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Abstract— This paper addresses the problem of wind
profile and wind turbine power estimation. A complex-
valued pipelined recurrent neural network (CPRNN) archi-
tecture is proposed. The network is trained by the complex-
valued real-time recurrent learning (CRTRL) algoritm with
a general ’fully’ complex activation function which makes
it suitable for forecasting wind signal in its complex form
(speed and direction). The subsequent complex-value based
prediction of wind turbine power is shown to significantly
differ from the one based on independent prediction of wind
speed and wind direction with the latter mainly being more
optimistic in predicting the turbine power output.

I. INTRODUCTION

The last few years have witnessed a dramatic increase
in the demand for wind power. Advances in wind turbine
technology and rich and comparatively cheap wind re-
sources improve prospects of deploying the wind power in
daily power system operation as both the base generation
and reserve power supply for peak periods. As a result,
wind turbine (WT) power station operators aim at getting
the most from their power generation process. It implies
an increased need not only for accurate and reliable
information on usually unpredictable wind dynamics but
also for accurate estimation of the corresponding changes
in the wind turbine power output. This paper will focus
on developing a new method and novel design of the
neural network based forecasting system to be used for
estimation of wind turbine power output. For the first
time, a turbine power forecast will be based on a vector-
field wind signal forecast rather than on wind speed and
wind direction being forecasted separately.

The power generated by wind turbines changes because
of the continous fluctuation of both the wind speed and
its direction. Various field measurements have shown that
direction of wind as compared with wind speed has
less influence on WT power output because each turbine
is usually built to face into the wind when operating.
Consequently, and especially at stronger winds, there is no
significant difference in the power generated for different
wind directions. However, the impact of wind direction
on power output is more prominent at milder winds since
they usually come from much wider directions [1]. The
importance of wind direction is of further significance
in spatial correlation studies which aim to assess the
influence of WT position in a wind park [2]. All this
emphasises the need to process a wind signal as a vector
field, i.e., in the complex plane defined by wind speed
and its direction.

Since the wind data are highly nonlinear and nonsta-
tionary, the identification of parameters and contributing
factors to describe the power supplied by this unpre-
dictable, non-controllable and intermittent source is not
trivial. Classical parametric methods such as time-series
(AR, ARMA) methods used widely in short and long-
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term forecasting have limitations in dealing with the
nonlinear and nonstationary nature of wind signals and are
therefore prone to numerical instability and inaccuracy.
The forecasting methods based on a neural network (NN)
approach have been shown as the most promising in
terms of forecasting accuracy and efficient computation
because of their approximation ability for nonlinear map-
pings and generalization in a non-parametric fashion [3].
In particular, more recently introduced recurrent neural
networks (RNNs) as nonlinear dynamical systems which
possess both short— and long— term memory (due to
their feedback) and exhibit attractor dynamics are shown
as particularly suitable for prediction of nonlinear and
nonstationary signals [4].

Most methods for short and long term prediction of
complex time series consider them as two bivariate in-
dependent real time series instead as components on
one complex variable. A pair of activation function is
employed to separately process real and imaginary com-
ponents of the weighted sum of the input signal. This way,
the output from the complex activation function takes split
paths of two unrelated real valued gradients [5].

In this paper, a pipelined recurrent neural network
(PRNN) architecture trained by the complex-valued real-
time recurrent learning (CRTRL) algoritm with a general
*fully’ complex activation function is proposed for estima-
tion of wind profile and wind turbine power. A complex
nature of wind dynamics is discussed in Sec II. In Sec III,
main features of the complex-valued estimation frame-
work based on complex-valued pipelined recurrent neural
network (CPRNN) trained by the CRTRL algorithm are
described. Simulation results are presented in Sec IV.

II. WIND CHARACTERISTICS AND WIND POWER

The power generated by a wind turbine is inherently
dependent on the wind speed. More specifically, the power
which can be extracted from the airflow is given by

Py = ng(a,é‘)Aws (W] )

where p is the air density [kg/m®], C,, is the performance
or power coefficient, a is tip speed ratio, that is, the
ratio between the blade tip speed w; and the wind speed
upstream the rotor w [m/s], € is the blade pitch angle and
A is the area swept by the rotor [m?].

