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Outline

Part 1: Background

◦ Some intuition and history
◦ The Discrete Fourier Transform
◦ Practical issues with DFT
∗ Aliasing
∗ Frequency resolution
∗ Incoherent sampling
∗ Leakage
∗ Time-bandwidth product

Part 2: The Periodogram and its modifications

◦ Schuster periodogram
◦ The role of autocorrelation estimation
◦ Windowing
◦ Averaging
◦ Blackman-Tukey Method
◦ Statistical properties of these methods (bias, variance)
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Part 1: Background
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Problem Statement

From a finite record of stationary data sequence, estimate how the total
power is distributed over frequency.

Has found a tremendous number of applications:-

◦ Seismology → oil exploration, earthquake

◦ Radar and sonar → location of sources

◦ Speech and audio → recognition

◦ Astronomy → periodicities

◦ Economy → seasonal and periodic components

◦ Medicine → EEG, ECG, fMRI

◦ Circuit theory, control systems
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Some examples
Seismic estimation Speech processing

periodic pulse excitation

Layer 1

reflected path

reflected path

direct path

reflected path

Sensor 2Sensor 1

drillPneumatic

Layer 2

(a) Simplified seismic paths.

direct 

Time

Amplitude

pulse

reflected 2

reflected 1

(b) Seismic impulse response.

frequency

time

M aaa t l aaa b

For every time segment ’∆t’, the
PSD is plotted along the vertical
axis. Observe the harmonics in ’a’

Darker areas: higher magnitude of
PSD (magnitude encoded in color)

Use Matlab function ’specgram’
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Historical perspective

1772 Lagrange proposes use of rational functions to identify multiple periodic components;

1840 Buys–Ballot, tabular method;

1860 Thomson, harmonic analyser;

1897 Schuster, periodogram, periods not necessarily known;

1914 Einstein, smoothed periodogram;

1920-1940 Probabilistic theory of time series, Concept of spectrum;

1946 Daniell, smoothed periodogram;

1949 Hamming & Tukey transformed ACF;

1959 Blackman & Tukey, B–T method;

1965 Cooley & Tukey, FFT;

1976 Lomb, periodogram of unevenly spaced data;

1970– Modern spectrum estimation!
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Fourier transform & the DFT

Fourier transform:

F (ω) =

∫ ∞
−∞

f(t)e−ωtdt

Not really convenient for real–world signals ⇒ need for a signal model.

More natural: Can we estimate the spectrum from N samples of f(t),
that is

[f(0), f(1), . . . , f(N − 1)]

where the spacing in time is T?

One solution ⇒ perform a rectangular approximation of the above integral.

We have two problems with this approach:-

i) due to the sampling of f(t), aliasing for non–bandlimited signals;

ii) only N samples retained⇒ resolution?

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 7



Some intuition: DFT as a demodulator

Spectrum estimation paradigm: For any general signal x(t), we wish to
establish if it contains a component with frequency ω0.

We cannot perform this just by averaging∫ ∞
−∞

x(t)dt as the oscillatory components are zero−mean

To answer whether ω0 is in x(t), we can multiply by e−ω0t, to obtain
(recall AM demodulation and for convenience consider one signal period)∫ T/2

−T/2
x(t)e−ω0tdt = constant

since for every oscillatory component eω0t we have

Aeω0te−ω0t = A

which is effectively a Fourier coefficient.
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Some intuition: Fourier transform as a digital filter
We can see FT as a convolution of a complex exponential and the data (under a

mild assumption of a one-sided h sequence, ranging from 0 to ∞)

1) Continuous FT. For a continuous FT F (ω) =
∫∞
−∞ x(t)e−ωtdt

Let us now swap variables t→ τ and multiply by eωt, to give

eωt
∫
x(τ)e−ωτdτ =

∫
x(τ) eω(t−τ)︸ ︷︷ ︸

h(t−τ)

dτ = x(t) ∗ eωt (= x(t) ∗ h(t))

2) Discrete Fourier transform. For DFT, we have a filtering operation

X(k) =

N−1∑
n=0

x(n)e−
2π
N nk = x(0) +W

[
x(1) +W

[
x(2) + · · ·

]
︸ ︷︷ ︸

cumulative add and multiply

W = e−
2π
N k

with the transfer function (large N) H(z) = 1
1−z−1W

= 1−z−1W ∗

1−2 cos θkz
−1+z−2

−x(t)

exp(jwt)

DFT
xx(t)*exp(jwt) +

DFTx[n]

Wz−1

discrete time case

continuous time case
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Rank of the covariance matrix for sinusoidal data
The difference between R2 and C

Consider a single complex sinusoid with no noise

zk = Aeωk = A cos(ωk + φ) + A sin(ωk + φ)

There are two possible representations of the signal: A univariate
complex-valued vector or bivariate real-valued matrix:

1. z = [z0, z1, . . . , zN−1]T = A[1, ejω, . . . , ej(N−1)ω]T
def
= Ae

2. Z =

[
Re{z}
Im{z}

]
= A

[
1 cos(ω + φ) . . . cos(ω(N − 1) + φ)
0 sin(ω + φ) . . . sin(ω(N − 1) + φ)

]T
The corresponding covariance matrices exhibit a very interesting property:

◦ Czz = E{zzH} = |A|2eeH → Rank = 1.

◦ CZZ = E{ZZT} → Rank = 2.

What would happen with p sinusoids?
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Discrete Fourier Transform as a Least Squares problem

Problem: Fitting data x[n] with a linear model with [N − 1] complex
sinusoids:

x̂[n] =
1

N

N−1∑
k=0

w[k]e
2π
N nk (1)

Eq (1) can be formulated in vector notation as x̂ = 1
NFw, where

x̂[0]

x̂[1]

x̂[2]

x̂[3]
...

x̂[N−1]

 =
1

N



1 1 1 1 · · · 1

1 α α2 α3 · · · αN−1

1 α2 α4 α6 · · · α2(N−1)

1 α3 α6 α9 · · · α3(N−1)

... ... ... ... . . . ...

1 αN−1 α2(N−1) α3(N−1) · · · α(N−1)(N−1)


︸ ︷︷ ︸

F


w[0]

w[1]

w[2]

w[3]
...

w[N−1



where α = eω = e
2π
N .

Each column of F represents a sinusoid with a different frequency.
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Discrete Fourier Transform as a Least Squares problem
Properties of the Fourier Matrix

The least squares solution to w is found by (CW question):

ŵ = argmin
w
‖x− Fw‖2 = FHx

=⇒ DFT coefficient at bin k is w[k] =
∑N−1
n=0 x[n]e−

2π
N nk

What are the properties of the Fourier matrix?

