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Introduction ~~ Recap

Discrete Random Signals:
discrete vs. digital 3  quantisation

o {x[n]}n—0.n_1 is a sequence of indexed random variables
z[0], z[1],..., [N — 1], and the symbol ’[-]" indicates the random
nature of signal z ~»  every sample is random too!

o The sequence is discrete with respect to sample index n, which can be
either the standard discrete time or some other physical variable, such
as the spatial index in arrays of sensors

o A random signal x|n] can be real-valued, complex-valued, etc.
NB: signals can be continuous or discrete in time as well as amplitude

Digital signal = discrete in time and amplitude

Discrete—time signal = discrete in time, amplitude either discrete or continuous
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Standardisation and normalisation

(e.g. to be invariant to amplifier gain or the quality of sensor contact)

Some learning machines require data of a specific mean and variance, yet
measured variables are usually of magnitudes. We refer to standardisation
as the process of converting the data to an arbitrary mean p and variance
o2, and to normalisation as the particular case of i =0, 62 = 1. In
practice, raw data {z[n|},—o.n_1 are normalised by subtracting the
sample mean, u, and dividing by the sample standard deviation o.

e Compute statistics: p =+ 3" z[n], o?= 13" (z[n] — p)?
o Centred data: z* =z — ]

e Centred and scaled data (normalised): z =2 & p=0,0=1
Normalised data can be standardlse((::lsto any mean i and variance 2 by
ST H
r = —-

o
or bounded to any lower, [, and upper, u, bound by

25T = (u — 1) (x(”) _mm"'”> +

Lmax — Tmin

Standardize to zero mean and range [—1,1] © z(n) = 2 (w(”)_wmi"> —1

Imax —Lmin
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Standardisation: Example 1

Autocorrelation under centering and normalisation

Consider an AR(2) signal with the AR parameters: a = [0.2, —0.1]"

AR(2) signal ACF of signal
L 4 : : : : : : : :
g 23]
cs | | _— L
> ° S “s0
© | d LL 60'
c 0 O 407
2 20t
n .2 A A A A < A A A A
0 20 40 60 80 100 0 20 40 60 80 100
Sample number ACF lag
ACF of centered signal ACF of normalised signal
o 100 , , , , o 100 , , , ,
= =
S 50; S 50
O 0 M O
< T < O Wy T Ve
0 20 40 60 80 100 0 20 40 60 80 100
ACF lag ACF lag

For o < 1, normalisation will increase the magnitude the ACF, e.g. for this
example o = 0.5.
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Standardisation: Example 2
The bars denote the amplitudes of the samples of signals z{-x4

For the raw measurements: {z[n|, x2[n|, z3[n|, x4[n]}n=1.N

Raw data Centred data Centred and Scaled data

o
[T T T T
o
[T T T T

u . .
1 5%

-5 - - A - _ _ . . . .
x1 x2 X3 x4 S x1 x2 x3 x4 S x1 x2 X3 x4

o Standardisation allows for a coherent and aligned handling of different
variables, as the amplitude plays a role in regression algorithms.

o Furthermore, input variable selection can be performed by assigning
smaller or larger weighting to samples (confidence intervals).
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How do we describe a signal, statistically?

Probability distribution function — convenient and accurate descriptor

o Cumulative Density Function (CDF) — probability of a random
variable falling within a given range, given by

Fx (z[n]) = Probability (X [n] < x[n]) (1)
X|[n| — random quantity, xz[n] — particular fixed value of X.

o Probability Density Function (pdf) — relative likelihood for a
random variable to occur at a given point in the observation space.

plain) = 25T e P = [ pax @

For random signals, for two time instants n; and n,, the pdf of x|n]
need not be identical to that of x[ns|, eg. sin(n) + w(n) (w is noise).
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Statistical distributions: Uniform distribution

Important: Recall that probability densities sum up to unity
/ p(z[n])dzn] =1

and that the connection between pdf and its cumulative density
function CDF is

z[n]
F(z[n)) :/ p(z)dz, also lim F(z[n]) =1

5o x[n]—oo

p(x[n]) A F(x[n])

- : >
0 1 xin 0 1 xin1

Figure: pdf (left) and CDF (right) for a uniform distribution.
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Gaussian probability and cumulative density functions

How does the variance o influence the shape of CDF and pdf?

Gaussian pdf Gaussian CDF
0.8 - +p=0,0=1— f
—_—pu=10=1
p=0,0=2
L ik =0, =05
0.4 7
B / \ B =0, w1
0.2 _ \ A
f .\: p=0,0=2
00— 2 e —t pw=0,0=0.5
—4 —2 0 2 4 6 8 1 6 8

o= o () iy [+ (252)]

I'= We read p(x; pu, o) as 'pdf of x, parametrised by 1 and o’

The standard Gaussian distribution (1 = 0, o = 1) is given by p(z) = — (—5”—2

\/? exp
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Statistical distributions: Gaussian & randn in Matlab

The accuracy of sample distributions depends on the number of data points

Very convenient (mathematical tractability) & especially in terms of the
log-likelihood log p(z[n))

1 _Gllp?® 1 (2[n] — f1z)2
= — 20% = —— 2\ _ i
p(x[n]) = —270_%6 = logp(z[n)) 2log (27mx) 2072

Sample distribution for realisation lengths

20—
Length=100 .
“’ﬁ z[n] ~ N (pz,02)  py — mean, o, — variance
0°— : : : 0 Bipolar distribution
300—— ‘ ‘ ‘
Length=1000
200 €18 1 A p(x[n]) A F(x[n])
100[ : T1
0 ! I L L 0-5 1
2 4 6 8 10 1 o LI
30000 | ength=10000 1 T T x[n]
2000 ] > >
0— x x x pdf CDF
2 4 6 8 10

Sample densities for varying N
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Multi-dimensionality versus multi-variability

Univariate vs. Multivariate vs.  Multidimensional
o Single input single output (SISO) e.g. single-sensor system

o Multiple input multiple output (MIMO) (arrays of transmitters and
receivers) measure one or more sources with multiple sensors

o Multidimensional processes (3D inertial bodymotion sensors, radar,
vector fields, wind anemometers) — intrinsically multidimensional

Example: Multivariate function with single output (MISO)

stockvalue = f(stocks, oilprice, GN P, month, . ..)

