),

◦ B - slope and

◦ A - intercept.
n

noisy line

ideal noiseless line

0

A

x[n]
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Linear models: Compact notation (Example 8 contd.)

This data model can be written more compactly in the matrix notation as

known ↓ ↙ known pdf

x = Hθ + w or x = Hθ + w

where observed ↗ ↑ unknown

x =


x[0]
x[1]

...
x[N − 1]

 =
[
x[0], x[1], . . . , x[N − 1]

]T
H =


1 0
1 1
... ...
1 N − 1


and

θ = [A B]
T

w = [w[0], w[1], . . . , w[N − 1]]
T

w ∼ N (0, σ
2
I)

I =

 1 0 · · · 0
... ... . . . ...

0 0 · · · 1

 = diag(1, 1, . . . , 1)
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From a scalar to the vector/matrix notation

The “spelled out” form of the likelihood function for θ = [A,B]T is

p(x;A,B) =
1

(2πσ2)N/2
e

− 1
2σ2

∑N−1
n=0

(
x[n]−A−Bn︸ ︷︷ ︸

w[n]

)2

(∗)

To arrive at the vector form, swap the variables as w[n] = x[n]−A−Bn.

Then, with w = [w(0), . . . , w(N − 1)]T , the term
∑N−1
n=0 w

2(n), which
appears in the above likelihood function can be written as∑N−1

n=0 w
2(n) = wTw.

This applies to any vector, so that for w = x−Hθ we have
N−1∑
n=0

(
x[n]−A−Bn

)2︸ ︷︷ ︸
w2[n]

=
(
x−Hθ

)T︸ ︷︷ ︸
wT

(
x−Hθ

)︸ ︷︷ ︸
wThis gives

p(x;A,B) = p(x;θ) =
1

(2πσ2)N/2
e
−(x−Hθ)T (x−Hθ)

2σ2 equivalent to (∗)
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Linear models: Fisher information matrix

NB: p(x;θ) = 1
(2πσ2)N/2

e
−(x−Hθ)T (x−Hθ)

2σ2

R The CRLB theorem can be used to obtain the MVU estimator for θ

The MVU estimator, θ̂ = g(x), will then satisfy

∂ ln p(x;θ)

∂θ
= I(θ)

(
g (x)− θ

)
where I(θ) is the Fisher information matrix, whose elements are

[I]ij = −E
[∂2 ln p(x;θ)

∂θi∂θj

]
Then, for the Linear Model

∂ ln p(x;θ)

∂θ
=

∂

∂θ

[
−N

2
ln(2πσ2)− 1

2σ2

(
x−Hθ

)T(
x−Hθ

)]
= − 1

2σ2

∂

∂θ

[
Nσ2 ln(2πσ2) + xTx− 2xTHθ + θTHTHθ

]
Note that only the quadratic term in θ involves the matrix H
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Linear models: Some useful matrix/vector derivatives
the derivations are given in Lecture Supplement

Use the identities (remember that both bTθ and θTAθ are scalars)

∂bTθ

∂θ
= b #

∂xTHθ

∂θ
= (xTH)T = HTx

∂θTAθ

∂θ
= 2Aθ #

∂θTHTHθ

∂θ
= 2HTHθ

(which you should prove for yourself), that is, follow the rules of
vector/matrix differentiation.

As a rule of thumb, watch for the position of the (·)T operator

Then, the form of the partial derivative from the previous slide becomes

∂ ln p
(
x;θ

)
∂θ

=
1

σ2

[
HTx−HTHθ

]
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Linear models: Cramer-Rao lower bound
Find the MVU estimator: ∂ ln p(x;θ)

∂θ = I(θ)
(
g (x)− θ

)
Similarly to the vector CRLB, # recall that (HTH)T = HTH

I(θ) = −∂
T

∂θ

[
∂ ln p(x;θ)

∂θ

]
=

1

σ2
HTH ← does not depend on data

Therefore

∂ ln p(x;θ)

∂θ
=

1

σ2
HTH︸ ︷︷ ︸
I(θ)

[ (
HTH

)−1
HTx︸ ︷︷ ︸

g(x)

−θ
]

By inspection, the linear MVU estimator is then given by

θ̂ = g (x) =
(
HTH

)−1
HTx

provided
(
HTH

)−1
is invertible (it is, as H is full rank, with orthogonal

rows and columns).