◦ Is it unitary? (FHF
?
= I)

◦ Is it Hermitian? (FH
?
= F)

→ Can you prove these
properties?

What happens if your signal x cannot be represented as a sum of the
uniformly spaced sinusoids?

Example: What if x =
[
1 α

1
2 α21

2 . . . α(N−1)1
2

]T
?

Incoherent sampling =⇒ A limitation of the DFT for a small N.
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Spectrum estimation as an eigen-analysis problem

Def: A function which remains unchanged when passed through a system,
apart from a scaling by a constant, is called an eigenfunction, and the
scaling constant is called an eigenvalue.

For a digital filter with the imp. resp. hk, the eigenfunction ek must satisfy

λek =

∞∑
i=−∞

hiek−i no general method for deriving ek

Consider a candidate eigenfunction ek = cos(ωk), then

yk =

∞∑
i=−∞

hi cos[ω(k − i)] = cos(ωk)
[ ∞∑
i=−∞

hi cosωi
]

+ sin(ωk)
[ ∞∑
i=−∞

hi sinωi
]

◦ Clearly cos comes close, but is not suitable due to the sin terms.

◦ A sum a cosωk+ b sinωk = c cos(ωk+ Φ) is therefore not suitable either

On the other hand, for eωk = cosωk +  sinωk, we have

yk =

∞∑
i=−∞

hie
ω(k−i) = eωk

[ ∞∑
i=−∞

hie
−ωi

]
= eωkH(ω) clearly an eigenfunction
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FT basics

Periodic signal ! Discrete FT
Discrete signal ! Periodic FT
Periodic and Discrete signal ! Discrete and Periodic FT
Discrete and Periodic signal ! Periodic and Discrete FT

◦ Sampling yields a new signal (fs = 2π
T ) (poor approximation)

g[n] = T f(nT ) ⇔ G(ω) =

∞∑
k=−∞

F (ω + kΩ0)

◦ Limiting the length to N samples effectively introduces rectangular
windowing (Leakage)

W (ω) =
sin(NωT/2)

sin(ωT/2)
e−

N−1
2 ωT

V Estimated Spectrum = True spectrum * Sinc
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Practical Issue #1: Aliasing
Sampling Theorem Revisited

Original signal Sampled original signal
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Original spectrum Spectrum of sampled signal

For sampling period T and sampling frequency fs = 1/T ⇒ fs ≥ 2fh
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Practical Issue #1: Aliasing
Sampling theorem: An example
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◦ Sub-Nyquist sampling
causes aliasing

◦ This distorts physical
meaning of information

◦ In signal processing,
we require faithful data
representation

◦ Problem: the noise
model is always all-pass

◦ The easiest and most
logical remedy is to
low-pass filter the data
so that the Nyquist
criterion is satisfied.
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Practical Issue #2: Frequency Resolution

Def: Frequency resolution is the minimum separation between two
sinusoids, resolvable in frequency.

Ideally, we want an excellent resolution for a very few data samples
(genomic SP)

However,

i) Due to the wide mainlobe of the SINC function (spectrum of the
rectangular window), the convolution between the true spectrum and
the sinc function smears the spectrum;

ii) For two impulses in frequency to be resolvable, at least one
frequency bin must separate them, that is

2π

NT
⇒ T fixed → N increase
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Practical Issue #2: Frequency Resolution
Time-bandwidth Product

◦ Suppose we know the maximum frequency in the signal ωmax, and
the required resolution ∆ω. Then

∆ω > 2
2π

NT
= 2

ωs
N

⇒ N >
4ωmax

∆ω

◦ For both the prescribed resolution and bandwidth, then

ωs =
2π

T
> 2ωmax & 2ωs < ∆ωN

hence
fs
2

=
π

T
> ωmax that is T <

π

ωmax
⇔ N >

4ωmax
∆ω

◦ If we know signal duration (fs ≥ 2fmax ⇒ 2π
T ≥ 2ωmax ⇒ T < π

ωmax
)

N >
2tmax
T

⇒ N >
2tmaxωmax

π

tmax × ωmax → time–bandwidth product of a signal.
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Example: the time–bandwidth product
Top: AM signals Bottom: Gaussian signals
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Practical Issue #3: Spectral Leakage
Two sines with close frequencies

Top: A 32-point DFT of an N = 32 long

sampled (fs = 64Hz) mixed sinewave

x(k) = sin(2π11k) + sin(2π17k)

It is difficult to determine how many distinct

sinewawes we have.

Bottom: A 3200-point DFT of an N = 32

long sampled (fs = 64Hz) sine

x(k) = sin(2π11k) + sin(2π17k)

◦ Both the f = 11Hz and f = 17Hz

sinewaves appear quite sharp

◦ This is a consequence of a high-resolution

(N = 3200) DFT

◦ The overlay plot compares it with the top

diagram
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Example: FFT leakage # EEG power spectrum
we record ≈ 10µV signals in the presence of external noise

Problem: estimate power of the
50Hz artefact picked up by EEG
leads

• Using the standard periodogram - the

resolution is good but the artefact is

partially masked

• Remedy: Use a windowing function

(e.g. Hanning window).

– Note that sidelobes are reduced,

energy over narrow frequency range

around 50Hz.

• Window value is zero at the beginning

and end of a segment

– Multiply with the signal with a

window that has small sidelobes to

reduce leakage

• Windows reduce, but do not
eliminate leakage completely!
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Practical Issue #4: Incoherent sampling
Are the signal frequencies, f = kfsN?

Top: A 32-point DFT of an N = 32 long

sampled (fs = 64Hz) sinewave of f = 10Hz

◦ For fs = 64 Hz, the DFT bins will be

located in Hz at k/NT = 2k, k =

0, 1, 2, ..., 63

◦ One of these points is at given signal

frequency of 10 Hz

Bottom: A 32-point DFT of an N = 32

long sampled (fs = 64Hz) sine of f = 11Hz

◦ Since

fR

fs
=
f ×N
fs

=
11× 32

64
= 5.5

the impulse at f = 11 Hz appears

between the DFT bins k = 5 and k = 6

◦ The impulse at f = −11 Hz appears

between DFT bins k = 26 and k = 27

(10 and 11 Hz)
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Practical Issue #4: Incoherent sampling
Visual Representation

f = 10 Hz
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Part 2: The Periodogram

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 24



Power Spectrum estimation: Problem statement

Estimate Power Spectral Density (PSD) of a wide-sense stationary signal

Recall that PSD = F (ACF ).

Therefore, estimating the power spectrum is equivalent to
estimating the autocorrelation.

