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The need for Statistical Signal Processing & Inference

Q: Have you ever considered what the following tasks have in common:

e Forecasting of financial data

e Supply-demand modelling (e.g. electricity or air-ticket pricing)
e Modelling of COVID-19 spread

e Person recognition from a set of (noisy) images

e Word generation by Large Language Models such as ChatGPT

A: These are signals/images of which the signal generating mechanisms are
largely unknown or untractable. We need to make sense from such data
based on historical observations only - subject of Statistical Inference.
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... Time Series Analysis

—— raw data
e trend

It's always the same:
Just before the exam, book sales spike.

SSP&I: Use your knowledge and not brute force when designing learning machines

Imperial College

London © D. P. Mandic Statistical Signal Processing & Inference 2



The need for statistical inference: Population modelling

Example from financial modelling: Risk for a single asset and a for a
portfolio of uncorrelated assets. Risk is represented by the standard
deviation (or the width) of the distribution curves 3~ a large portfolio
(M = 100) can be significantly less risky than a single asset (M = 1).
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Statistical inference

Chinese for statistics is 4tit (summarizing & counting) and

probability is #t=& (i) ((theory of) randomness & chances), "

Probability: Assumes perfect knowledge about the “population” of
random data (through the pdf).

Typical question: There are 100 books on a bookshelf, 40 with red cover,
30 with blue cover, and 30 with green cover. What is the probability of
randomly drawing a blue book from the shelf?

Statistics: No knowledge about the types of books on the shelf, we need
to infer properties about the “population” based on random samples of
“objects” on the shelf & statistical inference.

Typical question: A random sampling of 20 books from the bookshelf
produced X red books, Y blue books and Z green books. What is the
total proportion of red, blue, and green books on the shelf?

Statistical inference is applied in many different contexts under the names
of: data analysis, data mining, machine learning, classification, statistical
signal processing, pattern recognition, clustering, regression, classification.

Imperial College
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Foundations of resilience: Probability vs. Statistics

For discrete RVs, E{ X} = Zle x; Px(x;), where Px is the probability function

Probability: A data modelling view, describes how data will likely behave
for example: average = F{X} = / rpx(x)dx no data here

Notice that there is no explicit mention of data here & = is a dummy
variable and px is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave
N-1

1
for example: average = — E:O x[n] no pdf here
n—
Example: Consider N coarse-quantised data points, z[0],...,z[N — 1].
The signal has M < N possible amplitude values, Vi,..., Vi, with the
corresponding relative frequencies, Ni,...,Nps. Calculate the mean, .
Solution: | | M M N
S DICUREIE S A SIS
N n=0 N m=1 m=1 N
~ P(x=Vpy)
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Inference vs Artificial Intelligence

Statistics: “The art and science of gathering, analysing, and making
inferences from data.” Mosteller et al., Probability with Statistical Applications, 1957

Popular definition of Al: “Anything that makes a decision or an action
that a human used to take or helps a human decide or act.”

I’ This has been subject of statistical modelling & inference since the 1990s!

Statistics starts with data. Real-world data are random, so statistical
models will involve probability statements and performance bounds:

o Exploratory statistics & find patterns in data

o Confirmatory statistics & fit math models to find reproducible patterns
o Inference: Draw conclusions and/or make decisions and predictions

To make sense of raw data, we can calculate summary statistics (mean,
median, variance) and visualise the data (histograms, scatterplots).

Generative modelling develops stochastic models which fit the data, in
order to make inferences about the data-generating mechanismes.
Predictive modelling does not necessarily explore the underlying data
generating mechanisms, and focuses on inference from historical data.

I”& Machine learning typically follows the predictive modelling culture.
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Statistical Inference

From Latin inferre, which means “bring into, deduce, conclude”

()
Develop models '
— 5

Probabilistic model

Descriptive Statistics Mathematical / Theoretical

(statistical description
of the data)

Probabilistic models,
Parameters

Statistics

Inference

Use models Real-world data analysis

onreal data Statistics, Histograms
—
Real-world data

Inferential Statistics
(makes a "guess" from
random observations)

Histogram of data

Inferential statistics: Statistical Estimation and Hypothesis Testing
In Machine Learning, the term “inference” typically indicates “prediction”

Applications:

o Adaptive learning algorithms (noise-cancelling headphones, forecasting)
o Neural Networks (e.g. classification, prediction, denoising)

o Communications, power systems, radar, sonar, biomedicine, ...

o Financial modelling (CAPM, risk estimation, confidence intervals)
o Artificial Intelligence (e.g. self-driving cars)

Inferential stats tell us “what is possible to achieve” — focus of this course

Imperial College
London
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Statistical Signal Processing & Inference within Al space
cengineering solutions do not
necessarily mimic the nature.