I Complete probabilistic description of {x|n]} is given by its pdf
p(x[ni],...,x[ng]) forall k and nq,..., ng.

Much research is being directed towards the reconstruction of the process
dynamics from the history of observations of one variable only (Takens)
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Joint distributions of delayed samples (temporal)

Joint distribution of x|n;] and x[ns] (bivariate CDF)
F (z[n1], xz[ns2]) = Prob (X [n1] < z[n1], X[no] < z[ns])

and its corresponding pdf
O?F (x[n1], z[ns))

0x[n1]0x[ns]

p (z[na], z[na)) =

A k—th order multivariate CDF distribution
F (z[n1], xnsl,...,xng]) = Prob (X[ni] < xnq],..., X[ng] < z[ng)

and its pdf
OFF (z[n4), ..., z[ng))

ox[ni]---0x[nk

p(x[ni], x[nsl, ..., x[ng]) =

Mathematically simple, but complicated to evaluate in reality

Luckily, real world time series often have “finite memory” (Markov)
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Example 1.1. Bivariate pdf

Notice the change in indices (assuming discrete time signals)
CDF : F (z|n], x|m]) = Prob{ X |[n] < z[n], X|m| < x|m]}

PDF" : p (z[n], z[m]) = O°F (x|n], z[m)])

Ox[n]0x|m]

4 p(x[n],x[m])

Homework: Plot the CDF for this case, what would happen in C?
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Properties of the statistical expectation operator

P1: Linearity:
E{az[n] + bylm|} = aE{z[n]} + bE{y[m]}
P2: Separability: E{xm]y[n|} # E{x[m]|}E{y[n]}

unless {x|m]} and {y[n|} are independent random processes, that is

when E{z|mly([n]} = E{z|m]}E{y(n]}

P3: Nonlinear transformation of variables: If y[n] = g(x[n]) and the
pdf of z[n| is p(xz[n]|) then
B} = [ glalnl)plaln])dlo

that is, we DO NOT need to know the pdf of {y[n]} to find its
expected values (when g¢(-) is a deterministic function).

NB: Think of a saturation-type sensor (microphone)
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Example 1.2. Mean for linear systems (use P1 & P2 above)

Task: Consider a general linear system given by z[n| = az[n| + by|n|. Find
the means, E{x([n|} = p., E{y[n|} = w,, where x L y.

Solution:
E{z[n]} = E{az(n]| + by[n|} = aE{z[n|} + bE{y[n|}

that is 1e = ajig + by,
la
x[n] 1+
z[n]
O—
yn] : 1*
to

This property is a consequence of the linearity of the E{-} operator, and is
very useful in the analysis of adaptive learning systems.  (see Lecture 7)
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Example 1.3. Mean for nonlinear systems (use P3 on Slide 13)

think about e.g. estimating the variance empirically

For a nonlinear system, say the sensor nonlinearity is given by (cf. variance)

using Property P3 of the statistical expectation operator, we have

e = Bl = [ aPlnlplaln)del

This is extremely useful, since most of the real-world signals are observed
through sensors, e.g.

microphones, geophones, various probes ...

which are almost invariably nonlinear (typically a saturation type
nonlinearity)
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Dealing with ensembles of random processes

Ensemble 3 collection of all possible realisations of a random signal

The Ensemble Mean Realisations of random process sin(2*x)+2*rand

2 T
1 oM T

]

=y 2l faa— : :
i=1 OW

_2 | |
[ 0 5
where z;/n] % outcome of iWw
1—th experiment at sample n. 2, : : .
For N — oo we have ZW
o5 u 0 5

z(n) = ]\}lmoo ~ Z z:n _ZWW"\.

Average both along one and 2 . . )
across all realisations? x[n]
Average Statistically  E{z[n]} = i = / o lnlp(zln])dz(n)

Ensemble Average = Ensemble Mean
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Our old noisy sine example
stochastic process is a collection of random variables

Ensemble Histogram

Ensemble average for the noisy sinewave
T T T T T T T

Amplitude
Amplitude

Time index i ) i _
Time Index

The pdf at time instant n is different Left & Right: Ensemble average

from that at m, in particular: sin(2z) + 2 x randn + 1
Left: 6 realisations, Right: 100
p(n) # p(m) m 7 n realisations (and the overlay plot)
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Ensemble average of a noisy sinewave
A more precise probability distribution for every sample

Every sample in our ensemble average is a random process and has its pdf

2 100 realisations of random process sin(2*x) + 2*rand
T T T T T T

—Avérage + étd Dev
— Ensemble Average

Average
+
Std. Dev

;
%-
E
— : : : : : <
 ipo Mo
E :4 >: E E bl
1 1 L nsemole
! u_ZG 95% u.|.20 : 05 Average
u-36 . L H+30 B w 2 o 1 2 8 4 o
Ime Index
>99%
Left: Area under the Gaussian vs o Right: Histogram for each random sample
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Second order statistics: 1) Correlation

e Correlation (also known as Autocorrelation Function (ACF))
r(m,n) = E{x[m]z[n|}, thatis

r(m,n) = /OO z[m]z[n|p(z[m], z[n])dz[m]dz(n]