The covariance matrix of θ̂ now becomes Cθ̂ = I−1 (θ) = σ2
(
HTH

)−1
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Back to Example 8

Start from p(x; θ) = p(x;A,B) = 1

(2πσ2)N/2
e
− 1

2σ2
∑N−1
n=0

(
x[n]−A−Bn

)2

To find the elements of the Fisher Information Matrix (FIM), start from

∂ ln p(x; θ)

∂A
=

1

σ2

N−1∑
n=0

(
x[n]− A− Bn

) ∂ ln p(x; θ)

∂B
=

1

σ2

N−1∑
n=0

(
x[n]− A− Bn

)
n

∂2 ln p(x; θ)

∂A2
= −

N

σ2

∂2 ln p(x; θ)

∂A∂B
= −

1

σ2

N−1∑
n=0

n
∂2 ln p(x; θ)

∂B2
= −

1

σ2

N−1∑
n=0

n
2

Then, the Fisher Information Matrix, I(θ), is given by

I(θ)=
1

σ2

[
N

∑N−1
n=0 n∑N−1

n=0 n
∑N−1

n=0 n
2

]
=

[
N N(N−1)

2
N(N−1)

2
N(N−1)(2N−1)

6

]
→ I−1

(θ)=σ
2

[
2(2N−1)
N(N+1) − 6

N(N−1)

− 6
N(N−1)

12
N(N2−1)

]

It now follows that the CRLB is

var(Â) =
2(2N − 1)

N(N + 1)
σ2 var(B̂) =

12

N(N2 − 1)
σ2

R B is easier to estimate as its CLRB is decreasing as 1/N3 as opposed to
the 1/N dependence for the CRLB of A.

R CRLB always increases as we estimate more parameters (compare the CRLB of

σ2/N for the estimation of DC level A only, with the CRLB for the intercept A here).
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Theorem: CRLB for linear models

◦ We have seen that the MVU estimator for the linear model is
efficient # it attains the CRLB

◦ The columns of H must be linearly independent for
(
HTH

)
to be

easily invertible

Theorem: (Minimum Variance Unbiased Estimator for the Linear Model)

If the observed data can be modelled as

x = Hθ + w

where

x is an N×1 “vector of observed data”
H is an N×p “observation (measurement) matrix” of rank p
θ is a p×1 unknown “parameter vector”
w is an N×1 additive “noise vector” ∼ N

(
0, σ2I

)
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Theorem: CRLB for linear models (contd.)

Then, the MVU estimator is given by

θ̂ =
(
HTH

)−1
HTx

for which the covariance matrix has the form

Cθ̂ = σ2
(
HTH

)−1

Note that the statistical performance of θ̂ is now completely described
because θ̂ is linear transformation of a Gaussian vector x, i.e.

θ̂ ∼ N
(
θ, σ2

(
HTH

)−1
)

End of Theorem 2
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Example 9: Fourier analysis as a linear estimator
Recall that we need to calculate θ̂ =

(
HTH

)−1
HTx

The data model is given by (n = 0, 1, . . . , N − 1, w[n] ∼ N
(
0, σ2

)
)

x[n] =

M∑
k=1

ak cos

(
2πkn

N

)
+

M∑
k=1

bk sin

(
2πkn

N

)
+ w[n]

where the Fourier coefficients, ak and bk, that is, the amplitudes of the
cosine and sine terms, are to be estimated.

◦ Frequencies are multiples of the fundamental f1 = 1
N , that is, fk = k

N .