Humans provide a performance
“benchmark™  but  mimicking
human reasoning by Al?7?7

o The 10! neurons and 10'® synapses in human brain & 20 W of power.
o A digital simulation of an ANN of same size consumes 7.9 MW of power.

M. Jordan, “Al — The revolution hasn't happened yet":

By approaching a problem with an engineering mind, Al can be
considered as a new, human-centric engineering discipline.

= Strive to surpass human limitations and not to mimic humans!

I'= Claim: Big Data + Deep Learning — General Intelligence
But humans learn very efficiently with little data, not Big Data!

Caution: We can no longer train a modern DNN on a personal computer, it would take
up to 405 years. Electricity consumption for digital devices: from 3-4% today to 20% in
2050. We need a convival technology that is resilient &~ a real opportunity for SSP&I.

Imperial College
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Aims: To introduce the fundamentals of statistical
estimation theory, to facilitate the design of signal
processing and machine learning algorithms for inference

o The emphasis will be upon:

random signals, their properties, and statistical descriptors

stochastic models, to generate/describe random signals

parametric (model based) and nonparametric (data driven) modelling
optimal estimators for random signals, rigorous performance bounds
the class of least squares methods, block & sequential LS, regression
adaptive learning and estimation ~- suitable for nonstationary data
rigorous performance bounds to tell us ‘what is possible to achieve’

® ® ® ® ® ® @

o Practical experience through numerous examples on real world signals:
® multimedia (your own speech recorded via PC)
® your own physiological data, some financial data (from yahoo finance)

Overall: To gain the know-how and necessary expertise in statistical
inference from random and non—stationary real world data

This material underpins in-depth understanding and interpretability
statistical signal processing and machine learning tools.

Imperial College
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Learning from data &~ mathematical formalism of the
statistical estimation paradigm

Problem: Based on an N-point dataset x = [:U[O],a:[l], .., x[N — 1]]T

Find an unknown parameter, 6, based on the data x, in order to define a
statistical estimator (e.g. O can be the sinewave frequency in smart grid)

= g(z[0], z[1],...,z[N —1]), g is some function

This is formalised as “parameter estimation from random signals”

Depending on the choice of g we can talk about: ® linear, ® nonlinear,
® maximum likelihood, ® minimum variance, ® adaptive etc. estimation

Ground Electrode
(Forehead)

Ear-Hook

Foam Ear-Plug

Cloth Electrode
With Gel

}1_' ‘:-‘A :. i
With this we can even obtain the Electrocardiogram from the ear canal.

Imperial College
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Course structure

The course is divided roughly into four parts:

1. Introduction to Statistical Estimation Theory

discrete random signals, moments, bias-variance dilemma, curse of
dimensionality, sufficient statistics

2. Statistical Modelling, Estimation Theory and Performance Bounds

linear stochastic models, ARMA model, properties of estimators, Cramer
Rao performance bound, minimum variance unbiased (MVU) estimator

3. Statistical Inference

best linear unbiased estimator (BLUE), maximum likelihood (ML)
estimation, multivariate estimators, Bayesian estimation (optional)

4. Mean Square Error (MSE) based learning machines
representation bases, orthogonality principle, block and sequential Least
Squares, linear and logistic regression, Wiener filter, adaptive filters,
concept of an artificial neuron

Use your knowledge and not brute force when designing learning machines!

Imperial College
London
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Lecture 1: Background on random signals

For illustration, consider a noisy sinusoid

Ensemble Histogram

Ensemble average for the noisy sinewave

Amplitude
Amplitude

Time index i ) ) .
Time Index

The pdf at time instant n is different Left & Right: Ensemble average

from that at m, in particular: sin(2z) + 2 x randn + 1
Left: 6 realisations, Right: 100
p(n) # p(m) m 7 n realisations (and the overlay plot)
Imperial CO"ege © D. P. Mandic Statistical Signal Processing & Inference 12
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The mean and variance through the lens of statistics

Financial example: The dilemma about asset selection based on the
sample mean motivates us to model the dispersion about the mean. This

is naturally performed by the (co)-variance
T
1
Var[X] = 0% = E[(X — E[X]))?] or Var[X]=~ T (2 — px)?
t=1
Risk Aversion: For same expected returns, choose the portfolio that

minimises the volatility.