— O

o In practice, for ergodic signals we calculate correlations from the
relative frequency perspective

N — o0

N
1
r(m,n) = lim {N sz[m]xz[n]} , (¢ denotes the ensemble index)
i=1

o r(m,n) measures the degree of similarity between z[n| and z|m)|.
o r(n,n) = F{z*[n]} % the average "power" of a signal
o r(m,n) =r(n,m) % {r(m,n)} elements of the autocorr. matrix

R = {r(m,n)} = E|xx"| is symmetric
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1=

Example 1.4. Autocorrelation of sinewaves
(the need for a covariance function)

function sin(2x) function sin(2x) + 2 * randn function sin(2x) + 4
1 : 8 ‘ 5 :
6
4,
4
2 3l
0
_2 2
_4
1 L
-6
-5 0 5 % 0 5

ACF of sin(2x) ACF of sin(2x) + 2*randn ACF of sin(2x) + 4

100 1200 3500

1000} | 3000}

507 800/ 1 2500}

600! | 2000/

0

400/ | 1500}

_sol 200! 1 1000}

0 500/

~100 ‘ ‘ ‘ -200 ‘ ‘ ‘ 0 ‘ ‘

0 5 0 5 10 Yo 5 0 5 10 0 -5 0 5 10

Useful information becomes obscured in additive noise or under a DC offset
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Second order statistics: 2) Covariance

e Covariance is defined as

c(m,n) = E{(z[m] — pu(m))(z[n] — u(n))}
= Eizmlzln]} — p(m)p(n)
c(n,n) = o.=E{(z[n] - ,u(n))z} for m =n

e Properties:

o ¢(m,n) = c(n,m) = the covariance matrix for a real-valued
x = |z[0],...,z[N — 1]]T is symmetric and is given by

C = {c(m,n)} = E[xx"], where x = {z — u}
o For zero mean signals, ¢(m,n) = r(m,n)

(see also the Standardisation slide and Example 1.4)
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Higher order moments

For a zero-mean stochastic process {x|n]}:

e [hird and fourth order moments

Skewness : R3(l, m,n) = E{x|l]x[m]x[n]}
Kurtosis : R4(I,m,n,p) = E{x|l]x|m]xn]x|p]}
e |n general, n—th order moment
RN(ll, 12, .. ,ln) = E{Q?[ll]ZU[ZQ] R LE[ln]}

Higher order moments can be used to form Gaussian noise
insensitive statistics (cumulants).

e |Important in non-linear signal processing

e Applications: blind source separation

® In many applications the signals are assumed to be, or are reduced to,
zero-mean stochastic process.
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Example 1.5. Use of statistics in system identification
(statistical rather than transfer function based analysis)

.| unknown d[n]
X[n} system + eln]
_§ error

—>1 {h(n)} vIn]

Task: Select {h(n)} such that y[n| is as similar to d[n]| as possible.

Measure of "goodness” is the distribution of the error {e[n|}.

Ideally, the output error should be zero mean, white, and
uncorrelated with the output sighal &~ See Lecture 7
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Solution: Minimise error power E{e?[n]|} by selecting suitable {h(k)}

e Cost function: J =FE {(d[n] — 2 M(k)z[n — ]‘7])2 }

e Setting V,J =0 for h = h(i), gives (you will see more detail later)

E{d[n]xn —1i]} — Z h(k)E{xn — klxln —1i]} =0

k

e The solution r4;(—%) = >, h(k)ryz(i — k) in vector form is

h = R_lrdx

I'= The optimum coefficients are inversely proportional to the
autocorrelation matrix and directly proportional to the estimate of the
crosscorrelation between the teaching signal, d(n) and the input, x(n).

For more detail, see Lecture 7, e.g. the Wiener filter or acoustic echo
cancellation in concert venues.
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Independence, uncorrelatedness and orthogonality

e Two RV are independent if the realisation of one does not affect the
distribution of the other, consequently, the joint density is separable:

p(z,y) = p(x)p(y)
Example: Sunspot numbers on 31 December and Argentinian debt
e Two RVs are uncorrelated if their cross-covariance is zero, that is
c(z,y) = El(z — pa)(y — py)] = Elzy] — Elz]Ely] =0

Example: z ~ N (0,1) and y = 22 (impossible to relate through a
linear relationship)

e Two RV are orthogonal if r(z,y) = E|lxy] =0

Example: Two uncorrelated RVs with at least one of them zero-mean
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Independence, uncorrelatedness and orthogonality -
Properties

Independent RVs are always uncorrelated

Uncorrelatedness can be seen as a 'weaker’ form of independence since
only the expectation (rather than the density) needs to be separable.

Uncorrelatedness is a measure of linear independence. For instance,
x ~ N(0,1) and y = x? are clearly “nonlinearly” dependent but
“linearly” uncorrelated, meaning that there is no linear relationship
between them.

