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Aims of this lecture

◦ We are seen that it is often the case that data, which may be generated
through even most complicated physical signal generating mechanisms,
still admit accurate modelling based on only the available historical data

◦ For example, when concerned with an incredibly complex phenomenon
of the generation and number of sunspots, it is sufficient to consider just
historical sunspot samples in the task of Sunspot Number Prediction

R This highlights the need for a unifying & rigorous framework for the
assessment of “goodness of performance” of any Data Analytics model,
from the simplest “persistent” estimate, to linear ARMA processes,
through to nonlinear Neural Network models  a subject of this Lecture

We will typically consider prediction/forecasting scenarios:

Prediction: Employs an already built model (based on in-sample data,
training data) to estimate out-of-sample values (prediction, inference).

Forecasting: A type of prediction which implicitly assumes time-series,
where historical data are used to predict future data. Often involves
“confidence intervals” (there is 20% chance of rain at 14:00).
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Example from Lecture 2: How expressive are these
inference models (e.g. under-fitting vs. over-fitting)

Original AR(2) process x[n] = −0.2x[n− 1]− 0.9x[n− 2] + w[n],
w[n] ∼ N (0, 1), is estimated using AR(1), AR(2) and AR(20) models.
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R Can we consider this within a bigger ”estimation theory” framework?

R Can we quantify the “goodness” of an estimator (bias, variance, prediction
error, optimality, scalability, sensitivity, sufficient statistics)?
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Example from Lecture 6: Method of Least Squares (LS)
Least Squares Order Selection Ineractive, Animation Sequential LS

◦ The LS estimator of a ’noisy line’ x[n] = s[n;A,B] + w[n] is very
sensitive to the correct model of the signal of interest, s, as shown in
the figure below for the LS fit of x[n] = A+Bn+ w[n].
◦ The error power for fitting the seen (training) data monotonically

decreases with the model order.
◦ The goodness of inference of the higher order model (extrapolation, test

data) is however not adequate (overparametrisation, lack of expressivity)
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Observations of x[n] = A + Bn + q[n] (blue dots) and LS estimates of varying order

Raw data
Order-0: error power =195.05
Order-1: error power =98.39
Order-7: error power =94.11

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
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Objectives: Introduction to Estimation Theory

◦ Notions of an Estimator, Estimate, Estimandum

◦ The bias and variance in statistical estimation theory, asymptotically
unbiased and consistent estimators

◦ Performance metrics, such as the Mean Square Error (MSE)

◦ The bias–variance dilemma and the MSE, feasible MSE estimators

◦ A class of Minimum Variance Unbiased (MVU) estimators, that is,
those with the lowest possible variance of all unbiased estimators

◦ Extension to the vector parameter case

◦ Statistical goodness of an estimator, the role of noise

◦ Enabling technology for many applications: Radar and sonar (range
and azimuth), image analysis (motion estimation), speech (recognition
and identification), finance, seismics (oil reservoirs), communications
(equalisation, symbol detection), biomedicine (ECG, EEG, respiration)
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Discrete–time statistical estimation problem
(try also the function specgram in Matlab # it produces the TF diagram below)

Time–Freq. spectrogram of speech

M aaaa tl aaa b

↑ Frequency → Time

Observe also mathematical artefacts

Consider e.g. the estimation of
a fundamental frequency, f0, of a
speaker from this TF spectrogram

Signal s[n; f0,Φ0] is burried in noise

x[n] = s[n; f0,Φ0] + w[n]

◦ Each time we observe x[n] it
contains the desired s[n] but also
a different realisation of noise w[n]

R The estimated frequency, f̂0,

and phase, Φ̂0, are random variables

Our goal: Find an estimator which
maps the data x to the estimates
f̂0 = g1(x) and Φ̂0 = g2(x).

The RVs f̂0, Φ̂0 are best described via a

prob. model which depends on: structure

of s[n], pdf of w[n], and form of g(x).
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Statistical estimation problem (learning from data)
The notation p(x; θ) indicates that θ are not random but unknown parameters

Problem statement: Given an N -point dataset, x[0], x[1], . . . , x[N − 1],
which depends on an unknown scalar parameter, θ, an estimator is
defined as a function, g(·), of the dataset {x}, that is

θ̂ = g
(
x[0], x[1], . . . , x[N − 1]

)
which may be used to estimate θ. (single parameter or “scalar” case)

Vector case: Analogously to the scalar case, we seek to determine a set of
parameters, θ = [θ1, . . . , θp]

T , from data samples x = [x[0], . . . , x[N − 1]]T

such that the values of these parameters would yield the highest
probability of obtaining the observed data. This can be formalised as

max
span θ

p(x;θ) where p(x;θ) reads: “p(x) parametrised by θ′′

There are essentially two alternatives to estimate the unknown θ

◦ Classical estimation: Unknown parameter(s) is deterministic with no
means to include a priori information about θ (minimum var., ML, LS)

