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The need for Statistical Signal Processing & Inference

Q: Have you ever considered what the following tasks have in common:

• Forecasting of financial data
• Supply-demand modelling (e.g. electricity or air-ticket pricing)
• Modelling of COVID-19 spread
• Person recognition from a set of (noisy) images
• Word generation by Large Language Models such as ChatGPT

A: These are signals/images of which the signal generating mechanisms are
largely unknown or untractable. We need to make sense from such data
based on historical observations only # subject of Statistical Inference.

SSP&I: Use your knowledge and not brute force when designing learning machines
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The need for statistical inference: Population modelling

Example from financial modelling: Risk for a single asset and a for a
portfolio of uncorrelated assets. Risk is represented by the standard
deviation (or the width) of the distribution curves # a large portfolio
(M = 100) can be significantly less risky than a single asset (M = 1).
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Statistical inference

Probability: Assumes perfect knowledge about the “population” of
random data (through the pdf).

Typical question: There are 100 books on a bookshelf, 40 with red cover,
30 with blue cover, and 30 with green cover. What is the probability of
randomly drawing a blue book from the shelf?

Statistics: No knowledge about the types of books on the shelf, we need
to infer properties about the “population” based on random samples of
“objects” on the shelf # statistical inference.

Typical question: A random sampling of 20 books from the bookshelf
produced X red books, Y blue books and Z green books. What is the
total proportion of red, blue, and green books on the shelf?

Statistical inference is applied in many different contexts under the names
of: data analysis, data mining, machine learning, classification, statistical
signal processing, pattern recognition, clustering, regression, classification.
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Foundations of resilience: Probability vs. Statistics
For discrete RVs, E{X} =

∑I
i=1 xiPX(xi), where PX is the probability function

Probability: A data modelling view, describes how data will likely behave

for example: average = E{X} =

∫ ∞
−∞

x pX(x) dx no data here

Notice that there is no explicit mention of data here # x is a dummy
variable and pX is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave

for example: average =
1

N

N−1∑
n=0

x[n] no pdf here

Example: Consider N coarse-quantised data points, x[0], . . . , x[N − 1].
The signal has M � N possible amplitude values, V1, . . . , VM , with the
corresponding relative frequencies, N1, . . . , NM . Calculate the mean, x̄.

Solution:
x̄ =

1

N

N−1∑
n=0

x[n] =
1

N

M∑
m=1

VmNm =

M∑
m=1

Vm
Nm
N︸︷︷︸

≈ P (x=Vm)
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Inference vs Artificial Intelligence
Statistics: “The art and science of gathering, analysing, and making
inferences from data.” Mosteller et al., Probability with Statistical Applications, 1957

Popular definition of AI: “Anything that makes a decision or an action
that a human used to take or helps a human decide or act.”

R This has been subject of statistical modelling & inference since the 1990s!

Statistics starts with data. Real-world data are random, so statistical
models will involve probability statements and performance bounds:
◦ Exploratory statistics # find patterns in data
◦ Confirmatory statistics # fit math models to find reproducible patterns
◦ Inference: Draw conclusions and/or make decisions and predictions

To make sense of raw data, we can calculate summary statistics (mean,
median, variance) and visualise the data (histograms, scatterplots).

Generative modelling develops stochastic models which fit the data, in
order to make inferences about the data-generating mechanisms.
Predictive modelling does not necessarily explore the underlying data
generating mechanisms, and focuses on inference from historical data.

R Machine learning typically follows the predictive modelling culture.
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Statistical Inference
From Latin inferre, which means “bring into, deduce, conclude”

Inferential statistics: Statistical Estimation and Hypothesis Testing

R In Machine Learning, the term “inference” typically indicates “prediction”

Applications:
◦ Adaptive learning algorithms (noise-cancelling headphones, forecasting)
◦ Neural Networks (e.g. classification, prediction, denoising)
◦ Communications, power systems, radar, sonar, biomedicine, ...
◦ Financial modelling (CAPM, risk estimation, confidence intervals)
◦ Artificial Intelligence (e.g. self-driving cars)

Inferential stats tell us “what is possible to achieve”→ focus of this course
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Statistical Signal Processing & Inference within AI space
Engineering solutions do not
necessarily mimic the nature.