Recall that for an autocorrelation ergodic process,

lim
N→∞

 1

2N + 1

N∑
n=−N

x(n+ k)x(n)

 = rxx(k)

If x(n) is known for all n, estimating the power spectrum is
straightforward

◦ Difficulty 1: the amount of data is always limited, and may be very
small (genomics, biomedical)

◦ Difficulty 2: real world data is almost invariably corrupted by
noise, or contaminated with an interfering signal
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PSD properties

i) Pxx(f) is a real function ( Pxx(f) = P ∗xx(f)).

Proof: Since r(−m) = r(m) and f ∈ (−1/2, 1/2] (ω ∈ (−π, π]), we have

Pxx(f) = F{rxx(m)}
∞∑

m=−∞
rxx(m)e−2πmf =

∞∑
m=−∞

rxx(−m)e2πmf

and hence it has no notion of the phase information in data

Pxx(f) =

∞∑
m=−∞

rxx(m) cos(2πmf) = rxx(0) + 2

∞∑
m=1

rxx(m) cos(2πmf)

ii) Pxx(f) is a symmetric function Pxx(−f) = Pxx(f). This follows from
the last expression.

iii) r(0) =
∫ 1/2

−1/2
Pxx(f)df = E{x2[n]} ≥ 0.

⇒ the area below the PSD (power spectral density) curve = Signal Power
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Spectral estimation techniques

In practice, we only have a finite length of data sequence, therefore it is
only possible to estimate the true PSD.

This is why spectral estimation is a challenging problem, because we must
use the available data to form to most accurate estimate of the PSD and

consider the statistical stationarity of the real measurement.

To quantify the error, we consider the statistical properties of the
associated spectral estimation techniques.

◦ Conventional methods

– They only assume F{rxx(k)} = Pxx(f).

◦ Model–based schemes

– assume that the measurement is generated by some prescribed
parametric form, for instance by a rational transfer function (filter)
driven by white Gaussian noise

WGN ⇒ FILTER ⇒ Measurement
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Power spectrum – some insights
It would be advantageous to obtain power spectum directly from the DFT of data

We shall now show that the PSD can be written in an equivalent form:

Pxx(f) = lim
M→+∞

1

2M + 1
E


∣∣∣∣ +M∑
k=−M

x[k]e−2πfk
∣∣∣∣2


Let us begin by expanding

Pxx(f) = lim
M→+∞

1

2M + 1
E


+M∑

k=−M

M∑
l=−M

x[k]x[l]e−2πf(k−l)


= lim

M→+∞

1

2M + 1

+M∑
k=−M

M∑
l=−M

E {x[k]x[l]}︸ ︷︷ ︸
rxx(k−l)

e−2πf(k−l)

= lim
M→+∞

1

2M + 1

+M∑
k=−M

M∑
l=−M

g(k − l)

Note that
(∑

i

)2
=
∑
j×
∑
k
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Converting double into a single summation
+M∑

k=−M

M∑
l=−M

g(k − l) =

2M∑
τ=−2M

(2M + 1− |τ |)g(τ)

l

etc

etc

etc
g(1)

g(0)

g(+2M)

g(−2M)

k
(2M+1) points! g = g(0)
2M points ! g = g(1)
... ... ...
1 point ! g = g(2M)

Reminds you of a triangle?

Recall: the autocorrelation
of two rectangles of width
2M is a triangle of width 4M!

This underpins our first
practical power spectrum
estimator
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Schuster’s periodogram (1898)

Hence

Pxx(f) = lim
M→+∞

2M∑
τ=−2M

(
2M + 1− |τ |

2M + 1

)
︸ ︷︷ ︸

=
(

1− |τ |
2M+1

)
rxx(τ)e−2πfτ

Provided the autocorrelation function decays fast enough, we have

Pxx(f) =

+∞∑
τ=−∞

rxx(τ)e−2πfτ

Note rxx(τ) = rxx(−τ) ⇒ Pxx(f) is real!

In practice, we only have access to [x(0), . . . , x(N − 1)] data points (we
drop the expectation), then

P̂per(f) =
1

N

∣∣∣∣∣
N−1∑
k=0

x[k]e−2πfk

∣∣∣∣∣
2

Symbol ˆ denotes an estimate, since due to the finite N the ACF is imperfect
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Periodogram based estimation of power spectrum
more intuition # connection with DFT

A nonparametric estimator the power spectrum – the periodogram

P̂per(e
ω) =

N+1∑
k=−N+1

r̂xx(k)e−kω

It is, however, more convenient to express the periodogram in terms of the
process x[n] (alternative derivation):

◦ Notice that r̂xx(k) = 1
Nx(k) ∗ x(−k)

◦ Apply the FT to obtain

P̂per(e
ω) =

1

N
X(eω)X∗(eω) =

1

N
|X(eω)|2

where X(eω) =
∑N−1
n=0 x(n)e−ωn. (this is a DTFT of x(n)).
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What to look for next?

◦ We must examine the statistical properties of the periodogram estimator

◦ For the general case, the statistical analysis of the periodogram is
intractable

◦ We can, however, derive the mean of the periodogram estimator for any
real process

◦ The variance can only be derived for the special case of a real
zero–mean WGN process with Pxx(f) = σ2

x

◦ Can this can be used as indication of the variance of the periodogram
estimator for other random signals

◦ Can we use our knowledge about the analysis of various estimators, to
treat the periodogram in the same light (is it an MVU estimator, does it
attain the CRLB)

◦ Can we make a compromise between the bias and variance in order to
obtain a mean squared error (MSE) estimator of power spectrum?
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Why do not you think a little about ...

~ The resolution for zero-padded spectra is higher, what can we tell about
the variance of such a periodogram?

~ If the samples at the start and end of a finite-length data sequence have
significantly different amplitudes, how does this affect the spectrum?

~ What uncertainties are associated with the concept of “frequency bin”?

~ Why happens with high frequencies in tapered periodograms?

~ What would be the ideal properties of a “data window”?

~ How frequently do we experience incoherent sampling in real life
applications and what is a most pragmatic way to deal with the
frequency resolution when calculating spectra of such signals?

~ How can we use the time–bandwidth product to ensure physical
meaning of spectral estimates?

~ The “double summation” formula that uses progressively fewer samples
to estimate the ACF is very elegant, but does it come with some
problems too, especially for larger lags?
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Physical intuition: Connecting PSD and ACF
positive (semi)-definiteness

Recall: Rxx = E{xxT} =


r(0) r(1) · · · r(N − 1)

r(1) r(0) · · · r(N − 2)
... ... . . . ...

r(N − 1) r(N − 2) · · · r(0)


Then, for a linear system with input sequence {x}, output {y}, and the

vector of coefficients a, the output has the form

y(n) =

N−1∑
k=0

a(k)x(n− k) = xTa = aTx where a = [a(0), . . . , a(N − 1)]T

The power Py = E{y2} is always positive, and thus ((aTb)T = bTaT )

E
{
y2[n]

}
= E

{
y[n]yT [n]

}
= E

{
aTxxTa

}
= aTE

{
xxT

}
a = aTRxxa

⇒ to maintain positive power, the autocorrelation matrix Rxx must
be positive semidefinite

In other words: a positive semidefinite Rxx will alway produce
positive power spectrum!