◦ Then, the parameter vector is θ = [a1, a2, . . . , aM , b1, b2, . . . , bM ]T

and the observation matrix H is N × 2M︸︷︷︸
p

–dimensional, and takes the form

H =


1 . . . 1 0 . . . 0

cos 2π
N . . . cos 2πM

N sin 2π
N . . . sin 2πM

N... . . . ... ... . . . ...

cos 2π(N−1)
N . . . cos 2πM(N−1)

N sin 2π(N−1)
N . . . sin 2πM(N−1)

N


N×2M
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Example 9: Fourier analysis, geometric view

Data model: x[n] =

M∑
k=1

ak cos

(
2πkn

N

)
+

M∑
k=1

bk sin

(
2πkn

N

)
+ w[n]

↑ parameters to estimate ↑ WGN ↑

Parameter vector: θ = [a1, a1, . . . , aM , b1, b2, . . . , bM ]T (Fourier coeffs.)

z−plane

H = 

h1 hM h2M

n=0,1,...,N−1 samples 
down each column

1

n=N−1

n=0

this picture is for k=1

cos 2πkn
N sin 2πkn

N
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Example 9: Fourier analysis # continued
(see also Lecture 6)

For H not to be under-determined, it has to satisfy N > p ⇒M < N
2

R For mathematical convenience, the columns of H should be orthogonal

This is because the columns of H form a basis of a new representation
space, which is obvious if we rewrite the measurement matrix in the form

H =
[
h1 |h2 | · · · |h2M

]
where hi = hi is the i-th column of H.

Then, for a large enough number of data points, N , due to the
orthogonality properties of products of sines and cosines of different
frequencies, we have

hTi hj = 0 for i 6= j

In other words, hi ⊥ hj, that is, the columns of matrix H are orthogonal
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Example 9: Fourier analysis # contd. contd.

The orthogonality of the columns of H (for large N) follows from the
properties of sines and cosines of different frequencies:

N−1∑
n=0

cos

(
2πin

N

)
cos

(
2πjn

N

)
=

N

2
δij (as power of a sinusoid is A2/2)

N−1∑
n=0

sin

(
2πin

N

)
sin

(
2πjn

N

)
=

N

2
δij (as power of a sinusoid is A2/2)

N−1∑
n=0

cos

(
2πin

N

)
sin

(
2πjn

N

)
= 0 ∀i, j, s.t. i, j = 1, 2, . . . ,M <

N

2

where the Kronecker delta

δij =

{
1, i = j
0, i 6= j

In other words: (i) cos iα ⊥ sin jα, ∀i, j, (ii) cos iα ⊥ cos jα, ∀i 6= j,
(iii) sin iα ⊥ sin jα, ∀i 6= j
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Example 9: Fourier analysis → measurement matrix

Therefore (orthogonality)

HTH =

 hT1
...

hT2M

[h1 | · · · |h2M

]
=


N
2 0 . . . 0
0 N

2 . . . 0
... ... . . . ...
0 0 . . . N

2

=
N

2
I → (HTH)−1 =

2

N
I

and the MVU estimator of the Fourier coefficients is given by

θ̂ =
(
HTH

)−1︸ ︷︷ ︸
= 2
N I

HTx V θ̂MVU =
2

N
HTx

θ̂ =
2

N
HTx =

2

N

 hT1
...

hT2M

x =

 2
NhT1 x

...
2
NhT2Mx

 =

 2
N

∑N−1
n=0 x [n] cos

(
2π×1×n

N

)
...

2
N

∑N−1
n=0 x [n] sin

(
2π×2M×n

N

)


R Fourier coefficients of a “signal + WGN” are MVU estimates of the Fourier
coefficients of the noise–free signal.
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Example 9: Finally # Fourier coefficients (Fourier coefficients

of “signal + AWGN” are MVU estimates of Fourier coeff. of noise–free signal)

Therefore, the Fourier analysis represents a linear MVU estimator, given by

âk = 2
N

∑N−1
n=0 x [n] cos

(
2πkn
N

)
b̂k = 2

N

∑N−1
n=0 x [n] sin

(
2πkn
N

)
where the ak and bk are the discrete Fourier transform coefficients.