Simple Returns: Equal Returns Level Simple Returns: Unequal Return Levels
0.4 L | | | | | | | | | | I | | |
£ 2045 M1, 1)
g g N(4,9
§03 503 4.9)
> >
g 02 2 0.2
o} 0}
z =
1) 0]. Q 01
~ ~
m H
0.0 0.0 ' ! : : \ '
-6 -4 -2 0 2 4 6 8 -25 00 25 50 75 10.0 125
Simple Returns, r: (%) Simple Returns, r; (%)

727 For the same returns level (left) we choose the less risky asset (blue). For

unequal returns, the criterion is inconclusive ~—  Sharpe Ratio = u/o
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Lecture 2: Time series analysis ~~ linear stoch. models
Example: Sunspot number estimation using AR models

Sunspots ACF Zoomed ACF

200 1 1

0.9} 0.9}
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0.8
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50
0.4 051
Q ; ‘ 0.4 :
1700 1800 1900 -100 0 100 =10 0 10

Time [years] Delay [years] Delay [years]

a; = [0.9295] ay = [1.4740, —0.5857]

as = [1.5492, —0.7750,0.1284]

a, = [1.5167, —0.5788, —0.2638, 0.2532]

as = [1.4773, —0.5377, —0.1739, 0.0174, 0.1555]

ag = [1.4373, —0.5422, —0.1291, 0.1558, —0.2248, 0.2574]

% The sunspots model is  x[n] = 1.474 z[n — 1] — 0.5857 x[n — 2] + w[n|

Imperial College
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Linear Stochastic Models: Advantages

Representation of a long random signal with only a few parameters & Prediction

-— PSD from data
—P5SD from modsl

-- PS50 from data
—P5SD from mode

50

PSD (dB)
=)

-50

0 02 0.4 0.6 0.8 0 02 0.4 0.6 0.8 1
Mormalized frequency mfmmu MNormalized frequency m.fmm

o The different realisations lead to different Emprical PSD's (in thin black)
o The theoretical PSD from the model is consistent regardless of the data (in thick red)

N = 1024;

w = wgn(N,1,1);

a = [2.2137, -2.9403, 2.1697, -0.96086]; % Coefficients of AR(4) process

a=[1-al;

x = filter{i,a,w)};

xact = xcorr(x); % Antocorrelation of AR(4) process

dit = fft(xacf);

EmpPSD = abs(dft/length{dft)).”™ 2; % Empirical PSD cbtained from data

ThePSD = abs(freqz(l,a,N,1))." 2 ; % Theoretical PSD obtained from model

Imperlal COIIege © D. P. Mandic Statistical Signal Processing & Inference 15
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Example: Dealing with nonstationary signals

Speech Signal .
1 o Consider a real-
Wi W2 .
5 M world speech signal,
> 05k and thee different
% segments with
- - : - - different statistical
&l]} BO00 4000 5000 2000 F000 G000 E'IIIZ¢ 10000 .
Y Sample Nurltber _ properties
Partial ACF for W1 Partial ACF for W2 Partial ACF for W3
0 1 ! o Different AR
5§ § % § % model orders
1 Ky OH i i, il h O il T u
‘§ AT E E required for
o0 2 05 @ 05 .
different segments
o 25 50 0 25 50 0 25 s0 of speech G
Correlation lag Correlation lag Comelation lag .
MOL calculated for W1 MDL calculated for W2 MDL calculated for W3 opportunity for
1 1 1
| I il
05l calcutated | Calouated Moda! osl o o content analysis!
Model Order = 13 Cirder > 50 Oirder = 24 .
3 0s 3 05 305 o o To deal with
04 L/’_ L\__ﬂ 04 K nonstationarity we
need short slidin
U'Eﬂ 25 S0 DU 25 &0 I].%} 25 20 . g
Model Order Model Order Model Order data windows
Impenal COIIege © D. P. Mandic Statistical Signal Processing & Inference 16
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Lecture 3: Introduction to estimation theory specgramdemo

An enabling technology in
many DSP applications

o Radar and sonar: estimation of
the range and azimuth

o Image  analysis: motion
estimation, segmentation

o Speech: features used In
recognition and speaker
verification

o Seismics: oil reservoirs

o Communications: equalization,

Horizontal axis: time i
symbol detection

Vertical axis: frequency
o Biomedicine: various applications

Imperial College
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Often we can resort to (approximately) Gaussian distrib.