But, is our estimate of ACF always positive definite?
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Two ways to estimate the ACF

For an autocorrelation ergodic process with an unlimited amount of
data, the ACF may be determined:

1) Using the time–average

rxx(k) = lim
N→∞

1

2N + 1

N∑
n=−N

x(n+ k)x(n)

If x(n) is measured over a finite time interval, n = 0, 1, . . . , N − 1 then we
need to estimate the ACF from a finite sum

r̂xx(k) =
1

N

N−1∑
n=0

x(n+ k)x(n)

2) In order to ensure that the values of x(n) that fall outside interval
[0, N − 1] are excluded from the sum, we have (biased estimator)

r̂xx(k) =
1

N

N−1−k∑
n=0

x(n+ k)x(n), k = 0, 1, . . . , N − 1

Cases 1) and 2) are equivalent for small lags and a fast decaying ACF

Case 1) gives positive semidefinite ACF, this is not guaranteed for Case 2)
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Periodogram and Matlab

Px=abs(fft(x(n1:n2))).^2/(n2-n1-1)

or the direct command ‘periodogram’

◦ Pxx = PERIODOGRAM(X)

returns the PSD estimate of the signal specified by vector X in the
vector Pxx. By default, the signal X is windowed with a BOXCAR
window of the same length as X;

◦ PERIODOGRAM(X,WINDOW)

specifies a window to be applied to X. WINDOW must be a vector of
the same length as X;

◦ [Pxx,W] = PERIODOGRAM(X,WINDOW,NFFT)

specifies the number of FFT points used to calculate the PSD estimate.
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Performance of the periodogram
(we desire a minimum variance unbiased (MVU) est.)

Its performance is analysed in the same was as the performance of any
other estimator:

◦ Bias, that is, whether

lim
N→∞

E
{
P̂per(f)

}
= Px(f)

◦ Variance

lim
N→∞

V ar
{
P̂per(f)

}
= 0

◦ Mean square convergence

MSE = bias2 + variance = E

{[
P̂per(f)− Px(f)

]2}
we desire lim

N→∞
E

{[
P̂per(f)− Px(f)

]2}
= 0

R we need to check P̂per(f) is a consistent estimator of the true PSD.
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Bias of the periodogram as an estimator

We can calculate this by finding the expected value of

r̂xx(k) = 1
N

∑N−1−|k|
n=0 x(n)x(n+ |k|). Thus (biased estimate)

E {Pper(f)} =

N−1∑
k=−(N−1)

E{r̂xx(k)}e−2πfk

=

N−1∑
k=−(N−1)

N − |k|
N

rxx(k)e−2πfk = “wB(k) × rxx(k)′′

where rxx is the true ACF and the Bartlett (triangular) window is defined
by

wB(k) =

{
1− |k|N ; |k| ≤ N
0; |k| > N − 1

Notice the maximum at n=0, and a slow decay towards the end of the sequence
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Inherent windowing in the Periodogram
Issues with finite duration measurements

To analyse the effects of a finite signal duration, consider a rectangular
window∣∣∣∣ ∣∣∣∣ · · · ∣∣∣∣︸ ︷︷ ︸

0,...,N−1

F−→
N−1∑
k=0

e−2πfk

W (f) =
N−1∑
k=0

e−2πfk =
1− e−2πfN

1− e−2πf
=
e−

2πfN
2

e−
2πf

2

2 sin(πfN)

2sin(πf)
=

e−πf(N−1) sin(πfN)

πfN
× πfN

sin(πf)
= e−πf(N−1) sinc(πfN)

sinc(πf)
×N

If the sampling is coherent, zeroes of the sinc functions all lie at multiplies
of 1/N , and hence the outputs of DFT are all zero except at f = ± 1

N .
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Effects of the Bartlett window on resolution

Behaves as sinc2
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Periodogram bias – continued

From the previous observation, we have

E
{
P̂per(f)

}
=

∞∑
k=−∞

rxx(k)wB(k)e−2πkf ⇔WB(f) ∗ Pxx(f)

where

WB(f) = 1
N

[
sinπfN
sinπf

]2
.

In words, the expected value of the periodogram is the convolution of the
power spectrum Pxx(f) with the Fourier transform of the Bartlett window,

and therefore, the periodogram is a biased estimate.

Since when N →∞, WB(f)→ δ(0), the periodogram is asymptotically
unbiased

lim
N→∞

E
{
P̂per(f)

}
= Pxx(f)
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Example: Sinusoid in WGN
x(n) = A sin(nω0 + Φ) + w(n), A = 5, ω0 = 0.4π

N=64: Overlay of 50 periodograms periodogram average
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N=256: Overlay of 50 periodograms periodogram average
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Periodogram resolution: Two sinusoids in white noise

This is a random process (Φ1 ⊥ Φ2, w(n) ∼ U(0, σ2
w) described by :

x(n) = A1 sin(nω1 + Φ1) +A2 sin(nω2 + Φ2) + w(n)

The true PSD is

Pxx(ω) = σ2
w +

1

2
πA2

1 [δ(ω − ω1) + δ(ω + ω1)] +
1

2
πA2

2 [δ(ω − ω2) + δ(ω + ω2)]

The expected PSD E
{
P̂per(ω)

}
(Px ∗WB) becomes

σ2
w +

1

4
A2

1 [WB(ω − ω1) +WB(ω + ω1)] +
1

4
A2

2 [WB(ω − ω) +WB(ω + ω2)]

R there is a limit on how closely two sinusoids or two narrowband
processes may be located before they can no longer be resolved.
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Example: Estimation of two sinusoids in WGN

Based on previous example, try to generate these yourselves

x(n) = A1 sin(nω1 + Φ1) +A2 sin(nω2 + Φ2) + w(n)

where

◦ datalength N = 40, N = 64, N = 256

◦ A1 = A2, ω1 = 0.4π, ω2 = 0.45π

◦ A1 6= A2, ω1 = 0.4π, ω2 = 0.45π

◦ produce overlay plots of 50 periodograms and also averaged
periodograms
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Example: Periodogram resolution # two sinusoids
see also Problem 4.6 in your Problem/Answer set

N=40: Overlay of 50 periodograms periodogram average
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N=64: Overlay of 50 periodograms periodogram average
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Effects of the Window Choice

Recall: The spectrum of the (rectangular) window is a sinc which has a
main lobe and sidelobes

All the other window functions (addressed later) also have the
mainlobe and sidelobes.