◦ Bayesian estimation: Parameter θ is a random variable, which allows
us to use prior knowledge on θ (Wiener and Kalman filters, adaptive SP)
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The need for a PDF of the data, parametrised by θ

(really, just re–phrasing the previous slide)

Mathematical statement of the general estimation problem:

From the measured data x =
[
x[0], x[1], . . . , x[N − 1]

]T
↑ an N-dimensional random vector

Find the unknown (vector) parameter θ = [θ1, θ2, . . . , θp]
T

↑ θ is not random

Q: What captures all the statistics needed for successful estimation of θ

A: It has to be the N-dimensional PDF of the data, parametrised by θ

So, it is p(x ; θ) that contains all the information needed

↑ we will use p(x ; θ) to find θ̂ = g(x)

R When we know this PDF, we can design optimal estimators

R In practice, this PDF is not given, and our goal is to choose a model which:

◦ Captures the essence of the signal generating physical model;

◦ Leads to a mathematically tractable form of an estimator.
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Random variable (RV), some general observations
Random variable # quantifies the outcome of a random event.

For example, “heads” or “tails” on a coin or a blue square on Rubik’s cube
are not random variables per se, but can be made random variables
through numerical characterisation.

R We therefore do not know how to determine the value of a RV, but can
specify the probability of occurrence of a certain value of a RV.

A random var. X with the pdf

pX(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2

is called a Gaussian RV.

→ µ is the mean of a RV X

→ σ is the standard deviation of a RV

X, and σ > 0

→ σ2 is the variance of a RV X

So, we can write X ∼ N (µ, σ2)

Variance effect on Gaussian pdf
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Conditional pdf
“slice and normalise” the joint pdf p(x, y)

Formal definition or more often

pY |X(y|x) =

{
pXY (x,y)
pX(x) , pX(x) 6= 0

0, otherwise
p(x|y) =

{
p(x,y)
p(y) , p(y) 6= 0

0, otherwise
x x

x is held fixed y is held fixed

Conditional pdf p(x|y)

Depends on joint pdf p(x, y) because
there are two rand. variables, x and y.

Example: Length of holidays, X,
conditioned on the salary Y =£60k?

Ans: Find all people who make exactly
£60k, how is holiday length distributed?

We therefore:

◦ slice the joint p(x, y) at Y = £60k

◦ normalise by pY (60, 000) so that
p(x|y)=p(x, 60k)/pY (60k) is valid pdf
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Joint pdf pXY (x, y) versus parametrised pdf p(x;θ)

We will use p(x;θ) to find θ̂ = g(x)

Joint pdf p(x, y)

The parametrised p(x; θ) should be

looked at as a function of θ for a fixed

value of observed data x

Right: For x[0]=A+w[0], if we
observe x[0] = 3, then p(x[0] =
3;A) is a slice of the parametrised
p(x[0];A) for a fixed x[0] = 3.

Parametrised pdf p(x[0];A)
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The statistical estimation problem
First step: To model, mathematically, the data

Consider a single observation of a DC level, A, in WGN, w (that is, θ = A)

x[0] = A+ w[0] where w[0] ∼ N (0, σ2). Then x[0] ∼ N (A, σ2).

The“parametrised” pdf, p(x[0]; θ) = p(x[0];A), is obviously Gaussian with
the mean of A  parametrisation affects the mean of p(x[0];A).

Example 1: For N = 1, and with θ denoting the mean value, a generic
form of p(x[0]; θ) for the class of Gaussian parametrised PDFs is given by

p(x[0]; θi) = 1√
2πσ2

exp
[
− 1

2σ2(x[0]− θi)2
]

i = 1, 2

x[0]1=A 12=A 2θ θ

R Clearly, the
observed value
of x[0] critically
impacts upon the
likely value of the
parameter θ (here,
the DC level A)
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Estimator vs. Estimate
specification of the PDF is critical to determining a good estimator

An estimator is a rule, g(x), that assigns a value to the parameter θ from
each realisation of x = x = [x[0], . . . , x[N − 1]]T .

An estimate of the true value of θ, also called ’estimandum’, is obtained
for a given realisation of x = [x[0], . . . , x[N − 1]]T in the form θ̂ = g(x).

R Upon establishing the parametrised p(x; θ), the estimate θ̂ = g(x) itself is

then viewed as a random variable and has a pdf of its own, p(θ̂).

Example 2: Estimate a DC level A in WGN.

x[0] = A+ w[0], w[0] ∼ N (0, σ2)

◦ The mean of p(Â) measures the centroid

◦ The variance of p(Â) measures the spread
of the pdf around the centroid

PDF concentration ↑ =⇒ Accuracy ↑

This pdf displays the quality of performance.
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Example 3a: Need for pdf concentration in real–world
An application of risk assessment in finance

In finance, the risk of investment is minimised through “diversification”,
that is, the investment in many assets (a portfolio) as opposed to
single–asset investment. Here, “returns”, Rt = pt/pt−1, with p a price.