Top panel. Share prices, p,, of Apple (AAPL), General Electric (GE) and
Boeing (BA) and their histogram (right). Bottom panel. Logarithmic
returns for these assets, In(p,/pn—_1), that is, the log of price differences at
consecutive days (left) and the histogram of log returns (right).

Asset Prices: Time-Series Asset Prices: Distributions

m— AAPL

@ B AAPL
= 300 [ e 4 @
& GE £ 0.075 GE
" BA A BA
] | B
g 200 & 0.050
; :
g 100F o 1 Eoo2sp
= ¥ I e
0L - - . ——=J  o.000" [ P : :
2012 2013 2014 2015 2016 2017 2018 0 100 200 300 400
Date Asset Prices, pr ($)
Asset Log Returns: Time-Series Asset Log Returns: Distributions
& 01Ff 1 & 40| ' ' ' AAPL ]
E & = GE
2 & 30 i BA
g 0.0f o, it
= il

= g 20 11
k . i
= — GE 10 Wi
1] S
w —0.11 = i
] BA W L
< | | | . . | ol S ﬂAﬂ|m N

2012 2013 2014 2015 2016 2017 2018 -0.15 -0.10 -0.05 0.00 0.05 0.10

Date Asset Log Retumns, p;

I’ Clearly, by a suitable data transformation, we may arrive at symmetric

distributions which are more amenable to analysis (bottom right).
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Importance of establishing optimal performance bounds

You will learn how to establish the
optimal performance bounds in both
block-based and real-time adaptive
data analysis.

These will serve to:

e Indicate the quality of your
algorithm /strategy against the
best achievable performance for
the considered class of estimators

e In many cases, this can also
suggest an optimal estimation
strategy

A typical artefact in teleconferencing, e Help identify an error in your

where an algorithm which provides
artificial background cannot cope with

movement

algorithm, if its performance
appears better than the optimal
performance bound.

Imperial College
London
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Lecture 4: Bias-variance dilemma ~ Minimum Variance
Unbiased estimation, rigorous performance bounds CRLB

I’= variance of the estimated parameters is sensitive to data length

Consider a sinusoid z[n] = A cos(2m fon + @) + w[n|, wn] ~ N(0,0?)
Task: Find the parameters A, fy, ®, from the noisy measurements x[n]

We will show that the optimal estimators obey (where 1 = 2 =+ is SNR):

. 202 A 12 .. _ 202N —1)
var(A) > — var( fo) > var(P
Az (fo) 2 (2m)2nN (N2 — 1) (@) 2 nN(N + 1)
CRLB for Sinusoidal Parameter Estimates at
SNR = -3dB (Dashed Lines) and 10dB (Solid Lines)
| +Amplltude —— Frequency —a— Phase
m
S,
m
—
o
O
_80 i i i i i i i i i i
5 15 256 35 45 55 65 75 85 95
Number of data samples, N
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A rigorous account of Linear Models (regression models)

These underpin many areas e.g. the CAPM and Fama-French models in finance

Daily Returns of Crude Qil vs. Energy Sector

[ ]
e Data from Apr. 2024 o° 1
L 2010 Regression Line »
'_
w
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C
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T
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Residuals of Linear Fit, Oil vs. Energy
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~0.03 ~0.02 -0.01 0.00 0.01
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501 g
[ ]
251 ® : ° e
° L o o
0f-mmm- D @ e e e -
e ° ] °
—25+4 [ J
° o (]
—50 e
[ ]
_751 e Linear Fit Residuals, sum(Res2)=47375
100l ® Quadratic Fit Residuals, sum(Res?)=42270
5000 5050 5100 5150 5200 5250

X

I'= Even a nonlinear models is often “linear in the parameters”
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Lecture 5: BLUE and Maximum Likelihood Estimation