Since ¢y, = g4y — mym, orthogonal RVs x and y need not be
uncorrelated. Furthermore, they are:

— uncorrelated if they are independent and one them is zero mean
— orthogonal if they are uncorrelated and one them is zero mean

For uncorrelated random variables: var{x + y} = var{z} + var{y}
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Stationarity: Strict and wide sense

e Strict Sense Stationarity (SSS): The process {z[n]} is SSS if for all
k the joint distribution p(x[n4],...,x[nk|) is invariant under time
shifts, i.e. (all moments considered)

p(x[n1 + nol,...,xng +nol) =p(x[n],...,xngl), Vng

As SSS is too strict for practical applications, we consider the
more 'relaxed’ stationarity condition 3~ wide sense stationarity.

e Wide-Sense Stationarity (WSS): The process {z[n|} is WSS if Vm, n:

o Mean: FE{z|ml|} = E{x|m + n]},
o Covariance: c¢(m,n) =c(m —n,0) =c(m —n)

Note that only the first two statistical moments (mean and
covariance/correlation) are considered.

Example of WSS: z[n] = sin(27 fn + ¢), where ¢ is uniformly distributed
on [—m, 7]
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Autocorrelation function r(m) of WSS processes

i) Time/shift invariant: r(m,n) = r(m —n,0) = r(m — n) (follows
from the covariance WSS requirement)

ii) Symmetric: r(—m) = r(m) follows from the definition

iii) r(0) > |r(m)| with a maximum at m =0
The signal power = r(0) 9 Parseval’s relationship

Follows from E{(z[n] — A\z[n + m])?*} >0, i.e.

E{2*[n]} — 2AE{z[n]z[n + m]} + N2 E{z*[n + m]} > 0 VA
r(0) — 2Xxr(m) + A*r(0) >0 VA

which is quadratic in A and required to be positive for all A, i.e. the
equation determinant: A = r%(m) —r(0)r(0) < 0= r(0) > |r(m)|.
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Properties of ACF — continued

iv) The AC matrix for a stationary x = [2[0],...,z[L — 1]] is
[ 7o | - 7r(0) r(1) r(L - 1)
R=E{xx"}=B{ | " |[zo,21,..., 21 1]} = T(El) T(EO) B
Tr—1] r(L—-1) r(L-2) -- r(0)

is symmetric and Toeplitz (constant sub-diagonals).
v) R is positive semi—definite, that is

alRa>0 Va#0

T T

This follows from y = a’x and y! = x'a, so (e.g. output of a linear system)

E{y*[n]} = E{y[n|y'[n]} = F{a’xx'a} = a' E{xx'}a=a'Ra > 0
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Properties of r(m) — contd Il

vi) Autocorrelation function reflects the basic shape of a signal, e.g. if
the signal is periodic, then its autocorrelation function will be periodic
and with the same period. (you also see here the effects of rectangular window)

sin(z) [150 points] sin(z) [600 points]
0.5¢ 0.5 ‘1
0 0
-0.5¢ -0.5
0 5 1‘0 15 0 20 40 60
[seconds] [seconds]

ACF of sin(z) ACF of sin(z)

0 50 100 150 0 200 400 600
[samples] [samples]

Sinewave and its ACF - Sampling rate=10Hz
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Properties of the crosscorrelation

1) rzy(m) = E{z[n]yln + m|} = ry.(—m) (accounts for the lead/trail
signal ~~ see also the radar principle in Example 1.6)

i) If z[n] = x[n] + y[n] then

r..(m) = E{(z[n] + y[n])(zn+m]+yn+ml}

= Tog(m) + ryy(m) + ray(m) + ryz(m)
and if z[n] and y[n] are independent (or uncorrelated)
rzz(m) = ree(m) + ryy(m)
I'= Therefore for m = 0 we have var(z) = var(x) + var (y) see Slide 26

i) 72, (m) < ryz(0)ry,(0)  (Same as ACF P(iii) when z = y)
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Example 1.6. The use of (cross-)correlation

Detection of Tones in Noise: Principle of Radar:
Consider a noisy tone x = A cos(wn + 0) | The received signal (see previous slide)
y[n] = Acos(wn + 0) + w[n] y[n] = ax[n — Ty] + w[n], so that
ACF : R(m) = E|y[n]y[n + m]] = Roy(r) = E{z(n)y(n+7)}
= R (m) + Ry (m) + Ry (m) + Rua(m) | = aRe(r — 1) + Rew(T)
ince

For R, = Bexp(—a|m|) &z L w, then | o | o R.,(T)=aR.(T — Tp)

1 5 i .
Ry(m) :§A2COS(CUm)_|_B2eXp(_a|m|) 5 Transmit pulse

o for large m, the ACF « the signal !
o d extract tiny signal from large noise °r
a=0.1, w =0.5, A=1 1t

20

o 200 400 600 800 1000

15t Time

Received waveform

10

“To0 _50 o 50 100 ) 200 400 600 800 1000
Time delay Time
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Example 1.7. Range of a radar

Unbiased estimate of a true radar delay §, that has distribution § ~ N (J¢, o)

Q: What is the distribution of the range of the radar, and how should the
radar be designed (i.e. what should oy be) so that the range estimate is
within 100 units of the actual range with a probability of 99%7

2
A: The range is given by R = 5%, therefore, R ~ ./\/'(50%, ag%), where Ry = 50% IS
the actual true range.

To fulfil the radar design requirement, we need, P{|R — Ry| < 100} = 0.99, or
equivalently (due to the symmetry of the RV R)

{(R — Ry) - 100

c2C/2 c2C/2

} — 0.995,

and as Lf0) N(0,1), we have P [ =291, O) = 0.995. Evaluating this from

0(2)0/2 080/27
the expression of the Gaussian CDF in an earlier slide we have
100 200 .
= 2.58 = 09 = = 0.51milliseconds
csC/2 2.58 x 3 x 108

NB: By dividing N (0, o) with o we standardise pdf to unit variance N (0, 1).
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Power spectral density (PSD)

The power spectrum or power spectral density S(f) of a process
{z[n]} is the Fourier transform of its ACF (Wiener—Khintchine Theorem)

o0

S(f) = F{rza(m)} = Z Txx(m)e_ﬂwnf fe(-1/2,1/2|,w € (—m,7]

m——oo

The sampling period T’ is assumed to be unity, thus f is the normalised
frequency.