PDF concentration ↑ # accuraccy ↑
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Example 3a (contd): Justification for a Gaussian PDF
the closer a pdf to a Gaussian one the more appropriate a 2nd order linear model

An application to COVID-19 infection rate prediction in the UK

◦ The raw data have asymmetric distribution (non–Gaussian)

◦ The x[n]/x[n-1] transformed data have a more concentrated distribution

◦ The ln(x[n]/x[n-1]) transformation → pdf is closer to a Gaussian one
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Linear Models (regression models) (see Lecture 6)

These underpin many areas e.g. the CAPM and Fama-French models in finance
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Example 3b: Finding the parameters of a line from N

observed data points (important generic problem, e.g. in regression)

In practice, the chosen PDF should fit the problem set–up and incorporate
any “prior” information; it must also be mathematically tractable.

Example: Assume that “on the
average” data values are increasing

n

noisy line

ideal noiseless line

0

A

x[n]

Data: Straight line embedded in
random noise w[n] ∼ N (0, σ2)

x[n] = A+Bn+ w[n]

= s[n;A,B] + w[n]

p(x;A,B) = 1
(2πσ2)N/2

e

[
− 1

2σ2

∑N−1
n=0 (x[n]−A−Bn)2

]

Unknown parameters:

A, B ⇔ θ ≡ [A B]T

Careful: What are the effects of bias
in A and B on the previous example?
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Bias in parameter estimation

Our goal: Estimate the value of an unknown parameter, θ, from a set of
observations of a random variable described by that parameter

θ̂ = g
(
x[0], x[1], . . . , x[N − 1]

)
(θ̂ is a RV too)

Example: Given a set of observations from a Gaussian distribution,
estimate the mean or variance from these observations.

◦ Recall that in linear mean square estimation, when estimating the value
of a random variable y from an observation of a related random variable
x, the coefficients A and B within the estimator y = Ax+B depend
upon the mean and variance of x and y, as well as on their correlation.

The difference between the expected value of the estimate, θ̂, and
the actual value, θ, is called the bias and will be denoted by B.

B = E{θ̂N} − θ
where θ̂N designates estimation over N data samples, x[0], . . . , x[N − 1].

Example 4: When estimating a DC level in noise, x[n] = A+ w[n], the

estimator, Â = 1
N

∑N−1
n=0 |x[n] |, is biased for A < 0. (see Appendix)
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Now that we have a statistical estimation set–up
how do we measure “goodness” of the estimate?

R Noise w is usually assumed white with i.i.d. samples (independent,
identically distributed)

 whiteness often does not hold in real–world scenarios

 Gaussianity is more realistic, due to validity of Central Limit Theorem

 zero–mean noise is a nearly universal assumption, and it is realistic since

w[n] = wzm[n] + µ
non–zero–mean noise ↑ ↑ zero–mean–noise µ is the mean

Good news: We can use these assumptions to find a bound on the
performance of “optimal” estimators.

More good news: Then, the performance of any practical estimator and
for any noise statistics will be bounded by that theoretical bound!

◦ Variance of noise does not always have to be known to make an estimate

◦ But, we must have tools to assess the “goodness” of the estimate

◦ Usually, the goodness analysis is a function of noise variance, σ2
w,

expressed in terms of SNR = signal to noise ratio. (noise sets SNR level)
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Assessing the performance of an estimator

Recall that the estimate θ̂ = g(x) is a random variable. As such, it has a
pdf of its own, and this pdf completely depicts the quality of the estimate.

2πσ

68%

95%

>99%

sqrt ( )
−1 2θ̂p( )

θ−2σ θ+2σ

θ+3σθ−3σ

θ

θ

θ−σ θ+σ

^

We can only assess performance when
the value of θ is known

The quality (goodness) of an estimator is
typically captured through the mean and
variance of θ̂ = g(x).

We desire: µθ̂ = E{θ̂} = θ

and σ2
θ̂

= E{(θ̂ − E{θ̂})2} # small

◦ In an ideal scenario, we would like to always be able to theoretically
analyse the problem to assess its goodness (bias and variance). This also
shows how performance depends on problem specification.

◦ Sometimes, we have to make use of simulations: i) to verify theoretical
analysis, ii) if theoretical results cannot be found.
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An equivalent assessment via the estimation error
Since θ̂ is a RV, it has a PDF of its own (more in the next lecture on CRLB)

Given that θ̂ = g(x) then θ̂ = θ + η (η is the estimation error)
random variable (RV) ↑ not random variable ↑ ↑ random variable

Since θ̂ is a random variable (RV), the estimation error η is also a RV

η = θ̂ − θ =⇒ η = 0 indicates an unbiased estimator

θ̂) p(η)

θ̂0 0 ηθ

p(

R Quality of the estimator is completely described by the error PDF p(η)

We desire: 1) an unbiased estimator, that is, E{η} = 0

2) minimum variance, var(η) = E{(η − E{η})2} −→ small
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Can we resort to (approximately) Gaussian distribution?
Yes, very often, if we re–cast our problem in an appropriate way

Top panel. Share prices, pn, of Apple (AAPL), General Electric (GE) and
Boeing (BA) and their histogram (right). Bottom panel. Logarithmic
returns for these assets, ln(pn/pn−1), that is, the log of price differences at
consecutive days (left) and the histogram of log returns (right).