The relation between wind speed and generated power
is usually given by the power curve of the wind turbine.
A power curve, however, is derived under a set of as-
sumptions regarding the wind speed and air density. These
so-called ’ideal data’ are often impractical in estimating
the actual power output of each wind turbine due to a
turbine distance and relative position in the wind park
with respect to the meteorological tower(s). The impact
of wind direction is also notable, especially during mild
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winds when the angle of wind direction can sweep a very
wide range influencing significantly the power output [1].
Further, the topographic conditions often make the power
generated by different turbines be very different, even
under equivalent weather conditions [2]. The introduction
of an extra parameter kg in the power model given by
(1) to reflect the relationship between the turbine position
and reference anemometar is not sufficient to account for
unpredictability in wind direction. More specifically, the
changing wind conditions would require k4 to be a wind-
profile and time dependent function rather than a single
parameter.

As a result, the estimation of actual wind turbine power
should be based on processing the wind-vector measure-
ments ( speed, pressure, temperature and direction). In
particular, wind speed and wind direction can be used as
two separate but strongly correlated inputs which define
a wind signal (Fig 1). The forecasting tool will then be
able not only to reflect the influence of wind speed on
wind power output but also to capture the influence of
wind direction at certain ranges of wind direction angle.

N

Wind
Speed

Fig. 1. Wind data as a complex [speed,direction] quantity

III. THE COMPLEX-VALUED ESTIMATION
FRAMEWORK

Current research on processing signals in the complex
domain has mainly been based on a split-complex acti-
vation function (AF). In a split-complex AF, the real and
imaginary components of the input signal z are split and
fed through the real-valued activation function fr(z) =
fr(z), z € R The equation of the split activation function
is given as f(z) = fr(Re(z)) + jfr(Im(z)). Although
bounded, a split-complex AF cannot be analytic, and thus
cannot cater for signals with strong correlation between
magnitude and phase [5]. The newly proposed complex-
valued real time recurrent learning (CRTRL) algorithm
for a fully connected recurrent neural network (FCRNN)
is however suitable for adaptive filtering of complex-
valued nonlinear and nonstationary signals with strong
component correlations. In addition, this algorithm is
generic and represents a natural extension of the real-
valued RTRL.

A. The basic algorithm

Fig 2 shows a FCRNN, which consist of N neurons
with p external inputs. The network has two distinct layers
consisting of the external input-feedback layer and a layer
of processing elements. Let y;(k) denote the complex-
valued output of each neuron, ! = 1,..., N at time index
k and s(k) the (1 x p) external complex-valued input
wind signal vector. The overall input to the network Z(k)
represents a concatenation of vectors y(k), s(k) and the
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Fig. 2.

bias input (1 + j), and is given by
Z(k) = [s(k—1),...,8(k —p),1+j,m(k—1),
. ,yN(]C - 1)]T
= Zn(k) +§Zn(k), P+ N +0)

where j = v/—1 and the superscripts (-)" and (-)* denote
respectively the real and imaginary part of a complex
number. A complex-valued weight matrix for the network
is denoted by W, where for the nth neuron, its weights
form a (p + N + 1) x 1 dimensional weight vector
wl = [wi1,..., W p+N+1]). The output of each neuron

n=1,...

can be expressed as y; (k) = ®(net;(k)), [=1,...,N,
where p+N+1
net(k) = Y win(k)Zn(k) (3)
n=1

is the net input to [th node at time index k. For simplicity,
state that )
yi(k) = " (nety(k)) + j®* (nety(k)) = wi(k) + jui(k)
4
where @ is a complex nonlinear activation function of a
neuron.

B. Complex-valued real time recurrent learning (CRTRL)
algorithm

The output error which consists of its real and imagi-
nary parts can be expressed as

e(k) = d(k) - y1 (k) = e" (k) + je' (k) ©)
e’(k) = d'(k) —ui(k), €'(k)=d'(k)—u(k) (6

where d(k) is the teaching signal. For real-time appli-
cations and gradient descent algorithms the cost func-
tion of the network is given by E(k) = %,—|e(k:)|2 =
Le(k)e* (k) = § [(er)2 + (€%)?] 161, where (-)* denotes
the complex conjugate. The CRTRL aims at minimising
the error by recursively altering the weight coefficients
based on the gradient search technique, given by

wl,n(k + 1) = wl,n(k) - T]vwl,n E(k)lwz,n:wlvn(k) @)

Notice that E(k) is a real-valued function and to calculate
the gradient, the partial derivates of E(k) with respect
to the real and imaginary part of the weight coefficients
separately have to be derived, as
OE(k)
owy ,

OE(k)

7
aw,,n

®

Vo Elk) =
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Calculating the gradient of the cost function with respect
to the real part of the complex weight gives!