From the inversion formula (Fourier), we can write

1/2
reatm) = [ S(p)eas
—1/2
o ACF tells us about the correlation/power within a signal ~~ Average

o PSD tell us about the distribution of power across frequencies ~~
Density
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PSD properties
i) S(f) is a non-negative and real (a distribution) = S(f) = S*(f).

Since r(—m) = r(m) we can write

S(f) = Z Fae(—m)e??™™ = Z roa(m)e 92mm/
and hence
S(f) = Z Tz (M) cos(2mmf) = ry.(0) + 2 Z Tz (M) cos(2mmf)

i) S(f) is a symmetric function, S(—f) = S(f). This follows from the
last expression.

i) 7(0) = 117, S(N)df = E{z*[n]} > 0 (signal power)

& The area below the PSD (power spectral density) curve = Signal Power.
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Linear systems

transfer function
known unknown/known

input | H@ output H(z) = Y(2)
X(z) h(k) Y(z) X(2)
X(k) known/unknown y(k)

Described by their impulse response h(n) or the transfer function H(z)

In the frequency domain (remember that z = e’%) the transfer function is

> mme® golal)y | G | iy

n=—oo

that is Z h(r)xln —r] =hx*xx

r=——00
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Example 1.8. Linear systems — statistical properties &
mean and variance

i) Mean
Edy[n]} = E{ > h(T)w[n—T]} = > h(r)E{zln—r]}
= py =pe ¥ h(r) = pH(0)

[ NB: H(0) = >~

r=—00

h(r)e 7™ For @ = 0, then H(0) = >°°___h(r) ]

ii) Cross—correlation

rye(m) = E{ylnjeln+m]} = ) h(r)B{zln —rlz[n +m]}

r=—00

Z h(r)rzz(m +r) convolution of input ACF and {h}

r=—00

= Cross-power spectrum S, (f) = F(ry) = Sux(f)H(f)
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Example 1.9. Linear systems — statistical properties &
crosscorrelation (this will be used in AR spectrum)

From 7., (m) = ryz(—m) we have
Fey(m) =>27" __ h(r)rg(m —r). Now we write

ryy(m) = Blylnlyln +m]} = Y h(r)E{z[n —rlyln +m]}

T=—00

Z h(r)ryy(m+r) = Z h(—=7)rgy(m —r)

r=——00 r=—00

By taking Fourier transforms we have

Sey(f) = Sea(f)H(S)

S,y (£) = H(E)H(—£)Se(£) = [H(E) *Sx(£)

Output power spectrum = input power spectrum Xx squared transfer function
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Crosscorrelation and cross—PSD (recap)

e CC of two jointly WSS discrete time signals (this is not symmetric)

rzy(m) = E{x[n]y[n + m|} = ry.(—m)

e For z[n] = x[n] + y[n| where x[n] and y[n] are zero mean and
independent, we have ry;,(m) = ry;(m) = 0, therefore

r.o(m) = rep(m) +ryy(m) + ey (m) 4+ ryz(m)

= Tzz(m) + ryy(m)

e Cross Power Spectral Density

Poy(f) = Firay(m)}

Generally a complex quantity and so will contain both the magnitude
and phase information.
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Special signals: a) White noise

If the joint pdf is separable, then
p(x[0], z[1],...z[n]) = p(z[0))p(z[1]) - - - p(z[n]) Vn

When the pdf's p(x|r]) are identical Vr, then all the pairs z[n|, x|m] are
independent and {x[n|} is said to be an independent identically
distributed (iid) signal.

Since the independent samples of x|n] are also uncorrelated, then for a
zero—mean signal we have

r(n —m) = E{z[m]z[n]} = o?6(n —m)
where the variance (signal power) 0% = E{z?[n]} and

5(n—m):{

I, n=m
0, elsewhere

with d(n) as the Kronecker delta operator
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Example 1.10. ACF and power spectrum of white noise

The Fourier transform of WN is constant for all frequencies, hence "white".

A S

X 2
c
X

~1/2 172
e [ he autocorrelation matrix

R = o°1 r(m) = o26(m)
Since E{x[n]z[n —1]} = 0, the variance r(0) = o2 is the power of WN.

e The shape of the pdf p(x[n]) determines whether the white noise is
called Gaussian (WGN), uniform (UWN), Poisson, Laplacian, etc.

From the Wiener—KhinchineTheorem:

PSD(White Noise) = FT(ACF(WN)) = FT(J(¢) function) = constant
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b) First order Markov signals (see also Lecture 2)

(finite memory in the description of a random signal)

If instead of the iid condition, we have the first order conditional
expectation, then

p(z[n], zln — 1], 2[n - 2),...,2[0]) = p(z[n]lzln — 1]

where p(al|b) is defined as the pdf of "a"” conditioned upon the (possibly
correlated) observation " b"

= the signal above is the first order Markov signal.
Example: Examine the statistical properties of the signal given by
yln] = ay[n — 1] + wn]

where a = 0.8 and w[n| ~ N (0,1) (see your coursework).
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c) Minimum phase signals

Let {x[n]} be observed for n =0,1,..., N — 1.