Clearly, by a suitable data transformation, we may arrive at symmetric
distributions which are more amenable to analysis (bottom right).
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Asymptotic unbiasedness

If the bias is zero, then for sufficiently many observations of x[n] (N large),
the expected value of the estimate, θ̂, is equal to its true value, that is

E{θ̂N} = θ ≡ B = E{θ̂N} − θ = 0

and the estimate is said to be unbiased.

If B 6= 0 then the estimator θ̂ = g(x) is said to be biased.

Example 5: Consider the sample mean estimator of a DC level, A, in
WGN, x[n] = A+ w[n], w ∼ N (0, 1), given by

Â = x̄ =
1

N + 2

N−1∑
n=0

x[n] that is θ = A

Is the above sample mean estimator of the true mean A biased?

Observe: This estimator is biased but the bias B → 0 when N →∞
lim
N→∞

E{θ̂N} = θ

Such as estimator is said to be asymptotically unbiased.
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Example 6: Asymptotically unbiased estimator of DC
level in noise

Consider the measurements x[n] = A+ w[n], w ∼ N (1, σ2 = 1)

and the estimator Â =
1

N + 2

N−1∑
n=0

x[n]

noise

n

x[n]

0
1 2 3 4 5

A=1

0.8

1.2

noise distribution

for random

For “deterministic” noise
where w[n] ∈ {−0.2, 0.2}
Â1 = 1

1+2 1.2 = 0.4

Â2 = 1
2+2 (1.2 + 0.8) = 0.5

Â3 = 1
3+2 3.2 = 0.64

... ... ...

Â8 = 1
8+2 8 = 0.8

... ... ...

Â100 = 1
100+2 100 = 0.98
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How about the variance of the estimate θ̂

◦ It is desirable that an estimator be either unbiased or asymptotically
unbiased (think about the power of estimation error due to DC offset)

◦ For an estimate to be meaningful, it is necessary that we use the
available statistics effectively, that is,

var(θ̂)→ 0 as N →∞
or in other words

lim
N→∞

var{θ̂N} = lim
N→∞

{
E
[∣∣θ̂N − E{θ̂N}∣∣2]} = 0

If θ̂N is unbiased then E{θ̂N} = θ, and from Tchebycheff inequality ∀ ε > 0

Pr{|θ̂N − θ| ≥ ε} ≤
var{θ̂N}

ε2

R If var{θ̂N} → 0 as N →∞, then the probability that θ̂N differs by
more than ε from the true value will go to zero (showing consistency).

In this case, θ̂N is said to converge to θ with probability one. (see Appendix)
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Mean square convergence
NB: Mean square error criterion is very different from the variance criterion

Another form of convergence, stronger than convergence with probability
one is the mean square convergence.

An estimate, θ̂N , is said to converge to θ in the mean–square sense, if

lim
N→∞

E{|θ̂N − θ|2}︸ ︷︷ ︸
mean square error

= 0

◦ This is different from the previous slide, as θ is now assumed to be
known, in order to be able to measure the performance

◦ For an unbiased estimator, this is equivalent to the previous
condition that the variance of the estimate goes to zero

◦ An estimate is said to be consistent if it converges, in some sense, to
the true value of the parameter, or more formally:

R We say that the estimator is consistent if it is asymptotically unbiased
and has a variance that goes to zero as N →∞
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Example 7: Assessing the performance of the Sample
Mean as a statistical estimator

Consider the estimation of a DC level, A, in random noise, w[n], whereby
the measured signal, x[n], can be modelled as

x[n] = A+ w[n]

where w[n] ∼ some zero-mean random i.i.d. process.

Goal: To estimate DC level, A, from the data {x[0], x[1], . . . , x[N − 1]}

◦ Intuitively, the sample mean is a reasonable estimator, and has the form

Â =
1

N

N−1∑
n=0

x[n]

Q1: How close will Â be to A?

Q2: Are there better estimators than the sample mean?
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Example 7 (contd.): Mean and variance of the Sample
Mean estimator

Estimator = f ( random data ) # it is a random variable itself

=⇒ its performance must be judged statistically

(1) What is the mean of Â?

E
{
Â
}

= E

{
1

N

N−1∑
n=0

x[n]

}
=

1

N

N−1∑
n=0

E {x[n]} = A # unbiased

(2) What is the variance of Â?