From CRLB for Linear Model, the covariance matrix of this estimator is

Cθ̂ = σ2
(
HTH

)−1
=

2σ2

N
I

↖ decreases with N

i) Note that, as θ̂ is a Gaussian random variable and the covariance
matrix is diagonal, the amplitude estimates are statistically independent;

ii) The orthogonality of the columns of H is fundamental in the
computation of the MVU estimator (invertible parsimonious basis);

iii) For accuracy, the measurement matrix H is desired to be a tall matrix
with orthogonal columns.
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Example 10: The concept of “linear in the parameters”
models (e.g. like neural networks) (see also Lecture 8)

R Recall that the notion “linear” in the term “Linear Models” does not arise
from fitting straight lines to data!

Model is "linear in the parameters!" 

x[n]

n2 3 4 5 61

True signal of interest
(quadratic in n)

Observed data

Model is quadratic in time "n"

Observations: x[n] = θ0 + θ1n+ θ2n
2︸ ︷︷ ︸

linear in parameters θ

+w[n] V x = Hθ + w

where θ =

 θ0

θ1

θ2

 H =


1 0 02

1 1 12

1 2 22

... ... ...
1 N − 1 (N − 1)2


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The need for a General Linear Model (GLM)

We shall now consider a general case where:

1) the observed signal may contain a known but non-white component, s

2) the observation noise, w, may be non-white, that is, C 6= N (0, σ2I).

Case 1) Often in practical applications (e.g. in radar), the observed signal
consists of some known signal, s, and another signal whose components are
not known, Hθ, so that the linear model of the observed signal becomes

x = Hθ + s + w (here, noise is assumed to be white)

The MVU estimator is determined immediately from x′ = x− s, so that

x′ = Hθ + w

θ̂ =
(
HTH

)−1
HT (x− s)

Cθ̂ = σ2
(
HTH

)−1
(covariance matrix of θ̂)

An example may be a DC level observed in random white noise, but also
with a known sinusoidal interference (e.g. from the mains).
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Incorporating coloured (correlated) noise into GLM

Case 2) For coloured noise, w ∼ N (0,C), where C 6= σ2I, that is, C is not a
scaled identity matrix!

To this end, we can use a whitening approach as follows:

Since C is +ve semidefinite, so too is C−1, # it can be factored as

C−1 = DTD, DN×N is invertible

Now, D acts as a whitening transform when applied to w, since

E
[
(Dw)(Dw)T

]
= E

[
DwwTDT

]
= DCDT = DD−1DT−1

DT = I

R This allows us to transform the general linear model

from x = Hθ + w to x′ = Dx = DHθ + Dw = H′θ + w′

R The noise is now whitened, as w′ = Dw ∼ N (0, σ2I) # use Linear Model

θ̂ =
(
H′

T
H′
)−1

H′
T
x′ =

(
HTDTDH

)−1
HTDTDx =

(
HTC−1H

)−1
HTC−1x

In a similar fashion, for the variance of this estimator we have

Cθ̂ =
(
H′

T
H′
)−1

and finally Cθ̂ =
(
HTC−1H

)−1

R For C = σ2 I we have our previous results for standard Linear Estimator
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Theorem: MVU Estimator for the General Linear Model
Upon combining Case 1 and Case 2 above (non-white noise + known component)

i) General linear data model: s(θ) = Hθ + s

known ↓ ↓ some known signal

x = H θ + s + w w ∼ N
(
0,C

)
observed ↑ ↑ unknown ↑ known statistics, can be non-white

ii) Then, the MVU estimator has the form

θ̂ =
(
HTC−1H)−1HTC−1

(
x− s

)
with the covariance matrix

Cθ̂ =
(
HTC−1H)−1

and attains the Cramer Rao Lower Bound (CRLB).