◦ The effect of the main lobe (its width) is to smear or smooth the
estimated spectrum shape

◦ From the previous slide: the width of the mainlobe causes the next peak
in the spectrum to be masked if the two peaks are not separated by
1/N - the spectral resolution

◦ The sidelobes cause spectral leakage # transferring power from the
correct frequency bin into the frequency bins which contain no signal
power

These effects are dangerous, e.g. when estimating peaky spectra
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Some observations

◦ The Bartlett window biases the periodogram;

◦ It also introduces smoothing, which limits the ability of the
periodogram to resolve closely–spaced narrowband components in x(n);

◦ This is due to the width of the main lobe of WB(f);

◦ Periodogram averaging would reduce the variance (remember MVU
estimators!)

◦ Resolution of the periodogram

– set ∆ω = width of the main lobe of spectral window, at its “half
power”

– for Bartlett window ∆ω ∼ 0.89(2π/N) = periodogram resolution!
– notice that the resolution is inversely proportional to the amount of

data N
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Variance of the periodogram

§ it is difficult to evaluate the variance of the periodogram of an
arbitrary process x(n) since the variance depends on the fourth–order

moments of the process.

© the variance may be evaluated in the special case of WGN −→

E
{
P̂per(f1)P̂per(f2)

}
=

(
1

N

)2∑
k

∑
l

∑
m

∑
n

E {x(k)x(l)x(m)x(n)} ×

× e−2π[f1(k−l)+f2(m−n)]

For WGN, these fourth–order moments become

E {x(k)x(l)x(m)x(n)} =

E{x(k)x(l)}E{x(m)x(n)}+ E{x(k)x(m)}E{x(l)x(n)}+ E{x(k)x(n)}E{x(l)x(m)}
= σ4

x [δ(k − l)δ(m− n) + δ(k −m)δ(l − n) + δ(k − n)δ(l −m)]

This is = σ4
x if k=l, m=n, or k=m, l=n, or k=n, l=m, or otherwise 0
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Variance of the periodogram – contd.

After some simplifications, and recognising

1

N2

N−1∑
k=0

N−1∑
m=0

σ4
x = σ4

x

we have the variance of the periodogram for a given frequency:

var
{
P̂per(f)

}
= P 2

xx(f)

[
1 +

(
sin 2πNf

N sin 2πf

)2
]

For the periodogram to be consistent, var(Pper)→ 0 as N →∞.

From the above, this is not the case ⇒ the periodogram estimator is
inconsistent. In fact, var(Pper(f)) = P 2

x(f) # quite large

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 49



Example: Periodogram of white noise

N=64 N = 128 N=256
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Pxx = 1, E{P̂per(eω)} = 1, var
[
P̂per(e

ω)
]

= 1

Although the periodogram is unbiased, the variance is equal to a
constant, that is, independent of the data length N
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Bias vs variance

Recall that for any estimator, its mean square error (MSE) is given by:

MSE = bias2 + variance

A way to overcome periodogram limitations:

◦ bias performance must be traded for variance performance

◦ the dataset is divided up into independent blocks

◦ the periodograms for every block may be averaged

◦ the resultant estimator is termed the averaged periodogram

P̂aver,per =
1

L

L−1∑
m=0

P̂ (m)
per (f)

From Estimation Theory: averaging of random trials reduces noise power!
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Bias vs variance – recap

◦ Bias pertains to the question: “Does the estimate approach the
correct value as N →∞”.

~ If yes then the estimator is unbiased, else it is biased
~ Notice that the main lobe of the window has a width of 2π/N and

hence when N →∞ we have limN→∞ P̂per(f) = Pxx(f) ⇒
periodogram is an asymptotically unbiased estimator of true PSD.

~ For the window to yield an unbiased estimator:∑N−1
n=0 w

2(n) = N & the mainlobe width ∼ 1
N

◦ Variance refers to the “goodness” of the estimate, that is, whether the
power of the estimation error tend to zero when N →∞.

~ We have shown that even for a very large window the variance of the
estimate is as large as the true PSD

~ This means that the periodogram is not a consistent estimator of
true PSD.
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Properties of the standard periodogram

Functional relationship:

P̂per(ω) =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−nω

∣∣∣∣∣
2

◦ Bias

E
{
P̂per(ω)

}
=

1

2π
Px(ω) ∗ WB(ω)

◦ Resolution

∆ω = 0.89
2π

N

◦ Variance

V ar
{
P̂per(ω)

}
≈ P 2

x(ω)
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Part 3: Periodogram Modifications
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Periodogram modifications # some intuition

Clearly, we need to reduce the variance of the periodogram, since in
general they are not adequate for precise estimation of PSD.

We can think of several modifications:

1) averaging over a set of periodograms (we have already seen the
effect of this in some simulations).

Recall that from the general estimation theory, by averaging M times
we have the effect of var → var/M .

2) applying different windows # it is possible to choose or design a
window which will have a narrow mainlobe

3) overlapping windowed segments for additional variance reduction #
averaging periodograms along one realisation of a random process
(instead of across the ensemble)
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Overview of Periodogram Modifications

                                                                                       © Danilo P Mandic                             Spectral Estimation & Adaptive Signal Processing  

Periodogram Based Methods 

3 

 Windowing 

Modified Periodogram 

Averaging 

Bartlett’s Method 

+ Overlapping windows 

Welch’s Method 
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Windowing: The Modified Periodogram

                                                                                       © Danilo P Mandic                             Spectral Estimation & Adaptive Signal Processing  

Modified Periodogram  

4 

Windowing 

Windowing mitigates the problem of  spurious 

high frequency components in the spectrum.  

 

Reduction the  

“Edge Effects” 
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The Modified Periodogram

The periodogram of a process that is windowed with a suitable general
window w[n] is called a modified periodogram and is given by:

P̂M(ω) =
1

NU

∣∣∣∣∣
∞∑

n=−∞
x[n]w[n]e−nω

∣∣∣∣∣
2

where N is the window length and U = 1
N

∑N−1
n=0 |w[n]|2 is a constant,

and is defined so that P̂M(ω) is asymptotically unbiased.

In Matlab:

xw=x(n1:n2).*w/norm(w);

Pm=N * periodogram(xw);

where, for different windows

w=hanning(N); w=bartlett(N);w=blackman(n);
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The Modified Periodogram – “Windowing”

Recall that

Periodogram ∼ F
(
|x[n]wr[n]|2

)
Therefore: The amount of smoothing in the periodogram is determined

by the window that is applied to the data. For instance, a rectangular
window has a narrow main lobe (and hence least amount of spectral

smoothing), but its relatively large sidelobes may lead to masking of weak
narrowband components.