Assumption: The samples of w[n] are uncorrelated

var
{
Â
}

= E
{[
Â− E{Â}

]2}︸ ︷︷ ︸
variability around the mean

= var

{
1

N

N−1∑
n=0

x[n]

}

=
1

N2

N−1∑
n=0

var {x[n]} =
1

N2
N σ2 =

σ2

N
(as noise is white i.i.d.)

Since var{Â} → 0 as N →∞ # consistent estimator (see P&A sets)
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Some intricacies which are often not fully spelled–out

In our example, each random data sample has the same mean, namely A
probability theory ↑

and the mean, A, is exactly the quantity we are trying to estimate

R We are estimating A using the sample mean, Â = 1
N

∑N−1
n=0 x[n]

statistics ↑

◦ We desire to be always able to perform theoretical analysis to find the
bias and variance of the estimator (measure of its goodness)

 theoretical results show how estimates depend on problem spec.

◦ Sometimes it is necessary to make use of simulations

 to verify correctness of theoretical results

 when we cannot find theoretical results (e.g. Monte Carlo
simulations, see Lecture 5)

 when estimators have no optimality properties, but do work in practice
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Minimum Variance Unbiased (MVU) estimation

Aim: To establish “good” estimators of unknown deterministic parameters

Unbiased estimator # “on the average” yields the true value of the
unknown parameter, independently of its particular value, i.e.

E(θ̂) = θ a < θ < b

where (a, b) denotes the range of possible values of θ

Example 8: Consider an unbiased estimator for a DC level in white
Gaussian noise (WGN), observed as

x[n] = A+ w[n] n = 0, 1, . . . , N − 1

where A is the unknown, but deterministic, parameter to be estimated
which lies within the interval (−∞,∞). Then, the sample mean can be
used as an estimator of A, namely

Â =
1

N

N−1∑
n=0

x[n]
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Careful: The estimator is parameter dependent!

An estimator may be unbiased for certain values of the unknown
parameter but not for all values; such an estimator is biased

Example 9: Consider another sample mean estimator of a DC level:

ˆ̂
A = 1

2N

∑N−1
n=0 x[n]

Therefore: E
{

ˆ̂
A
}

= 0 when A = 0 but

E
{

ˆ̂
A
}

= A
2 when A 6= 0 (parameter dependent)

Hence
ˆ̂
A is not an unbiased estimator.

◦ A biased estimator introduces a “systemic error” which should not be
present if at all possible

◦ Our goal is to avoid bias if we can, as we are interested in stochastic
signal properties and bias is largely deterministic
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Effects of averaging for real world data
Problem 3.4 from your P/A sets: heart rate estimation

The heart rate, h, of a patient is automatically recorded by a computer every 100ms.

One second of the measurements
{
ĥ1, ĥ2, . . . , ĥ10

}
are averaged to obtain ĥ. Given

that E
{
ĥi
}

= αh for some constant α and var(ĥi) = 1 for all i, determine whether

averaging improves this estimator, for α = 1 and α = 1/2.

ĥ =
1

10

10∑
i=1

ĥi[n],

E
{
ĥ
}

=
α

10

10∑
i=1

h = αh

For α = 1, the estimator is unbiased. For

α = 1/2 it will not be unbiased unless the

estimator is formed as ĥ = 1
5

∑10
i=1 ĥi[n].

var
{
ĥ
}

=
1

L2

10∑
i=1

var
{
ĥi
}

h

p
(ĥ

i
)

Before Averaging

h/2 h

p
(ĥ

i
)

h

p
(ĥ

i
)

After Averaging

h/2 h

p
(ĥ

i
)

α =
1

2
α =

1

2

α = 1
α = 1

ĥi

ĥi

ĥi

ĥi
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Remedy: How about averaging? Averaging data segments vs

averaging estimators? Also look in your CW Assignment dealing with PSD.

Several unbiased estimators of the same quantity may be averaged
together. For example, given the L independent estimates{

θ̂1, θ̂2, . . . , θ̂L

}
we may choose to average them, to yield

θ̂ = 1
L

∑L
l=1 θ̂l

Our assumption was that the individual estimates, θ̂l = g(x), are unbiased,
with equal variances, and mutually uncorrelated.

Then (NB: averaging biased estimators will not remove the bias)

E
{
θ̂
}

= θ

and

var
{
θ̂
}

= 1
L2

∑L
l=1 var

{
θ̂l

}
= 1

Lvar
{
θ̂l

}
Note, as L→∞, θ̂ → θ (consistent estimator)
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Example 10: Effect of averaging in spectral estimation

Averaging power spectra of 50 independent realisations of a mixture of two
sinewaves in noise, x[n] = sin(0.4πn) + sin(0.45πn) + w[n]
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Mean square error criterion & bias – variance dilemma

R An optimality criterion is necessary to define an optimal estimator

One such natural criterion is the Mean Square Error (MSE), given by

MSE(θ̂) = E
{

(θ̂ − θ)2
}

# E{error2} = error power

which measures the average mean squared deviation of the estimate, θ̂,
from the true value (error power).