‘ Sinusoidal frequency estimation I ‘ Transforming other problems I

§ () 4 XiM)

_/\ .o .-
\-/ﬁme

-
frequency
{ %‘ time—frequency spectrogram
(T-F representation of a sinewave)
o
time

o Ramp in time 9 DC level in time
(via differentiation)

o Chirp in time 3 ramp In T-F

time-frequency representation

horizontal: time vertical: frequency

This 1s a T-F representation of a
waveform of the word “matlab”

DC-level like harmonics for “a”

Imperial College
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Sufficient statistics, goodness of an estimator

Example 7a: The drawing of a bean (top)

and the histogram of eye dwellings (bottom) Example 7b: Read the words below ... now

read letter by letter ... are you still sure?

= THE
LAT

0D 0y

Example 7c: |Is the drawing on the left still a penguin?

So, what is the sufficient information to 'estimate’ an object?

Imperial College
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Motivation for Maximum Likelihood Estimation (MLE)

What do you think these applications have in common?
HDD microcontroller Gesture (Swype) keyboard

spinning hard disk

Read/Write
head

QW17 Ui O p

a o g g AT YT

> N TR WY Y T

Az
P \ Satellitesk
s
s \ \

mem==MLE Function

Likelihood

Variational GAN Transformer Diffusion

Generative Al (density estimation)

Global Positioning System

Imperial College _ - _
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Example: MLE in Generative Artificial Intelligence

We often have a limited amount of samples of the dataset of interest, e.g.
we do not know the true distribution of all male and female face images.

xi~Paata o Generative models aim to

PGAN

generate “new’ data based
on the available samples of a
dataset of interest.

o Generated data should

approximate  the “true

distribution” of unseen data,

= MLE Function Pdata, aS best as possible in

Likelihood

some statistical sense, e.g.

min dista nce(pdatcu pmodel) .

Variational GAN Transformer Diffusion

7= We examine the likelihood of the model, given the dataset (= MLE).

= This boils down to maximising the likelihood that the generated data will
have similar distribution to true data of interest &~ a backbone of Gen-Al

Imperial College
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Example 12d: Big picture of learning data distributions
Most important general cases

Machine Learning Model

o p(y|x;0) 3 classification
(discriminative model)

o p(y|x;0) & regression

o p(x;0) I generative
model (e.g. VAE, GANN)

o p(x|y;0) & conditional
generative model

Continuous

p(x; 6)
Generative Model

Discriminative Model Discrete

y=fl)+e

Regression Model by 1%)
Classification Mode]

'S Generative models learn a joint distribution: sampling applications or density estimation
X~Pdata Xnew~Pmodel(Z; 0)

S - ﬁ .
. Density Sampling

® | Estimation pmadel(z 0) H ﬁ m
1

I’  argmin Dg 1 (Pdatal|Pmoder) = Max. Likelihood Est. arg max 1og p,oder (X;60)
Do Do

p(x1y;8)
Conditional Generative Model

Imperial College
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Lecture 6: The method of Least Squares (LS)

Least_Squares_Order_Selection_Ineractive, Animation_Sequential _LS

o The LS approach can be interpreted as the problem of approximating a
data vector x € RY by another vector § which is a linear combination of
vectors {hy,... h,} that lie in a p-dimensional subspace S € R? C RY

o The problem is solved by choosing S so as to be an orthogonal
projection of x on the subspace spanned by h;,: =1,....,p

o The LS estimator is very sensitive to the correct deterministic model of
s, as shown in the figure below for the LS fit of x[n] = A + Bn + q|n].

5(?bservations of x[n] = A + Bn + q[n] (blue dots) and LS estimates of varying order

7single-parameter model, s[n]=A

» Raw data

= Order-0: error power =195.05

two-parameter model, s[n]=A+Bn : — Order-1: error power =98.39

. —Order-7: error power =94.11
_2 | | | | | | | | J

|
0 10 20 30 40 50 60 70 80 90 100
Sample index, n

Experimental data and LS models

Imperial College
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Consider a line fit:

30 -

Dependent Variable (y)

Least Squares Regression (LSR): A brief summary

Linear regression &~ relationship between two variables based on a line of best fit

Least Squares Regression

Observed Data points

Regressed Slope = 2.89
Regressed Intercept = 1.10

<.’\_ Regression line

y=px+e<=y,=pPx;+e

ie{l,...,N}

o Least Squares regression (LSR)

aims to minimise the sum of the

squares of the differences between
the observed and predicted values

arg;nin |ly—pBz||3 < argmin ||e||3

o We say that we regress y onto z,

2

F) [
Independent Variable (x)

Common terminologies for Least Squares Regression

10

with 3 as the regression coefficient.