Question: Would there be any benefit of using a different data window on
the bias and resolution of the periodogram.

Example: can we differentiate between the following two sinusoids for
ω1 = 0.2π, ω2 = 0.3π,N = 128

x[n] = 0.1 sin(nω1 + Φ1) + sin(nω2 + Φ2) + w[n]
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Some common windows for different window lengths:
Time domain Spectrum N=64 Spectrum N=128 Spectrum N=256
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Example: Estimation of two sinusoids in WGN
Modified periodogram using Hamming window

Problem: Estimate spectra of the following two sinusoids using: (a) The
standard periodogram; (b) Hamming-windowed periodogram

x[n] = 0.1 sin(n ∗ 0.2π + Φ1) + sin(n ∗ 0.3π + Φ2) + w[n] N = 128

Hamming window w[n] = 0.54− 0.46 cos
(

2π
n

N

)
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Properties of an ideal window function

Consider a window sequence w(n) whose DFT is a squared magnitude of
another sequence v(n), that is

V (ω) =

M−1∑
k=0

v(k)e−ωk # W (ω) = |V (ω)|2 (positive definite)

Then
M−1∑

k=−(M−1)

w(k)e
−ωk

=

M−1∑
n=0

M−1∑
p=0

v(n)v(p)e
−(n−p)

=

M−1∑
k=−(M−1)

[M−1∑
n=0

v(n)v(n− k)
]
e
−k
, for v(k) = 0, k /∈ [0,M − 1]

This gives

w(k) =

M−1∑
n=0

v(n)v(n− k) = v(k) ∗ v(k) ⇔ W (ω) ≥ 0 pos. semidefinit.

A window design should trade-off between smearing and leakage
For instance: weak sinewave + strong narrowband interference→ leakage more detrimental than smearing

Homework: can we use optimisation to balance between smearing and leakage
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Several frequently used “cosine–type windows”

Idea: suppress sidelobes, perhaps sacrifice the width of mainlobe

◦ Hann window

w = 0.5 * (1 - cos(2*pi*(0:m-1)’/(n-1)));

◦ Hamming window

w = (54 - 46*cos(2*pi*(0:m-1)’/(n-1)))/100;

◦ Blackman window

w = (42 - 50*cos(2*pi*(0:m-1)/(n-1)) +

+ 8*cos(4*pi*(0:m-1)/(n-1)))’/100;
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Performance of the modified periodogram

◦ Bias: Since

U =
1

N

N−1∑
n=0

|w[n]|2 =
1

N

∫ π

−π
|W (eω)|2 dω ⇒ 1

2πNU

∫ π

−π
|W (eω)|2 dω = 1

for N →∞ the modified periodogram is asymptotically unbiased.

◦ Variance: Since P̂M is simply P̂per of a windowed data sequence

V ar
{
P̂M(ω)

}
≈ P 2

xx(ω)

⇒ not a consistent estimate of the power spectrum, and the data
window offers no benefit in terms of reducing the variance

◦ Resolution: Data window provides a trade–off between spectral
resolution (main lobe width) and spectral masking (sidelobe amplitude).
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Periodogram modifications: Effects of different windows

Properties of several commonly used windows with length N :

◦ Rectangular – Sidelobe level = -13 [dB], 3 dB BW → 0.89(2π/N)

◦ Bartlett – Sidelobe level = -27 [dB], 3 dB BW → 1.28(2π/N)

◦ Hanning – Sidelobe level = -32 [dB], 3 dB BW → 1.44(2π/N)

◦ Hamming – Sidelobe level = -43 [dB], 3 dB BW → 1.30(2π/N)

◦ Blackman – Sidelobe level = -58 [dB], 3 dB BW → 1.68(2π/N)

Notice the relationship between the sidelobe level and bandwidth!
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Bartlett’s Method
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Partitioning the data set (K segments of length L each)

Partitioning x(n) into K non–overlapping segments

This way, the total length N = K × L
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Bartlett’s method: Averaging periodograms

The averaged periodogram can be expressed as:

P̂aver,per(f) =
1

K

K∑
m=1

P̂ (m)
per (f)

where for each of the K segments, the segment-wise PSD estimate

P
(i)
per, i = 1, . . . ,K is given by

P (i)
per(ω) =

1

L

∣∣∣∣∣
L−1∑
n=0

xi[n]e−nω

∣∣∣∣∣
2

◦ Idea: to reduce the variance by the factor of “K” = total number of
blocks

◦ Therefore: provided that the blocks are statistically independent (not
often the case in practice) we desire to have

var
{
P̂aver,per(f)

}
=

1

K
var

{
P̂per(f)

}

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 68



Example: Estimation of WGN spectrum using Bartlett’s
method

50 periodograms 50 Bartlett estimates 50 Bartlett estimates

with N = 512 K = 4, L = 128 K = 8, L = 64
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Performance evaluation of Bartlett’s method

◦ Bias: The expected value of Bartlett’s estimate

E
{
P̂B(ω)

}
=

1

2π
Px(ω) ∗ WB(ω)

⇒ asymptotically unbiased.

◦ Resolution: Due to K segments of length L, as a consequence we have
that Res(PB) < Res(Pper), that is

Res
[
P̂B(ω)

]
= 0.89

2π

L
= 0.89 K

2π

N

◦ Variance:

V ar
{
P̂B(ω)

}
≈ 1

K
V ar

{
P̂ (i)
per(ω)

}
≈ 1

K
P 2
x(ω)

For non–white data, variance reduction is not as large as K times!

By changing the values of L and K, Bartlett’s method allows us to:

trade a reduction in spectral resolution for a reduction in variance
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Example: Estimation of two sinewaves in white noise
x[n] =

√
10sin(n ∗ 0.2π + Φ1) + sin(n ∗ 0.25π + Φ2) + w[n]

50 periodograms 50 Bartlett estimates 50 Bartlett estimates

with N = 512 K = 4, L = 128 K = 8, L = 64
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Notice the variance – resolution trade–off!
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Welch Method
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Welch’s method: Averaging modified periodograms

In 1967, Welch proposed two modifications to Bartlett’s method:

◦ allow the sequences xi[n] to overlap

◦ to allow data window w[n] to be applied to each sequence ⇒ averaging
modified periodograms

This way, successive segments are offset by D points and each segment is
L points long

xi[n] = x[n+ iD] n = 0, 1, . . . , L− 1

The amount of overlap between xi[n] and xi+1[n] is L−D points and

N = L+D(K − 1)

N - total number of points, L- length of segments, D- amount of overlap,
K- number of sequences
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Variations on the theme

We may vary between no overlap D=L and say 50 % overlap D = L/2
or anything else.