MSE (θ̂) = E
{

(θ̂ − θ)2
}

= E
{[

(θ̂ − E{θ̂}) + (E{θ̂} − θ︸ ︷︷ ︸
= bias, B(θ̂)

)
]2}

= E
{[
θ̂ − E{θ̂}

]2}
+ 2B(θ̂) E

{
θ̂ − E{θ̂}

}︸ ︷︷ ︸
=0

+B2(θ̂)

= var(θ̂) +B2(θ̂)

MSE = VARIANCE OF THE ESTIMATOR + SQUARED BIAS
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Example 11: An MSE estimator with a ’gain factor’
(motivation for unbiased estimators)

Consider the following estimator for DC level in WGN

Â = a
1

N

N−1∑
n=0

x[n]

Task: Find the value of a which results in the minimum MSE.

Solution:

E
{
Â
}

= aA and

var(Â) = a2σ2

N

so that we have

MSE(Â) =
a2σ2

N
+ (a− 1)2A2

Of course, the choice a = 1 removes the mean and minimises the variance
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Example 11 (continued): An MSE estimator with a ’gain’
(is a biased estimator feasible?)

Can we find an optimum a analytically? Differentiate wrt a to yield

∂MSA

∂a
(Â) =

2aσ2

N
+ 2(a− 1)A2

and set the result to zero arrive at the optimal value

aopt =
A2

A2 + σ2

N

R but we do not know the value of θ = A L

R Although MSE makes sense, estimates usually rely on the unknown θ

Without any constraints, this criterion leads to unrealisable estimators
# those which are not solely a function of the data (see Example 6).

R Practically, the minimum MSE (MMSE) estimator needs to be
abandoned, and the estimator must be constrained to be unbiased.
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Minimum variance estimation & MSE criterion, together

Basic idea behind MVU: Out of all possible unbiased estimators, find the
one with the lowest variance.

If the Mean Square Error (MSE) is used as a criterion, this means that

MSE (θ̂) = var(θ̂) + B2(θ̂)︸ ︷︷ ︸
=0 for MV U

R By constraining the bias to be zero, our task is much easier, that is, to find
an estimator that minimises the variance.

◦ In this way, the feasibility problem of MSE is completely avoided.

Therefore:

MVU estimator = Minimum mean square error unbiased estimator

We will use the acronym MVUE for minimum variance unbiased estimator.

R Course goal: To find optimal statistical estimators and inference

(see the Appendix for an alternative relation between the error function
and the quality (goodness) of an estimator)
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Bias–variance illustration: ARIMA prediction of
COVID-19 death data

Consider the prediction of COVID-19 death rates in the UK.

AR(1) model, 10 days ahead ARIMA(7,1,1) 10 days ahead

◦ The AR(1) prediction exhibits bias, as the mean of the predicted data (in
red) is “off-set” from the mean of true data (in blue) for most of the plot

◦ The ARIMA(7,1,1) prediction coincides with the original data in terms of
the mean for the whole plot, but exhibits large variability (what do you prefer)
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Desired: Minimum variance unbiased (MVU) estimator

Minimising the variance of an unbiased estimator concentrates the PDF of
the error about zero # estimation error is therefore less likely to be large

◦ Existence of the MVU estimator

is a MVU estimator

θ3

var(^ )θ

θ

θ )^var(

θ

θ̂ 1

θ̂ 2

θ̂3

θ̂ 1

θ̂ 2

θ̂3

no MVU estimator

^

The MVU estimator is an unbiased estimator with minimum
variance for all θ, that is, θ̂3 on the plot above
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Extensions to the vector parameter case

◦ If θ = [θ1, θ2, . . . , θp]
T ∈ Rp×1 is a vector of unknown parameters,

then a vector parameter estimator is said to be unbiased if

E(θ̂i) = θi that is, every θi is unbiased, for i = 1, 2, . . . , p

By defining

E(θ) =


E(θ1)
E(θ2)

...
E(θp)


an unbiased vector parameter estimator has the property

E(θ̂) = θ

within the p–dimensional space of parameters spanned by
θ = [θ1, . . . , θp]

T .

◦ An MVU estimator has the additional property that its var(θ̂i), for
i = 1, 2, . . . , p, is the minimum among all unbiased estimators.
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Multivariate inference often helps (see also Lecture 2)

For a rigorous account of multivariate inference, see Lecture 4

Apple stock prediction using a vector autoregressive VAR(5) model (Apple
as one variate and 4 other stocks from S&P 500 as other variates)
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Methods to find the MVU estimator

The MVU estimator may not always exist, for example, when:

◦ There are no unbiased estimators  a search for the MVU is futile

◦ None of the unbiased estimators has uniformly minimum variance, as on
the right hand side of the figure on the Slide 40

If the MVU estimator (MVUE) exists, we may not always be able to find
it. While there is no general “turn-the-crank” method for this purpose,
the approaches to finding the MVUE employ the following procedures:

◦ Determine the Cramer-Rao lower bound (CRLB) and find some
estimator which satisfies the so defined MVU criteria (Lecture 4)

◦ Apply the Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem (rare in pract.)