R We must assume that H is full rank, otherwise for any s there exist some
θ1 and θ2 which both give s, that is, s = Hθ1 = Hθ2 (no uniqueness)
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Example 11: Adaptive noise cancellation with reference
e.g. noise-cancelling headphones (see Example 11 in Appendix & Lecture 7)

Physical intuition behind “MVU estimator is a ratio of the input-output
cross-correlation to the input autocorrelation” on a noise cancel. example.

Headphones

Reference
microphone, N1

Speech or music
plus additive noise
          s+N0

ANC

BABET.FI?as*..B.oqaBBBBBB
§

z%Ég•!¥÷¥¥¥③B•z@
go

Σ

(n)
s(n) (n)o+N

N1

_

Reference input

Adaptive

Filter

Primary input

+

d(n)

x(n)

e(n)

y(n)

Input: The cockpit noise, x(n) = N1(n), that is, the noise for Reference
Microphone. The only requirement is that N1 is correlated with the noise,
N0, which you hear through the headphones, but not with the music
signal, s(n). The filter aims to estimate N0 from N1, that is, y = N̂0.

R Based on the input-output cross-correlation, the filter output can only

produce and estimate of the noise you hear, that is, y(n) = N̂0(n), as
cockpit noise, N1, is not correlated with the music, s.

Therefore we hear d(n)− y(n) = s(n) +N0(n)− N̂0(n) ≈ s(n)
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What to remember about MVU estimators

◦ An estimator is a random variable and as such its performance can
only be described statistically by its PDF

◦ The use of computer simulations for assessing the performance of an
estimator is rarely conclusive

◦ Unbiased estimators tend to have symmetric PDFs, centred about
the true value of θ

◦ The minimum mean square error (MMSE) criterion is natural to search
for optimal estimators, but it most often leads to unrealisable estimators
(those that cannot be written solely as a function of data)

◦ Since MSE = Bias2 + variance, any criterion that depends on bias
should be abandoned # we need to consider alternative approaches

◦ Remedy: Constrain the bias to zero and find an estimator which
minimises the variance # the minimum variance unbiased (MVU) estim.

◦ Minimising the variance of an unbiased estimator also has the effect of
concentrating the PDF of the estimation error, θ̂ − θ, about zero #
this makes it easier to perform the analysis

c© D. P. Mandic Statistical Signal Processing & Inference 50



Things to remember about CRLB

Even if the MVU estimator exists, there is no “turn of the crank”
procedure to find it.

The CRLB sets a lower bound on the variance of any unbiased estimator!

This can be extremely useful in several ways:

◦ If we find an estimator that achieves the CRLB # we known we have
found an MVU estimator

◦ The CRLB can provide a benchmark against which we can compare the
performance of any unbiased estimator

◦ The CRLB enables us to rule out infeasible estimators. It is physically
impossible to find an unbiased estimator that beats the CRLB

◦ We may require the estimator to be linear, which is not necessarily a
severe restriction, as shown in the examples on the estimation of Fourier
coefficients and a quadratic curve in noise
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Some “rule of thumb” practical hints with CRLB

1. Start from the log–likelihood parametrised PDF function, which
depends on the unknown parameter θ, that is, ln p(x; θ)

2. Fix x and take 2nd partial derivative of the log-likelhood function, that
is, ∂2 ln p(x; θ)/∂θ2

3. If the result still depends on x, then fix the θ and take the expected
value with respect to x. Otherwise, this step is not needed.