© we can trade a reduction in the variance for a reduction in the
resolution, since

P̂W (ω) =
1

KLU

K−1∑
i=0

∣∣∣∣∣
L−1∑
n=0

w[n]x[n+ iD]e−nω

∣∣∣∣∣
2

or in terms of modified periodograms

P̂W (ω) =
1

K

K−1∑
i=0

P̂
(i)
M (ω)

 asymptotically unbiased (follows from the bias of the modified
periodogram)
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Welch vs. Bartlett

◦ the amount of overlap between xi[n] and xi+1[n] is L−D points, and if K

sequences cover the entire N data points, then

N = L+D(K + 1)

◦ If there is no overlap, (D = L) we have K = N
L sections of length L as in Bartlett’s

method

◦ Of the sequences are overlapping by 50 % D = L
2 then we may form K = 2NL − 1

sections of length L. thus maintaining the same resolution as Bartlett’s method while

doubling the number of modified periodograms that are averaged, thereby reducing

the variance.

◦ With 50% overlap we could also form K = N
L − 1 sequences of length 2L, thus

increasing the resolution while maintaining the same variance as Bartlett’s method.

Therefore, by allowing sequences to overlap, it is possible to increase the
number and/or length of the sequences that are averaged, thereby trading

a reduction in variance for a reduction in resolution.
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Properties of Welch’s method

◦ Functional relationship:

P̂W (ω) =
1

KLU

K−1∑
i=0

∣∣∣∣∣
L−1∑
n=0

w[n]x[n+ iD]e−nω

∣∣∣∣∣
2

U =
1

L

L−1∑
n=0

|w[n]|2

◦ Bias

E
{
P̂W (ω)

}
=

1

2πLU
Px(ω) ∗ |W (ω)|2

◦ Resolution # window dependent

◦ Variance (assuming 50 % overlap and Bartlett window)

V ar
{
P̂W (ω)

}
≈ 9

16

L

N
P 2
x(ω)
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Example: Two sinusoids in noise # Welch estimates

Problem: Estimate the spectra of the following two sinewaves using
Welch’s method

x[n] =
√

10 sin(n ∗ 0.2π + Φ1) + sin(n ∗ 0.3π + Φ2) + w[n]

Unit noise variance, N = 512, L = 128, 50 % overlap (7 sections)
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SSVEP in EEG # we look for a 14 Hz stimulus in a 50s
recording using Welch’s method

Standard: A 50s EEG from scalp (Oz) and right ear (ITE). Averaged: 27 segments of 12s.

Top: no window Bottom: Hann window
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Blackman-Tukey Method
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Blackman–Tukey method: Periodogram smoothing

Recall that the methods by Bartlett and Welch are designed to reduce the
variance of the periodogram by averaging periodograms and modified

periodograms, respectively.

Another possibility is “periodogram smoothing” often called the
Blackman–Tukey method.

Let us identify the problem §
r̂x[N − 1] =

1

N
x[N − 1]x[0]

⇒ there is little averaging when calculating the estimates of r̂x[k] for
|k| ≈ N .

These estimates will be unreliable no matter how large N . We have two
choices:

◦ reduce the variance of those unreliable estimates

◦ reduce the contribution these unreliable estimates make to the
periodogram
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Blackman–Tukey Method: Resolution vs. Variance

The variance of the periodogram is decreased by reducing the variance of
the ACF estimate by calculating more robust ACF estimates over fewer

data points (M < N).

⇒ Apply a window to r̂x[k] to decrease the contribution of unreliable
estimates and obtain the Blackman–Tukey estimate:

P̂BT (ω) =

M∑
k=−M

r̂x[k]w[k]e−kω

where w[k] is a lag window applied to the ACF estimate.

P̂BT (ω) =
1

2π
P̂per(ω) ∗ W (ω) =

1

2π

∫ π

−π
P̂per(e

u)W (e(ω−u))du

that is, we trade the reduction in the variance for a reduction in the
resolution (smaller number of ACF estimates used to calculate the PSD)
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Properties of the Blackman–Tukey method

◦ Functional relationship:

P̂BT (ω) =

M∑
k=−M

r̂x[k]w[k]e−kω

◦ Bias

E
{
P̂BT (ω)

}
≈ 1

2π
Px(ω) ∗ W (ω)

◦ Resolution– window dependent (window – conjugate symmetric and
with non–negative FT)

◦ Variance: Generally, it is recommended M < N/5.

V ar
{
P̂BT (ω)

}
≈ P 2

x(ω)
1

N

M∑
k=−M

w2[k]

Trade–off: for a small bias M needs to be large to minimize the width
of the mainlobe of W (ω), whereas M should be small in order to
minimize the variance.
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Non-negative definiteness of the BT spectrum estimator
see also Problem 4.9 in your Problem/Answer set

The main problem with periodogram is its high statistical variability. This
arises from:

◦ Poor accuracy of the autocorrelation estimate for large lags m

◦ Accumulating of these errors in the spectrum estimate

These effects can be mitigated by taking fewer points (M instead of N) in
ACF estimation.

Observe that the Blackman–Tukey spectral estimator corresponds to a
locally weighted average of the periodogram.

Roughly speaking:

~ the resolution of the BT estimator is ∼ 1/M

~ the variance of the BT estimator is ∼M/N
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Performance comparison of periodogram–based methods

Let us introduce criteria for performance comparison:

◦ Variability of the estimate

ν =
var

{
P̂x(ω)

}
E2
{
P̂x(ω)

}
which is effectively normalised variance

◦ Figure of merit

M = ν ×∆ω

that is, product of variability and resolution.

M should be as small as possible.
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Performance measures for the Nonparametric methods
of Spectrum Estimation

Method Variability ν Resolution ∆ω Figure of merit M
—————– —————– —————— ————————–
Periodogram 1 0.892π

N 0.892π
N

Bartlett 1
K 0.89K 2π

N 0.892π
N

Welch 9
8

1
K 1.282π

L 0.722π
N

Blackman–Tukey 2
3
M
N 0.642π

M 0.432π
N

◦ Observe that each method has a Figure of Merit which is approximately
the same

◦ Figure of merit are inversely proportional to N

◦ Although each method differs in its resolution and variance, the overall
performance is fundamentally limited by the amount of data that
is available.
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Conclusions

FFT based spectral estimation is limited by:

◦ correlation assumed to be zero beyond N - biased/unbiased estimates

◦ resolution limited by the DFT “baggage”

◦ if two frequencies are separated by ∆f , then we need N ≥ 1
∆f data

points to separate them

◦ limitations for spectra with narrow peaks (resonances, speech, sonar)

◦ limit on the resolution imposed by N also causes bias

◦ variance of the periodogram is almost independent of data length

◦ the derived variance formulae are only illustrative for real–world signals

But also many opportunities: spectral coherency, spectral entropy, TF, ...