X(2) = 2l0] + e1]z"t 4 4 2N — 1z (VD =

AH (1—227"), A(0) = =[0]

1=1

e |z;| <1, Vithen X(z) is said to be minimum phase
e |z;| > 1, Vi, then X(z) is said to be maximum phase

e |z;| > 0 for some i while for others |z;| < 1 then X (z) is said to be of

mixed phase.

In Statistical Signal Processing and Inference paradigms, learning
algorithms often rely on the minimum phase property of a signal for
stability (of e.g. the inverse system in channel equalisation — Lecture 7)
and to be able to admit real-time implementation (causality).
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d) Gaussian random signals

Consider a signal whereby each of the L samples is Gaussian distributed

1 (x[i]—p(i))>

: 502 .
x|t|) = e i 1=0,...,L—1
plali]) V270 ?

This situation is denoted by N (u(i), 0?).

1

The joint pdf of L samples x[ng|, x[n1],...,x[np_1] is then
p(x) = plx[ngl,z[n],...,xnLr_1])
1 —5ky ) @in]—p)?] 1 (x—pm) ¢ (x—p)
— 202 “—~n=0 — 2
p(x) (2mo2)L/2 ¢ 2] L/2det(C)1/2 c

where x = [z|ng|, x[n1], ..., xnp_1]], p = [pu|nol], ulna], - .., plnr_1]] and
C is a covariance matrix with determinant A.
Hint: A product || of individual Gaussian distributions becomes a sum of

arguments of the exponentials.
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e) Properties of a Gaussian distribution

1) If x and y are jointly Gaussian, then

................. variable
z=axr + by

is also Gaussian with the mean

m, = amy + bm,,

and variance

u-c M u+o '
i o 05 = a20§ + b20§ + 2ab0o 005y
L 95% |
. W20 7 ko 2) If two jointly Gaussian random
u—-30 . U+30 :
D 9977 - variables are uncorrelated (psy,
> o0

For 1 =0, 0 = 1, the inflection independent,
points are +1 few = f(x)f(y)

2 for any constants a and b the random

0) then they are statistically
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Example 1.11. Rejecting outliers from cardiac data

o Failed detection of R peaks in ECG [left] causes outliers in R-R interval
(RRI, time difference between consecutive R peaks) [right]

R peak missed ‘ ‘o outlier
g 1.5¢ RRIﬂ:?)aRR[
8 o -0-'10'0-0';'.-0'0'.'.'6'--0-0-0-0-0-.
0.5
20 25 ' 30 35 O20 25 30 35
Time (s) Time (s)

o No clear outcome from PSD analysis of outlier-compromised RRI [left],
but PSD of RRI with outliers removed reveals respiration rate [right]

Ouitliers present 14 . Outliers removed .
57 D /‘VV\%M—V | D /J.W‘
n i D ]
R 4l ol | | _ 1.2 o
) 0 0.5 1 L 0 0.5 1
T 3[ Frequency (Hz) . T il Frequency (Hz)
o o IR ‘ L
2 1 0.8t \ ] it LA A e
1 | ,
0 50 100 __ 150 200 250 0 50 100 150 200 250
Time (s) Time (s)
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f) Conditional mean estimator for Gaussian random
variables

3) If x and y are jointly Gaussian random variables, then the optimum
estimator for y, given by

j = g(x)

that minimizes the mean square error £ = E{[y = g(x)]*} is a linear
estimator in the form

y=ax+b
4) If x is Gaussian with zero mean then

ny ] Ix3xb5x---x(n—1)o2, n even
E{m}_{o, n  odd

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference

47



e) Ergodic signals

In practice, we often have only one observation of a signal (real-time)

I’& Then, for ergodic processes, statistical averages may be replaced by
time averages.

This is necessary because:
o Ensemble averages are generally unknown a priori

o Only a single realisation of the random signal is often available

Thus, the ensemble average

Mg (n) = %2521 zi(n)

is therefore replaced by a time average
N-1
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e) Ergodic signals — Example

Consider the random process
x(n) = Acos(nwy)

where A is a random variable that is equally likely to assume the value of 1
or 2.

The mean of this process is

E{x(n)} = E{A}cos(nwy) = 1.5cos(nwy)
However, for a single realisation of this process, for large IV, the sample
mean is approximately zero

my ~ 0, N >>1

Process z(n) is not ergodic and therefore the statistical expectation
cannot be computed using time averages based on a single
realisation.

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 49



e) Ergodicity in the mean

Definition: If the sample mean m,(N) of a WSS process converges to
m,, In the mean—square sense, then the process is said to be ergodic in
the mean, and we write

i v s 00 12 (N) = My

For the convergence of the sample mean in the mean—square sense, it
needs to be:

o Asymptotically unbiased

lim n 00 E{(N)} = m,

Consider the variance of the estimate — 0 as N — oo (see Lecture 3)

lmpy o0 Var{m,(N)} =0 (consistent)
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e) Ergodicity - Summary

In practice, it is necessary to assume that the single realisation of a
discrete time random signal satisfies ergodicity in both the mean and
autocorrelation.

Mean Ergodic Theorem: Let x[n]| be a wide sense stationary (WSS)
random process with the autocovariance sequence ¢, (k). Then, sufficient
conditions for x|n| to be ergodic in the mean are that ¢, (k) < oo and

lim ¢, (k) =0

k— o0
Autocorrelation Ergodic Theorem: A necessary and sufficient condition
for a WSS Gaussian process with covariance ¢, (k) to be autocorrelation
ergodic is

N—-1

, 1
Jm 5 D cxlk) =0
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Useful results: Concentration inequalities (Markov and
Chebyshev inequalities)

Often in practice we do not know a full pdf, but just its mean (for Markov
inequality) or mean and variance (for Chebyshev inequality).