Humans provide a performance
“benchmark” but mimicking
human reasoning by AI???

◦ The 1011 neurons and 1015 synapses in human brain # 20 W of power.

◦ A digital simulation of an ANN of same size consumes 7.9 MW of power.

M. Jordan, “AI – The revolution hasn’t happened yet”:

By approaching a problem with an engineering mind, AI can be
considered as a new, human-centric engineering discipline.

R Strive to surpass human limitations and not to mimic humans!

R Claim: Big Data + Deep Learning → General Intelligence

But humans learn very efficiently with little data, not Big Data!

Caution: We can no longer train a modern DNN on a personal computer, it would take

up to 405 years. Electricity consumption for digital devices: from 3-4% today to 20% in

2050. We need a convival technology that is resilient # a real opportunity for SSP&I.
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Aims: To introduce the fundamentals of statistical
estimation theory, to facilitate the design of signal
processing and machine learning algorithms for inference

◦ The emphasis will be upon:

~ random signals, their properties, and statistical descriptors
~ stochastic models, to generate/describe random signals
~ parametric (model based) and nonparametric (data driven) modelling
~ optimal estimators for random signals, rigorous performance bounds
~ the class of least squares methods, block & sequential LS, regression
~ adaptive learning and estimation  suitable for nonstationary data
~ rigorous performance bounds to tell us ‘what is possible to achieve’

◦ Practical experience through numerous examples on real world signals:

~ multimedia (your own speech recorded via PC)
~ your own physiological data, some financial data (from yahoo finance)

Overall: To gain the know-how and necessary expertise in statistical
inference from random and non–stationary real world data

R This material underpins in-depth understanding and interpretability
statistical signal processing and machine learning tools.
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Learning from data # mathematical formalism of the
statistical estimation paradigm

Problem: Based on an N -point dataset x =
[
x[0], x[1], . . . , x[N − 1]

]T
Find an unknown parameter, θ, based on the data x, in order to define a
statistical estimator (e.g. θ̂ can be the sinewave frequency in smart grid)

θ̂ = g
(
x[0], x[1], . . . , x[N − 1]

)
, g is some function

This is formalised as “parameter estimation from random signals”

Depending on the choice of g we can talk about: ~ linear, ~ nonlinear,
~ maximum likelihood, ~ minimum variance, ~ adaptive etc. estimation

With this we can even obtain the Electrocardiogram from the ear canal.
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Course structure

The course is divided roughly into four parts:

1. Introduction to Statistical Estimation Theory

discrete random signals, moments, bias-variance dilemma, curse of
dimensionality, sufficient statistics

2. Statistical Modelling, Estimation Theory and Performance Bounds

linear stochastic models, ARMA model, properties of estimators, Cramer
Rao performance bound, minimum variance unbiased (MVU) estimator

3. Statistical Inference

best linear unbiased estimator (BLUE), maximum likelihood (ML)
estimation, multivariate estimators, Bayesian estimation (optional)

4. Mean Square Error (MSE) based learning machines

representation bases, orthogonality principle, block and sequential Least
Squares, linear and logistic regression, Wiener filter, adaptive filters,
concept of an artificial neuron

Use your knowledge and not brute force when designing learning machines!
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Lecture 1: Background on random signals
For illustration, consider a noisy sinusoid
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The mean and variance through the lens of statistics

Financial example: The dilemma about asset selection based on the
sample mean motivates us to model the dispersion about the mean. This
is naturally performed by the (co)-variance

V ar[X] = σ2
X = E[(X − E[X])2] or V ar[X] ≈ 1

T − 1

T∑
t=1

(xt − µX)2

Risk Aversion: For same expected returns, choose the portfolio that
minimises the volatility.
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R For the same returns level (left) we choose the less risky asset (blue). For
unequal returns, the criterion is inconclusive → Sharpe Ratio = µ/σ
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Lecture 2: Time series analysis  linear stoch. models
Example: Sunspot number estimation using AR models
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a1 = [0.9295] a2 = [1.4740,−0.5857]
a3 = [1.5492,−0.7750, 0.1284]
a4 = [1.5167,−0.5788,−0.2638, 0.2532]
a5 = [1.4773,−0.5377,−0.1739, 0.0174, 0.1555]
a6 = [1.4373,−0.5422,−0.1291, 0.1558,−0.2248, 0.2574]