◦ Restrict the class of estimators to be not only unbiased, but also linear
in the parameters, this gives MVU for linear problems (Lecture 5)

◦ Employ optimisation and prior knowledge about the model (Lecture 6)

◦ Drop all assumptions, employ real–time adaptive estimation schemes
and perform on-line inference on streaming data (Lecture 7)
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Summary

◦ We are now equipped with performance metrics for assessing the
goodness of any estimator (bias, variance, MSE).

◦ Since MSE = var + bias2, some biased estimators may yield low MSE.
However, we prefer minimum variance unbiased (MVU) estimators.

◦ Even a simple Sample Mean estimator is an example of the power of
statistical estimators.

◦ The knowledge of the parametrised PDF p(data;parameters) is very
important for designing efficient estimators.

◦ We have introduced statistical “point estimators”, would it be useful to
also know the “confidence” we have in our point estimate? (Bayesian est.)

◦ In many disciplines it is useful to design so called “set membership
estimates”, where the output of an estimator belongs to a pre-definined
bound (range) of values.

◦ In our SSPI course, we will address linear, best linear unbiased, maximum
likelihood, least squares, sequential least squares, and adaptive estimators.
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Homework: Check another proof for the MSE expression

MSE(θ̂) = var(θ̂) + bias2(θ)

Note : var(x) = E[x2]−
[
E[x]

]2
(∗)

Idea : Let x = θ̂ − θ → substitute into (∗)

to give var(θ̂ − θ)︸ ︷︷ ︸
term (1)

= E[(θ̂ − θ)2]︸ ︷︷ ︸
term (2)

−
[
E[θ̂ − θ]

]2︸ ︷︷ ︸
term (3)

(∗∗)

Let us now evaluate these terms:

(1) var(θ̂ − θ) = var(θ̂)

(2) E[θ̂ − θ]2 = MSE

(3)
[
E[θ̂ − θ]

]2
=
[
E[θ̂]− E[θ]

]2
=
[
E[θ̂ − θ]

]2
= bias2(θ̂)

Substitute (1), (2), (3) into (**) to give

var(θ̂) = MSE− bias2 ⇒ MSE = var(θ̂) + bias2(θ̂)
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Recap: Unbiased estimators

Due to the linearity property of the statistical expectation operator, E {·},
that is

E{a+ b} = E{a}+ E{b}

the sample mean estimator can be shown to be unbiased, i.e.

E
{
Â
}

= 1
N

∑N−1
n=0 E {x[n]} = 1

N

∑N−1
n=0 A = A

◦ In some applications, the value of A may be constrained to be positive.

For example, the value of an electronic component such as an inductor,
capacitor or resistor would be positive (prior knowledge).

◦ For N data points in i.i.d. random noise, unbiased estimators generally
have symmetric PDFs centred about their true value, that is

Â ∼ N (A, σ2/N)
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Appendix: Some usual assumptions in the analysis

How realistic are the assumptions on the noise?

◦ Whiteness of the noise is quite realistic to assume, unless the evidence
or physical insight suggest otherwise

◦ The independent identically distributed (i.i.d.) assumption is
straightforward to implement through e.g. the weighting matrix
W = diag(1/σ2

0, . . . , 1/σ
2
N−1) (see Lectures 5 and 6)

◦ In real world scenarios, we often deal with e.g. bandpass or correlated
noise (e.g. so called pink or 1/f noise in physiological recordings)

◦ The assumption of Gaussianity is often realistic to keep, due to e.g. the
validity of Central Limit Theorem, or an appropriate data transformation

Is the zero–mean assumption realistic? Yes, as even for non–zero mean
noise, w[n] = wzm[n] + µ, where wzm[n] is zero–mean noise, the mean of
the noise µ can be incorporated into the signal model.

Do we always need to know noise variance? In principle not, but when
assessing performance (goodness), variance is needed to measure the SNR.
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Appendix. Example 12: A counter-example # a little
bias can help (but the estimator is difficult to control)

Q: Let {y[n]}, n = 1, . . . , N be iid Gaussian variables ∼ N (0, σ2).
Consider the following estimate of σ2 (The Stoica-Moses counter-example)

σ̂2 =
α

N

N∑
n=1

y2[n] α > 0

Find α which minimises the MSE of σ̂2.

A: It is straightforward to show that E{σ2} = ασ2 and
MSE(σ̂

2
) = E{

(
σ̂

2 − σ2)2} = E{σ̂4}+ σ
4
(1− 2α)

=
α2

N2

N∑
n=1

N∑
s=1

E{y2
[n]y

2
[s]}+ σ

4
(1− 2α) Hint : Σn

2
= ΣnΣs

=
α2

N2

(
N

2
σ

4
+ 2Nσ

4
)

+ σ
4
(1− 2α) = σ

4
[
α

4
(1 +

2

N
) + (1− 2α)

]
The MMSE is obtained for αmin = N

N+2 and is MMSE(σ̂2) = 2σ4

N+2.