Econometrics

Statistics

Machine Learning

Dependent Var., Estimate

Explained V., Response, Regressand

True Label, Criterion

London

Yy

B Coefficients Coefficients Parameters

x | Independent Var., Predictor Explanatory Var. Regressor Features, Predictors

e Residual Error Prediction Error
Imperlal COIIege © D. P. Mandic Statistical Signal Processing & Inference 28




LS Regression: Capital Asset Pricing Model (CAPM)

We here employ a block-LS approach, over blocks of 22 days

Asset return, R;, risk-free interest rate, R¢, and market return, R,,,
(S&P500 return) are all known. We consider log-returns.

I”&= We can now perform LS regression to obtain the value of 3.
Each month has 22 trading days. Then, the CAPM states that

i Ri;d,ayl — Rf | i Rm;dayl — Rf | €1
R;. — R R,,. — R
z,dayQ: f — /8 m,day:2 f + 6:2 - r; = Brm + e

_Ri;day22 — Rf_ _Rm;day22 — Rf_ €22 |

Therefore, the LS estimate: 3 = (rpTrm) rm T r;

Distribution of Residuals

Monthly CAPM Beta of Nvidia vs. S&P 500
—e— Beta_CAPM

I il

| ﬁ h1 |

90.10 —0.05 0.00 0.05 0.10 0.15 0.20
Residual Value

Imperial College . e ,
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Sequential LS for streaming data: Noise cancelling
Denoising_SLS_GUI.m

0.05 sec of the Noise, v( Measured Signal, s(n)+v(n)
2 ]

headphones () = 0.99)
n)

0.5 Signal of Interest, s(n)
; 1
@ @ @
= = =
= = =
g g’ g’
-1
-0.5 : : : -2 :
0] 2 4 0] 0.02 0.04 0] 2 4
Time [sec] Time [sec] Time [sec]
Weights Denoised Signal, e(n) Residual, e(n)-s(n)
] S o
= 0 =
-1 : -1
0] 2 4 0] 2 4
Time [sec] Time [sec]
4Il.n\‘les.‘asurfta-d signal 4Denoised signal
™~
i -50
&
S 2 2 -100
=
o
o | S
L 0 == = == 0 -150
1 2 3
Time [sec] Time [secl Time [secl
Statistical Signal Processing & Inference 30
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Lecture 7: Adaptive Learning and Inference

from fixed imp. resp. h in digital filters to a time-varying w(n) in adaptive filters

Consider a set of p sensors at different pomts in space (filter order p)

4
n) : (n), Comparatori din)
X X Filter HG)Pa 5
1 : > Y ) T
Wy Input Coefficients y(n) e(n) : Desired

sensors  weights y(n)  Signal : : Response

summer

| Control | Error
Algorithm

Adaptive System

o The sensor signals are weighted by the corresponding set of
time—varying filter parameters w(n) = [wi(n),...,wy(n)]* (weights)

o The weighted signals are then summed to produce the output

p

y(n) = Z wi(n)z;(n) = w! (n)x(n) = x' (n)w(n) n=0,1,2,...

XT(0) = () sy ()], WT(0) = [wr(n), ., wy ()

where X
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Example: Adaptive filter for cancellation of cockpit noise
ALE_Handel, Denoising_Reference_Drum_WienerAndLMS

Consider an adaptive noise cancellation problem, like that in noise cancelling headphones
when you are listening to music on the plane.
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Right: The time—frequency representation of the performance of the LMS algorithm
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Adaptive noise cancellation: A biomedical example

Maternal ECG signal
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Measured foetal ECG
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Foetal heartbeat
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Maternal and foetal ECG
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Artificial neuron: Introduction to neural adaptive filters

Ayon hillock

Tetminal buttons

Termiral button—#

Biological neuron

O

O

O

Synaptic Part Somatic Part

unity bias input

+1 =?
Wo (n)