# The sunspots model is x[n] = 1.474x[n− 1]− 0.5857x[n− 2] +w[n]
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Linear Stochastic Models: Advantages
Representation of a long random signal with only a few parameters & Prediction
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Example: Dealing with nonstationary signals
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Lecture 3: Introduction to estimation theory specgramdemo
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Often we can resort to (approximately) Gaussian distrib.

Top panel. Share prices, pn, of Apple (AAPL), General Electric (GE) and
Boeing (BA) and their histogram (right). Bottom panel. Logarithmic
returns for these assets, ln(pn/pn−1), that is, the log of price differences at
consecutive days (left) and the histogram of log returns (right).

R Clearly, by a suitable data transformation, we may arrive at symmetric
distributions which are more amenable to analysis (bottom right).
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Importance of establishing optimal performance bounds

A typical artefact in teleconferencing,
where an algorithm which provides
artificial background cannot cope with
movement

You will learn how to establish the
optimal performance bounds in both
block-based and real-time adaptive
data analysis.

These will serve to:

• Indicate the quality of your
algorithm/strategy against the
best achievable performance for
the considered class of estimators

• In many cases, this can also
suggest an optimal estimation
strategy

• Help identify an error in your
algorithm, if its performance
appears better than the optimal
performance bound.
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Lecture 4: Bias-variance dilemma  Minimum Variance
Unbiased estimation, rigorous performance bounds CRLB
R variance of the estimated parameters is sensitive to data length

Consider a sinusoid x[n] = A cos(2πf0n+ Φ) + w[n], w[n] ∼ N (0, σ2)

Task: Find the parameters A, f0, Φ, from the noisy measurements x[n]

We will show that the optimal estimators obey (where η = A2

2σ2
is SNR):

var(Â) ≥ 2σ2

N
var(f̂0) ≥

12

(2π)2ηN(N2 − 1)
var(Φ̂) ≥ 2(2N − 1)

ηN(N + 1)

5 15 25 35 45 55 65 75 85 95
−80

−60

−40

−20

0

CRLB for Sinusoidal Parameter Estimates at

SNR = −3dB (Dashed Lines) and 10dB (Solid Lines)

Number of data samples, N

C
R

L
B

 [
d
B

]

 

 

Amplitude Frequency Phase

c© D. P. Mandic Statistical Signal Processing & Inference 20



A rigorous account of Linear Models (regression models)
These underpin many areas e.g. the CAPM and Fama-French models in finance
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R Even a nonlinear models is often “linear in the parameters”
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Lecture 5: BLUE and Maximum Likelihood Estimation
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Sufficient statistics, goodness of an estimator

Example 7a: The drawing of a bean (top)

and the histogram of eye dwellings (bottom) Example 7b: Read the words below ... now

read letter by letter ... are you still sure?

Example 7c: Is the drawing on the left still a penguin?

So, what is the sufficient information to ’estimate’ an object?
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Motivation for Maximum Likelihood Estimation (MLE)
What do you think these applications have in common?

HDD microcontroller Gesture (Swype) keyboard

 

 

 

 
 

 

Generative AI (density estimation) Global Positioning System
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Example: MLE in Generative Artificial Intelligence

We often have a limited amount of samples of the dataset of interest, e.g.
we do not know the true distribution of all male and female face images.

 

 

 

 
 

 

◦ Generative models aim to

generate “new” data based

on the available samples of a

dataset of interest.

◦ Generated data should

approximate the “true

distribution” of unseen data,

pdata, as best as possible in

some statistical sense, e.g.

min distance(pdata, pmodel).

R We examine the likelihood of the model, given the dataset (≡ MLE).