The Markov and Chebyshev inequalities are very useful for putting bounds
on probabilities!

We would like to e.g. know the bound on how likely it is for a random
variable X, for example:

o To be far from its mean, F{X} = p, thatis P(|X — u| > ¢, or
o To be very large, that is, P(X > ¢)

where € i1s some threshold.

Example 1.12: The marks for an exam range from 0 to 110, with 10
additional marks for solving an optional question. The average mark for
the exam is 50. What is the upper bound on the probability of students
scoring more than 100 marks?

Example 1.13: The average height of a child in a kindergarden is
100 ecm. What is the probability of a child being taller than 220 cm?
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Useful results: Markov inequality
(valid only for non-negative random variables, X > 0)

Q: In the two Examples from the previous slide, we do not know the pdf of
X, can we still put some guesses of what our probabilities are going to be?

A: If we know only the mean of a non—negative random variable, u, then
the Markov inequality states that

EiX
Prob(X > ¢€) < X} K = Prob(X > ep) <

€ €
Proof: The random variable X is non-negative with mean p. Then, Ve > 0

pw=FE{X} :/Oooa:p(x)da::/Oezvp(x)da:Jr/eooxp(x)da:

> /eooazp(aﬁ)d:v > /Eoo e p(z)da = efeoop(x)da; _  Prob(X > ¢

1
€

Hence

E{X} _n

€

Prob(X > ¢€) < Markov inequality
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Useful results: Markov inequality, contd.

I'= In Examples 1.12 and 1.13 we are asking ourselves “what is the bound on
the probability that a random variable is in the tails of the distribution
(outlier)”. However, we only know that a random variable is non-negative,
l.,e. X >0, and we know its mean, u, but not its probability distribution.

Example 1.12: Solution

The mean mark is © = 50, and we
seek the bound on the probability
of a student score being greater

than 100, that is Prob(X > 100), 5 A Ei T t

with the maximum score being  pere the threshold e=100. Thus
110. Using the Markov inequality,

Prob(X > 100) < 1/2. Prob(X > 100) < E{X} 50 1

€ 100

Example 1.13: Solution. We seek Prob(child_height > 220 cm). The
Markov inequality puts a bound on this P(X > 2.2m) < 1/2.2 = 0.45.

This bound is generous &~ we need more information for a tighter bound.
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Useful results: Chebyshev inequality
Makes sense, Prob(|X — u| > €) < ‘2—22 is proportional to o and inversely

proportional to €, and can be used if the pdf is not given, but only 1 and o*

Intuitively, we can have a tighter bound on the probability of an extreme
event, if we know both the mean, u, and variance, o2, of a RV X.

Chebyshev inequality: For any random variable, X, which can be either
negative, 0, or positive, the bound on the probability that X is further
away from the mean than some threshold, ¢, is given by

Prob(|X — | >¢€) <

0.2

€2

we g pte we  u pie

Proof: Since 0° = 0% = E{(X — u)*}, we have
o = / (xz — p)’p(z)dz > /| | (z — p)° p(z)dx
— 00 T—p|>e€

> 62/ p(x)dx > €Prob(|X —u| >€) = Prob(|X —u|>¢€) <
|z—p|>e

2
o
62
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Useful results: Chebyshev inequality &~ Examples

Ex. 1.13: Solution, revisited. We seek Prob(child_height > 220 cm),
with the mean height 1 = 100 cm and the std. 0 = 50 cm. The Markov
inequality puts a bound on this as P(X > 2.2m) < 0.45.

Now, using the Chebyshev inequality, we have2

0.5
probability to be more than 5.5 7 ' . a much tighter bound
away from the mean than Markov inequality

I’ Although the Chebyshev inequality is an application of Markov inequality, it
has different consequences. For example, if the variance is small, the the
RV is unlikely to fall too far from the mean.

Application of Chebyshev inequality: The probability that the distance
from the mean is at least € standard deviations is (independent of the pdf)

o’ 1
Prob(|X —p| >€0) < 5= =
€0 €
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Useful results: Markov and Chebyshev inequalites,
another example and a useful trick

Example (Markov inequality: A router crashes if it receives more than
1000 packets per second. We know that the average load for this network
is 1 = 50 packets/sec. What is the bound on the probability of a crash?

Answer: Probab. of a crash is bounded by Prob(crash)<50/1000=0.05

Trick: Markov inequality produces crude bounds, as it assumes only
non-negative RVs. Remedy: For symmetric pdf's consider all RVs.

Example (Markov inequality): Consider a variable X which is uniform
on [—4,4], with 4 = 0. What is the prob. Prob(X > 3)7?