4. Should the result still depend on θ, then evaluate at every specific value
of θ

5. For the CRLB, perform the reciprocal and negate

R Transformation of parameters: If we know the CRLB for θ, we can easily
obtain it for any function of θ, e.g. α = g(θ). (see Appendix 3)

For some problems, an efficient estimator may not exist, for example
the estimation of sinusoidal phase (see your P& A sets)
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Appendix 1: An alternative form of CRLB
(via the sensitivity of p(x; θ) to θ)

Sometimes, it is easier to find CRLB as

var(θ̂) ≥ 1

E
{[

∂ ln p(x;θ)
∂θ

]2} cf. the original var(θ̂) ≥ 1

−E
{
∂2 ln p(x;θ)

∂θ2

}
Motivation: Sensitivity analysis, ease of interpretation

For an increment in θ, i.e. θ → θ + ∆θ ⇒ p(x; θ)→ p(x; θ + ∆θ)

Then, the sensitivity of p(x; θ) to that change is

S̃pθ(x) =

[
∆p(x;θ)
p(x;θ)

]
[

∆θ
θ

] =
% change in p(x; θ)

% change in θ
=
[∆p(x; θ)

∆θ

][ θ

p(x; θ)

]

For ∆θ → 0 Spθ(x) = lim
∆θ→0

S̃pθ(x) =
[∂p(x; θ)

∂θ

][ θ

p(x; θ)

]
= θ

∂ ln p(x′θ)

∂θ

(recall the derivative rules of a log function, ∂ ln f(x)
∂x = 1

f(x)
∂f(x)
∂x )

c© D. P. Mandic Statistical Signal Processing & Inference 53



Appendix 1: An alternative form of CRLB (contd.)
(via the sensitivity of p(x; θ) to θ)

Therefore (Gardner, IEEE Transactions on Information Theory, July 1979)

var(θ̂)

θ2
=

1

θ2E
{[

∂ ln p(x;θ)
∂θ

]2} =
1

θ2E
{[
Spθ(x)

]2}
Interpretation: This is an inverse mean square sensitivity of p(x; θ) to θ.

◦ Modelling and estimation are obviously intertwined

◦ Unknown parameters may have a physical interpretation, such as e.g.
direction in beamforming, delay in radar, ...

◦ Otherwise, parameters may be part of an imposed model, such as e.g.
the fixed sine-cosine bases in Fourier analysis
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Appendix 2: The validity of Gaussian assumption
(The Gaussian data assumption leads to the largest Cramer-Rao bound)

◦ When there is no information about the distribution of observations,
Gaussian assumption appears as the most conservative choice

◦ This follows from the fact that the Gaussian distribution minimises the
Fisher information (inverse of the CRLB), or in other words the Gaussian
distribution maximises the CRLB

◦ Indeed, it leads to the largest CRLB in quite a general class of data
distributions and for a significant set of parameter estimation problems

◦ Therefore, any optimisation based on the CRLB under the Gaussian
assumption is min-max optimal in the sense of minimising the largest CRLB
(they yield the best CRB-related performance in the worst case, and over a
large class of data distributions which satisfy the regularity condition)

◦ Also, the Gaussian random vector maximises a differential entropy, and
also the worst additive noise lemma

For more detail see: S. Park, E. Serpedin, and K. Qaraqe, “Gaussian assumption: The

least favourable but the most useful”, IEEE Signal Processing Magazine, May 2013, pp.

183–186 and the references therein
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Appendix 3: Transformation of parameters

Suppose that there is a parameter θ for which we know the CRLB, denoted
by CRLBθ.

Our task is the estimate another parameter α which is a function of θ, i.e.
α = g(θ)

Then, it can be shown that (see S. Kay’s book on Statistical Signal
Processing)

var(α) ≥ CRLBα =

(
∂g(θ)

∂θ

)2

CRLBθ

↖ sensitivity of α to θ

R Therefore, a large sensitivity ∂g(θ)
∂θ means that a small error in θ gives a large

error in α. This, in turn, increases the CRLB (that is, worsens accuracy).

It can be shown that if g(θ) has an affine form, that is, g(θ) = aθ + b,
then α̂ = g(θ̂) is efficient.

Otherwise, for any other form of g(θ), the result is asymptotically efficient
for N →∞.
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Appendix 4: Modelling vs. Estimation

◦ Oftentimes parameters we wish to estimate have some physical
significance (e.g. heart rate, or delay in the time of arrival of the
back-scattered signal in radar).