Next time: model based spectral estimation for discrete spectral lines
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Appendix: Spectral Coherence and LS Periodogram see

also Problem 4.7 in your P/A sets

The spectral coherence shows similarity between two spectra

Cxy(ω) =
Pxy(ω)[

Pxx(ω)Pyy(ω)
]1/2

It is invariant to linear filtering of x and y (even with different filters)

The periodogram Pper(ω) can be seen as a Least Squares solution to

Pper(ω) = ‖β̂(ω)‖2, β̂ = argmin
β(ω)

N∑
n=1

‖y(n)− βejωn‖2,

Periodogram and LS periodog. for a sinewave mixture (100, 400, 410) Hz
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Appendix: Time-Frequency estimation
time–frequency spectrogram of “Matlab” # ‘specgramdemo‘

Frequency

time

M aaa t l aaa b

For every time instant “t”, the PSD is plotted along the vertical axis

Darker areas: higher magnitude of PSD
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Appendix: Time-Frequency (TF) analysis - Principles

Assume x(n) has a Fourier transform X(ω) and power spectrum |X(ω)|2.

The function TF (n, ω) determines how the energy is distributed in
time-frequency, and it satisfies the following marginal properties:
∞∑

n=−∞
TF (n, ω) = |X(ω)|2 energy in the signal at frequency ω

1

2π

∫ π

−π
TF (n, ω)dω = |x(n)|2 energy at time instant ‘k′ due to all ω

Then

1

2π

∞∑
n=−∞

∫ ∞
∞
TF (n, ω)dω =

∞∑
n=−∞

|x(n)|2

=
1

2π

∫ ∞
−∞
|X(ω)|2dω

giving the total energy (all frequencies and

samples) of a signal. time

ω

k

time−frequency

frequency

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 89



Time–frequency spectrogram of a speech signal

(wide band spectrogram) (narrow band spectrogram)
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(win-len=256, overlap=200, ftt-len=32) (win-len=512, overlap=200, ftt-len=256)

Homework: evaluate all the methods from the lecture for this T-F spectrogram
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TF spectrogram of a frequency-modulated signal
(check also your coursework)

The time-frequency spectrogram of a frequency modulated (FM) signal

y(t) = A cos
[
ω0t+ kf

∫ t

−∞
x(α)dα

]
frequency

time

c© D. P. Mandic Adaptive Signal Processing & Machine Intelligence 91



Opportunities: ARMA spectrum
N=512 samples, freq. res=1/500
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Signal: ARMA(4,4), b=[1, 0.3544, 0.3508, 0.1736, 0.2401] a=[1, -1.3817, 1.5632, -0.8843, 0.4096]

Sometimes we only desire the correct position of the peaks # ARMA Spectrum Estimation
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A note on positive-semidefiniteness of the Rxx

The autocorrelation matrix Rxx = E
[
xxT

]
where x =

[
x[0], . . . , x[N − 1]

]T
. It is symmetric and of size N ×N .

There are four ways to define positive semidefiniteness: (see also
your Problem-Answer sets)

1. All the eigenvalues of the autocorrelation matrix R are such that
λi ≥ 0, for i=1,. . . ,N

2. For any nonzero vector a ∈ RN×1 we have aTRa ≥ 0. For complex
valued matrices, the condition becomes aHRa

3. There exists a matrix U such that R = UUT , where the matrix U is
called a root of R

4. All the principal submatrices of R are positive semidefinite. A principal
submatrix is formed by removing i = 1, . . . , N rows and columns of R

For positive definiteness conditions, replace ≥ with >
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Opportunities: Spectral Entropy

Spectral entropy can be used to measure the peakiness of the spectrum.

This is achieved via the probability mass function (PMF) (normalised PSD) given by

η[i] =
Pper[i]∑N−1
l=0 Pper[l]

→ Hsp = −
N−1∑
i=0

η[i] log2 η[i] =

N−1∑
i=0

η[i] log2

1

η[i]

Intuition:

- peaky spectrum (e.g. sin(x))

# low spectral entropy

- flat spectrum (e.g. WGN) #

high spectral entropy

Figure on the right:
From top to bottom: a)

clean speech, b) spectral

entropy, c) speech +

noise, d)spectral entropy of

(speech+noise)

’That is correct’
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Appendix: Practical issues in correlation and spectrum
estimation
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Appendix: Trade-off in window design
window length # trade-off between spectral resolution and statistical variance

◦ most windows take non-negative values in both time and frequency

◦ They also peak at origin in both domains

For this type of window we can define:

◦ An equivalent time width Nx (Nx ≈ 2M for rectangular and
Nx ≈M for triangular window)

◦ An equivalent bandwidth Bx (≈ determined by window’s length), as

Nw =

∑M−1
k=−(M−1)w(k)

w(0)
Bw =

1
2π

∫ π
−πW (ω)dω

W (0)

We also know that

W (0) =

∞∑
k=−∞

w(k) =

M−1∑
k=−(M−1)

w(k) and w(0) =
1

2π

∫ π

−π
W (ω)dω

It then follows that Nw ×Bw = 1

A window cannot be both time-limited and band-limited, usually M ≤ N/10
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Appendix: More on time–bandwidth products

The previous slide assumes that both w(n) and W (ω) peak at the origin #
most energy concentrated in the main lobe, whose width should be ∼ 1/M.

For a general signal: x(n) and X(ω) can be negative or complex

If x(n) peaks at n0 (cf. X(ω) at ω0)# Nx =

∑∞
n=−∞ |x(n)|
|x(n0)|

, Bx =
1

2π

∫ π
−π |X(ω0)|dω
|X(ω0)|

Because x(n) and X(ω) are Fourier transform pairs:

|X(ω0)| =

∣∣∣∣∣
∞∑

n=−∞
x(n)e−ω0n

∣∣∣∣∣ ≤
∞∑

n=−∞
|x(n)|

|x(n0)| =

∣∣∣∣ 1

2π

∫ π

−π
X(ω)eωn0dω

∣∣∣∣ ≤ 1

2π

∫ π

−π

∣∣X(ω)
∣∣dω

This implies
Nx×Bx ≥ 1 (a sequence cannot be narrow in both time and frequency)

More precisely: if the sequence is narrow in one domain then it
must be wide in the other domain (uncertainty principle)
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Appendix: STFT of a speech signal
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