Answer: Markov's inequality allows us to use only non-negative (absolute)
values of X, so that the mean of | X| becomes . = 2. Then,
Prob(|X| > 3) < u/3=2/3. This is a very crude bound. Now,

Prob(X > 3) = tProb(|X| > 3) <1/3 < better bound

non-negative RVs N two-sided distribution

For sums of independent RVs, much better bounds are Chernoff bounds.
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Useful results: Taylor series expansion

Most 'smooth’ functions can be expanded into their Taylor Series
Expansion (TSE), given by

(o (o 9 = )z,
f(év)=f(:60)+f(1 )(x—x0)+f;! ) (2 — o) +...:z_:1f n(' )

To show this consider the polynomial
f(x) = ag+ a1(x — o) + as(x — 20)* + az(x — x0)° + - - -

1. Toobtainay % choosez =29 = ag= f(xo)
2. Toobtaina; take derivative of the polynomial above to have

d
@f(a;) = a1 + 2az(x — xg) + 3az(x — :1:0)2 + day(x — x0)4 + .

df (x d* f(x
|mpe”a| CO"ege © D. P. Mandic Statistical Signal Processing & Inference 58

London



Useful results: Power series - contd.

Consider
00 0o T 0o a
_ n / L n—1 . n n+1
flx) = Z apx’” = fl(x) = Z nanx and /0 f(t)dt = Z 1"
1. Exponential function, cosh, sinh, sin, cos, ...
00 n o%e) n x —x o0 2n
T T e’ —e T
ex — —_ and e_w — _1 " — = —
2. other useful formulas
= n 1 = n—1 1 1 = n 2
r = = nT = —— and = —1)"nx
g;; 1 —x gg; (1 — x)? 1+ x2 g;;( )
. 00 n 2n+1
Integrate to obtain atan(z) = >, _o(—1)"%5 =
Forx =1wehave $ =1=1/34+1/5—-1/74---
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Useful results: Numerical derivatives &~ examples

e [wo-point approximation:

o Forward: f/(0) = f(l);f(o)
o Backward: f'(0) = f(—l)h—f(o)

e [hree-point approximation:
o f/(0) = f(l)—2f§%)+f(—1)
o f"(0) = f(l)—2f(g)+f(—1)

h

e Five-point approximation (also look up for stencil):

o f’(O) _ f(=2)=8f(=1)+8f(1)—f(2)

12h
o f”(O) _ —f(—2)+16f(—1)1—23}?2f(0)+16f(1)—f(2)
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Useful results: Constrained optimisation using Lagrange
multipliers: Basic principles

Consider a two-dimensional problem:

maximize T,
[(z,y)

function to max/min

subject to  g(x,y) =c
cons?ﬁ?aint

%+ we look for point(s) where curves f & ¢ touch (but do not cross).

In those points, the tangent lines for f and g are parallel = so too are the
gradients Vg ,f || AV.,49, where X is a scaling constant.

Although the two gradient vectors are parallel they can have different magnitudes
Therefore, we are looking for max or min points (x,y) of f(x,y) for which

of 0 da O

We can now combine these conditions into one equation as:
F(z,y,A) = f(z,y) — A(g(z,y) —¢) andsolve V., .F(z,y,A)=0
Obviously, V \F(z,y,\) =0 < g(z,y)=c

) and V, g = (
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The method of Lagrange multipliers in a nutshell
max/min of a function f(x,y, 2) where x,y, 2 are coupled

Since z, ¥y, z are not independent there exists a constraint g(x,y,2) = ¢

Solution: Form a new function
F(x,y,z,\) = f(x,y,2) — Mg(z,y,2) —¢) and calculate Fy, F,, F., F}

Set F,, F), I, Iy = 0 and solve for the unknown x,y, z, A.

[Example 1: Economics] Two [Example 2: Geometry} Find  the

factories A and B  make TVs |rectangle of maximal perimeter,
at a cost f(xz,y) = 6>+ 12y° inscribed in the ellipse z* + 4y* = 4.
,Y) =

S - 2 2
(x,y = #TV € A, B). Minimise the cost Solution: ConstraTt (z° + 4y” = 4)

of producing 90 TVs, by finding optimal /I_/ \_I\
numbers #x and #vy at factories A and B. Y -
\L\ /JV

Solution: The constraint g: (x+y=90), so

F(x,y, A) =62 +12y* —X(x 4+ y — 90) The perimeter P(x,y) = 4x + 4y so
Then: F, = 12z—\, F, = 24y— X\, F\ = | F(x,y, \) =4xHdy-X(z*+4y* —4)
—xz —y—90, and for min /maxVF =0 | P = Ag;,Py/ — )\g;q_)x = 4y
Set to zero = x = 60,y = 30, A = 720 Solve to give: = = 4//5, P = 4/5.
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Appendix: Probability vs. Statistics
(for discrete RVs, F{ X} = Zle x; Px(x;), where Px is the probability function)

Probability: A data modelling view, describes how data will likely behave
for example: average = F{X} = / rpx(x)dx no data here

Notice that there is no explicit mention of data here & x is a dummy
variable and px is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave
N-1

1
for example: average = — ZO x[n] no pdf here
. - n= A
Vagaries of probability: P(zg < X < zo0+ Azx) = fxx00+ “px(x)dx
t px&) Notice that
Ut P(xo< X <xo+Ax
P(X=x)=0 P(X =) =0
\
/ This appears odd, but otherwise
x1: Xo /3c0+Ax ;c the probabilities sum up to oo
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Appendix: Statistics vs. Probability

Statistical inference &~ based on the observed data and supported by prob. theory

Vagaries of statistics: Consider NV coarse-quantised data points,
z[0],...,x[N — 1]. The quantised signal has M < N possible amplitude

values, V1, ..., Vs, for which the corresponding relative frequencies are,
N1 =#V1, ..., Ny = #V)yy. Calculate the mean, .
A X[n]

Y

n
Solution: N Y Iy N
— m
=y el = 5 ) VelNm = ) Vi F
n=0 m=1 m=1 ~~~
I”= Clearly, the factor 1/N does not imply “uniform distribution”
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