( x(n-1) )

delayed
inputs

k x(n-M)

Model of an artificial neuron

delayed inputs x
bias input with unity value
sumer and multipliers

output nonlinearity
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Coursework: Your own speech and biosignal recordings

o Our own custom-made portable signal acquisition device — the BioBoard
— is designed to record any biopotentials, such as the Electrocardiogram
(ECG), Electroencephalogram (EEG), from up to eight channels

o It consists of an analogue-to-digital converter (ADC), a microcontroller,
a secure digital (SD) card slot to store the data, and Bluetooth link

Imperial College
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Coursework: Recording your own ECG

Instruction Manual

, Switch
év;:ltch Breathe normally 25 breaths per minute 7.5 breaths per minute ngﬁ
Press Start Tap the Electrodes Tap the Electrodes Press Start

0 10 20 30 40 --- 250 260 270 280 - 500 510 520 530 - 750 760 770
Time (s)

Trial 1 Trial 2 Trial 3

v

T ———— -
e —— -
4

1 1
Artefacts —>y [} 1
introduced by " :
I

]

ECG Recording
Example
Tapping :

Left: Electric heart potentials on human body. Right: Experiment protocol
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Coursework: Gain experience with real-world data

Example relevant for eHealth: Estimate your own ECG from your wrists.

A) Artefact Modulation

_ |

(0]

[®)]

S

S

)
0 100 200 300 400 500 600 700 800
Time (s)

B)
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Course format

Lecture notes with problem/answer sets and coursework.

o Coursework involves the implementation of the algorithms we discuss in
the class

o We will regularly discuss coursework and Matlab implementation
Prerequisites:

® There are no prerequisites, although DSP and basic probability would
be useful

® The course is aimed to be self-contained

® Due to algorithm implementation, knowledge of Matlab is important

Assessment:

100% Coursework assignments. There are 5 Assignments (from
random signals to audio denoising) 3 Matlab based

Feedback 9 after completing Assighment 1
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London © D. P. Mandic Statistical Signal Processing & Inference 38



Reference material

o There is no single textbook that covers all the material in the course

o We will use S. Kay's book for the first part of the course (an excellent
text, covers most of the estimation theory, well worked-out examples,
highly recommended, has many editions)

o For parametric modelling we will use the Box & Jenkins book (a ‘bible’
for time series analysis, easy to read, excellent examples, used by people
in engineering, physics, finance, has many editions)

o For the least squares part, we will use M. Hayes' book (wider scope than
Kay's book, less detailed derivations, a must have for practitioners)

o For further reading, the book by S. Haykin (Adaptive Filters) and D.
Mandic & J. Chambers (Recurrent Neural Networks)

The course is self-contained: Most of the material is already in course notes
Course web page: www.commsp.ee.ic.ac.uk/~mandic/Teaching

Lectures, additional reading, homework, problem sets, and other
material will be put on the course webpage
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Textbooks: Recommended

S. Kay (Estimation Theory, G. Box and G. lJenkins (Time

several editions) Series Analysis, several editions)

FUNDAMENTALS OF

PROCESSING

ESTIMATION THEORY

STEVEN M. KAY

=

a comprehensive account of

estimation theory linear stochastic models
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Textbooks: Additional reading (optional)

M. Hayes (Statistical Signal
Processing and Modeling,
several editions)

MONSON H. HAYES

STATISTICAL
DIGITAL
SIGNAL

PROCESSING

AND

MODELING

stochastic and adaptive models

D. Mandic and J. Chambers
(Recurrent Neural Networks,
Wiley, 2001)

noay -

RECURRENT
NEURAL
NETWORKS

FOR PREDICTION

LEARNING ALGORITHMS,
ARCHITECTURES AND STABILITY
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@ DANILO P. MANDIC | JONATHAN A. CHAMBERS
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(what can I say) - neural models
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Statlstlcal Sig Proc & Inference &~ A stealth technology

W,

FINANCIAL
SIGNAL MODELING

- W
| P i ¥k ~ [k paf
S il

o There will always be signals
o They always need processing
o There will always be new mathematics for processing them

I'=  The future is bright & a lot to do for all of us!

SSP&I: Use your knowledge and not brute force when designing learning machines
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Notes:
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Notes:
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