◦ It is also common that the parameters of interest arise from a
non-physical model which is imposed onto data (e.g. Fourier analysis).

◦ However, even then, the Fourier coefficients for a signal in AWGN are
the MVU estimates of the Fourier coefficients in the noise-free case!

◦ Similar reasoning applies to ARMA modelling, the coefficients may or
may not have physical meaning.

◦ Model # related to data generation (e.g. a generative model)

◦ Estimation # related to both model accuracy (bias/variance) and when
using a model to e.g. future values of a signal (inference).

R Modelling and Estimation/Inference are intertwined. It is our goal to
understand the bounds on the best achievable performance for a
certain paradigm, and use this as a domain knowledge for inference.
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App. 5 # Example 11: System Identification (SYS ID)

Aim: To identify the model of a system (filter coefficients {h}) from
input/output data. Assume an FIR filter system model given below

...z−1 z−1 z−1u[n] u[n−1] u[n−2] u[n−p]

x x x xh(0) h(1) h(2) h(p−1)

Σ Σ Σ

(k) u[n−k]Σ
k=1

p
h

...

◦ The input u[n] “probes” the system, then the output of the FIR filter is
given by the convolution x[n] =

∑p−1
k=0 h(k)x[n− k]

◦ We wish to estimate the filter coefficients [h(0), . . . , h(p− 1)]T

◦ In practice, the output is corrupted by additive WGN
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App. 5 # Example 11: SYS ID # data model in noise
w ∼ N (0, σ2)

Data model

x[n] =

p−1∑
k=0

h(k)u[n− k] + w[n] n = 0, 1, . . . , N − 1

The equivalent matrix–vector form is
x[0]
x[1]

...
x[N − 1]


︸ ︷︷ ︸

obs. vec. x

=


u[0] 0 . . . 0
u[1] u[0] . . . 0

... ... . . . ...
u[N − 1] u[N − 2] . . . u[N − p]


︸ ︷︷ ︸

measurement matrix H


h(0)
h(1)

...
h(p− 1)


︸ ︷︷ ︸

coeff. vec. θ

+


w[0]
w[1]

...
w[N − 1]


︸ ︷︷ ︸

noise vec. w

that is
x = Hθ + w where w ∼ N (0, σ2I)

Then, the MVU estimator

θ̂ =
(
HTH

)−1
HTx with Cθ̂ = σ2

(
HTH

)−1

This representation also lends itslef to state-space modelling
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App. 5 # Example 11: SYS ID # more about H

Now, HTH becomes a symmetric Toeplitz autocorrelation matrix, given by

HTH = N


ruu(0) ruu(1) . . . ruu(p− 1)
ruu(1) ruu(0) . . . ruu(p− 2)

... ... . . . ...
ruu(p− 1) ruu(p− 2) . . . ruu(0)


where

ruu(k) =
1

N

N−1−k∑
n=0

u[n]u[n+ k]

For HTH to be diagonal, we must have ruu(k) = 0 for k 6= 0, which holds
for a pseudorandom (PRN) input sequence.

Finally, when HTH = N ruu(0)I

then var
(
ĥ(i)

)
=

σ2

N ruu(0)
, i = 0, 1, . . . , p− 1
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App. 5 # Example 11: SYS ID # MVU estimator

For a PRN sequence, the MVU estimator becomes

θ̂ =
(
HTH

)−1
HTx

Then

ĥ(k) =
1

N ruu(0)

N−1∑
n=0

u[n− k]x[n]

and

rux(k)

ruu(0)
=

1
N

∑N−1−k
n=0 u[n]x[n+ k]

ruu(0)

k = 0, 1, . . . , p− 1

R Thus, the MVU estimator is a ratio of the input-output cross-correlation to
the input autocorrelation (makes perfect physical sense).

R Compare with the Wiener filter in Lecture 7 (adaptive inference)
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Notes:

◦
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Notes:

◦
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Notes:

◦
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