Given that the corresponding σ̂2 of an optimal unbiased estimator
(CRLB, later) is 2σ4/N , this is an example of a biased estimator
which obtains a lower MSE than the CRLB.
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Appendix (full analysis of Example 4)

Biased estimator:

Ã =
1

N

N∑
n>1

∣∣x[n]
∣∣

Therefore,

◦ if A ≥ 0, then
∣∣x[n]

∣∣ = x[n], and E{Ã} = A

◦ if A < 0, then E{Ã} 6= A

⇒ Bias =

{
= 0, A ≥ 0
6= 0, A < 0
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Appendix: Some Tips and Tricks
Le us show that the unbiased estimator of the variance is N−1

N σ2

Assume that the mean of a random variable x is µ = 0. Then, by def.

µ̂ =
1

N

N−1∑
n=0

x[n] σ̂2 =
1

N

N−1∑
n=0

(x[n]− µ̂)2

Upon applying the statistical expectation operator, E{·}, we have

E{σ̂2} =
1

N

N−1∑
n=0

E
{

(x[n]− µ̂)2
}︸ ︷︷ ︸

σ2

=
1

N

N−1∑
n=0

[
E{x2[n]} − 2E{µ̂x[n]}+ E{µ̂2}

]

=
1

N

N−1∑
n=0

[
σ2 − 2E

{ 1

N

N−1∑
j=0

x[j]x[n]
}

︸ ︷︷ ︸
= 2
NE{x0xn+···+xnxn+···+xN−1xn}=2σ2

N

+ E
{( 1

N

N−1∑
n=0

x[n]
)2}

︸ ︷︷ ︸
= 1
N2

∑N−1
n=0

∑N−1
j=0 E{xnxj}= N

N2σ
2=σ2

N

]

⇒ E{σ̂2} =
1

N

N−1∑
n=0

[
σ2 − 2

N
σ2 +

1

N
σ2
]

=
N − 1

N
σ2
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Appendix: Tschebycheff (or Chebyshev) inequality, Slide 25

We do not need full knowledge of pdf, just knowledge of the mean and variance

It provides an upper bound to the probability of the absolute deviation of a
random variable (RV) exceeding a given threshold (probability of rare
events). One way to prove it is through the Markov inequality.

Markov inequality: For a positive RV, X, and a positive threshold, ε, the
following holds:

P (X ≥ ε) ≤ E{X}
ε

=
µ

ε

For a positive X, this property holds almost surely (with probability one).

Example 13: An average salary in a company is 40,000 GBP. What is the
probability of a given person having salary greater than 100,000 GBP?
Answer: Markov’s inequality gives the upper bound on this probability

P (X ≥ 100, 000) ≤ 40, 000

100, 000
=

1

2.5

R Markov’s inequality can be used to prove that mean square
convergence implies convergence in probability, and also to prove
Chebyshev’s inequality. (see Lecture 1 for more detail)
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Appendix: Tschebycheff (or Chebyshev) inequality, Slide 25

We do not need full knowledge of pdf, just knowledge of the mean and variance

Chebyshev’s inequality: Consider a random variable, X, with a finite
mean µ and a finite variance σ2, and a positive number ε. Then

P (|X − µ| ≥ ε) ≤ σ2

ε2
To arrive to the Chebyshev inequality on Slide 24, substitute
X → θ̂, µ→ θ, σ2 → var{θ̂N} into the Markov inequality. The proof
follows immediately.

Example 14: An average salary in a company is 40,000 GBP, with a stand.
dev. of 20,000 GBP. What is the probability of a given person having
salary which is either less than 10,000 GBP or greater than 70,000 GBP?
Answer: This probability cannot be computed exactly, however,
Chebyshev’s inequality will give an upper bound to this probability.
We are looking for the bound on |X − µ| ≥ ε, with µ = 40, 000 and
ε = 30, 000. The probability of this happening is then

P (|X − µ| ≥ ε) ≤ σ2

ε2
=

400, 000, 000

900, 000, 000
=

4

9

For more details, examples, and proofs, see Lecture 1.
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Appendix: A note on generating correlated noise

Let η ∈ N (0, 1) and let r be the desired correlation coefficient. Then, the
correlated noise, w[n], with the correlation coeff., r, can be generated as

w[n+ 1] = r × w[n] +
√

1− r2 × η[n+ 1] with w[0] = η[0]

(the correlated noise, w[n], is Gaussian as it is a sum of Gaussians)

Assume now the autocorrelation function of the form r(k) = σ2e−|k|/τ ,
which is exponentially decaying and is governed by τ .

Then, the corresponding power spectral density PSDpink noise (f) ∝ 1
fα

For α = 1, we refer to such signal as pink noise, or ”1/f noise”.
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Notes
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