R This boils down to maximising the likelihood that the generated data will
have similar distribution to true data of interest # a backbone of Gen-AI
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Example 12d: Big picture of learning data distributions
Most important general cases

𝑝𝑝(𝑦𝑦 ∣ 𝑥𝑥)
Discriminative Model

𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝜀𝜀
Regression Model

𝑝𝑝 𝑥𝑥;𝜃𝜃
Generative Model

𝑝𝑝 𝑥𝑥 𝑦𝑦;𝜃𝜃
Conditional Generative Model

𝑝𝑝(𝑦𝑦 ∣ 𝑥𝑥)
Classification Model

Machine Learning ModelContinuous

Discrete

◦ p(y|x; θ) # classification
(discriminative model)

◦ p(y|x; θ) # regression

◦ p(x; θ) # generative
model (e.g. VAE, GANN)

◦ p(x|y; θ) # conditional
generative model

R Generative models learn a joint distribution: sampling applications or density estimation

Density 
Estimation

…

𝒑𝒎𝒐𝒅𝒆𝒍(𝒛; 𝜽) ≈ 𝒑𝒅𝒂𝒕𝒂

Sampling …

𝒙𝒏𝒆𝒘~𝒑𝒎𝒐𝒅𝒆𝒍(𝒛; 𝜽)

𝒑𝒎𝒐𝒅𝒆𝒍(𝒛; 𝜽)

𝒛

𝒛

𝒙~𝒑𝒅𝒂𝒕𝒂

R arg min
pθ

DKL(pdata||pmodel) ≡ Max. Likelihood Est. arg max
pθ

log pmodel (x;θ)
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Lecture 6: The method of Least Squares (LS)
Least Squares Order Selection Ineractive, Animation Sequential LS

◦ The LS approach can be interpreted as the problem of approximating a
data vector x ∈ RN by another vector ŝ which is a linear combination of
vectors {h1, . . . ,hp} that lie in a p-dimensional subspace S ∈ Rp ⊂ RN
◦ The problem is solved by choosing ŝ so as to be an orthogonal

projection of x on the subspace spanned by hi, i = 1, . . . , p
◦ The LS estimator is very sensitive to the correct deterministic model of
s, as shown in the figure below for the LS fit of x[n] = A+Bn+ q[n].
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Least Squares Regression (LSR): A brief summary
Linear regression # relationship between two variables based on a line of best fit
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LS Regression: Capital Asset Pricing Model (CAPM)
We here employ a block-LS approach, over blocks of 22 days

Asset return, Ri, risk-free interest rate, Rf , and market return, Rm,
(S&P500 return) are all known. We consider log-returns.

R We can now perform LS regression to obtain the value of β.

Each month has 22 trading days. Then, the CAPM states thatRi;day1 − Rf

Ri;day2 − Rf
...

Ri;day22 − Rf

 = β

Rm;day1 − Rf

Rm;day2 − Rf
...

Rm;day22 − Rf

+

 e1e2...
e22

 ⇒ ri = β rm + e

Therefore, the LS estimate: β̂ = (rm
Trm)−1rm

T ri
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Sequential LS for streaming data: Noise cancelling
headphones (λ = 0.99) Denoising SLS GUI.m
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Lecture 7: Adaptive Learning and Inference
from fixed imp. resp. h in digital filters to a time-varying w(n) in adaptive filters

Consider a set of p sensors at different points in space (filter order p)

w
output

summer
weightssensors

p

px

1
x

1

w

y(n)
Σ e(n)

x(n)

w (n)

y(n)

Adaptive System

Coefficients

Error

Σ

Response

Desired

Comparator

Algorithm
Control

Filter 

Signal

Input

+_ d(n)

◦ The sensor signals are weighted by the corresponding set of
time–varying filter parameters w(n) = [w1(n), . . . , wp(n)]T (weights)

◦ The weighted signals are then summed to produce the output

y(n) =

p∑
i=1

wi(n)xi(n) = wT (n)x(n) = xT (n)w(n) n = 0, 1, 2, . . .

where xT (n) = [x1(n), . . . , xp(n)], wT (n) = [w1(n), . . . , wp(n)]
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Example: Adaptive filter for cancellation of cockpit noise
ALE Handel, Denoising Reference Drum WienerAndLMS

Consider an adaptive noise cancellation problem, like that in noise cancelling headphones

when you are listening to music on the plane.
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Adaptive noise cancellation: A biomedical example

Maternal ECG signal Foetal heartbeat
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Artificial neuron: Introduction to neural adaptive filters

Biological neuron

Φ
(n)

M

1

w

w

+1

(n)0w
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x(n−1)

net(n)

(n)

Σ

Somatic Part

unity bias input

inputs

delayed

Synaptic Part

Model of an artificial neuron

◦ delayed inputs x

◦ bias input with unity value

◦ sumer and multipliers

◦ output nonlinearity
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Coursework: Your own speech and biosignal recordings

◦ Our own custom-made portable signal acquisition device – the BioBoard
– is designed to record any biopotentials, such as the Electrocardiogram
(ECG), Electroencephalogram (EEG), from up to eight channels

◦ It consists of an analogue-to-digital converter (ADC), a microcontroller,
a secure digital (SD) card slot to store the data, and Bluetooth link
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Coursework: Recording your own ECG

Switch  
On 

Press Start 

Breathe normally 

Tap the Electrodes Press Start 

Instruction Manual  

ECG Recording 
Example 

Artefacts 
introduced by 

Tapping 

Trial 1 Trial 2 Trial 3 

Tap the Electrodes 

100 20 30 40 250 260 270 280 500 510 520 530 750 760 770
Time (s)

…  …  … 

25 breaths per minute 7.5 breaths per minute 
Switch  

Off 

Left: Electric heart potentials on human body. Right: Experiment protocol
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Coursework: Gain experience with real–world data

Example relevant for eHealth: Estimate your own ECG from your wrists.
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Course format

Lecture notes with problem/answer sets and coursework.

◦ Coursework involves the implementation of the algorithms we discuss in
the class

◦ We will regularly discuss coursework and Matlab implementation

Prerequisites:

~ There are no prerequisites, although DSP and basic probability would
be useful

~ The course is aimed to be self-contained
~ Due to algorithm implementation, knowledge of Matlab is important

Assessment:

100% Coursework assignments. There are 5 Assignments (from
random signals to audio denoising) # Matlab based

Feedback # after completing Assignment 1
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Reference material

◦ There is no single textbook that covers all the material in the course

◦ We will use S. Kay’s book for the first part of the course (an excellent
text, covers most of the estimation theory, well worked-out examples,
highly recommended, has many editions)

◦ For parametric modelling we will use the Box & Jenkins book (a ‘bible’
for time series analysis, easy to read, excellent examples, used by people
in engineering, physics, finance, has many editions)

◦ For the least squares part, we will use M. Hayes’ book (wider scope than
Kay’s book, less detailed derivations, a must have for practitioners)

◦ For further reading, the book by S. Haykin (Adaptive Filters) and D.
Mandic & J. Chambers (Recurrent Neural Networks)

The course is self-contained: Most of the material is already in course notes
Course web page: www.commsp.ee.ic.ac.uk/∼mandic/Teaching

Lectures, additional reading, homework, problem sets, and other
material will be put on the course webpage
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Textbooks: Recommended

S. Kay (Estimation Theory,

several editions)

a comprehensive account of
estimation theory

G. Box and G. Jenkins (Time

Series Analysis, several editions)

linear stochastic models
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Textbooks: Additional reading (optional)

M. Hayes (Statistical Signal

Processing and Modeling,

several editions)

stochastic and adaptive models

D. Mandic and J. Chambers

(Recurrent Neural Networks,

Wiley, 2001)

(what can I say) - neural models
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Statistical Sig Proc & Inference # A stealth technology

◦ There will always be signals
◦ They always need processing
◦ There will always be new mathematics for processing them

R The future is bright # a lot to do for all of us!

SSP&I: Use your knowledge and not brute force when designing learning machines
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Notes:

◦
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Notes:

◦
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