OE(R) _ 9 (ou(k) |, 08 (ou® )
qup 00~ Bur \duj, (k) ) "o \Bup, (5 ) ¢

Similarly, the derivative of the cost function with respect
to the imaginary part of the complex weight yields

OE(k)  OFE [ Ouy(k) + OFE ( Oui(k)
owj (k) Our \ uj (k) dur \ dwj (k) |°
10)
dui(k) _dvi(k) duy (k) dv1 (k)
aw‘rjn(ky aw{n(k) ) Bw;’l"(k) and 311);?"(16) are
measures of sensitivity of the output of the Ith neuron
at time k to a small variation in the value of wy (k).
For convenience, denote the corresponding sensitivities

as (k) = Ou,y (k) (k) = aUl(ka)’ 7ri(k) =

The factors

owy, (k) dwy . (
M and (k) = LulB) o g complex function
Ow; , (k) owj (k)

to be analytic at a point in C, it needs to satisfy the
Cauchy-Riemann? equations [5]. To arrive at the Cauchy-
Riemann equations, the partial derivatives (sensitivities)
along the real and imaginary axes should be equal, that is
w(k) = 7" (k) + jxi" (k) = wi(k) — jw"i(k). Equating
the real and imaginary parts of the sensitivies leads to
7w (k) = wl k), wT (k) = —wT (k) (D)

By using the Cauchy-Riemann equations, a more compact
representation of VyE(k) is obtained as VwE(k) =
e(k)m* (k). The total weight matrix update is then

W(k + 1) = W(k) + ne(k)m* (k) (12)
with the initial condition 7 (0) = 0. Following the ap-
proach from [7], the update for the sensitivities 7*(k) =
7" (k) + jw"(k) can be derived as

w (k) = {2 (%)}’ [%Z;(k) +wi(k)w(k-1)| (13)

1
Jln:{ 0

is the Kronecker delta.

where
=n

A (1

C. The complex-valued pipelined recurrent neural net-
work (CPRNN)

The CPRNN architecture contains M modules of
FCRNNs connected in a nested manner as shown in
Fig 3. The (p x 1) dimensional external complex-valued
wind signal vector s¥(n) = [s(n — 1),...,5(n — p)]
is delayed by m time steps (2~ ™I) before feeding the
module m, where 2™, m = 1,..., M denotes the m-
step time delay operator, and I is the (p X p) dimensional
identity matrix. The complex-valued weight vectors w; are
embodied in an (p+N+1)x N dimensional weight matrix
W = [wy,...,wy]. All the modules operate using the
same weight matrix W. A full mathematical description
of the CPRNN is given by [8]

yr1(k) = ®(net (k)), t=1,2,...,.M (15)

'We derive the CRTRL for prediction applications (only one output
y1), however the derivation is general enough to be straight forwardly
extended to a RNN with more than one output.

2Cauchy-Riemann equations state that the partial derivatives of a
function f(z) = u(z,y) + jv(z,y) along the real and imaginary axes
should be equal: f'(2) = g—z + jg—; = g—; — jg—;‘. Therefore, the

-Ri i cOu _ Qv fu _ T Ou
Cauchy-Riemann equations are as: 52 = 5y 62 = — oy
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Fig. 3.

Pipelined Recurrent Neural Network (PRNN)

p+N+1

l=1,...,N
nety (k) = ; wan(B)Zea®R),
(16)

zl' (k) = [s(k=1t),...,s(k—t—p+1),1,
yt+1,1(k - 1)vyt‘2(k - 1)a v 7yt,N(k - 1)]
for 1<t<M-1 an

2 (k) = [s(k = M),...,s(k— M —p+1),1,
yM,l(k - ]-))yM,Q(k - 1)7 . ',yM,N(k - 1)]
for t=M (18)

where ®(-) is the activation function. For simplicity, state
that

3" (net, (k) + j®* (net, 1 (k)
ug (k) + jue,i(k) (19)

The overall output signal of the CPRNN is y; 1(k), the
output of the first neuron of the first module. At every time
step k, for every module t,t = 1,..., M, the one-step
forward prediction error e;(k) associated with a module
is then defined as e; (k) = s(k—t+1)—y:1(k) = e} (k) +
jei(k). Since the CPRNN consists of M modules, a total
of M forward prediction error signals are calculated. The
original cost function introduced in [7] is modified to suit
the complex domain as

M M
E(k) = 3 A® le®I? = 3 M) ee(b)ef ()] 20)

Z/t,l(k)

I

which is the weighted sum of squared errors at the output
of every module of the CPRNN and A(k) is a possible
variable forgetting factor. The aim is to minimise (20)
along the entire CPRNN. Hence, the weight correction for
the nth weight of neuron [ at the time instant & is derived

as Awyn(k) = ~ngulm (zj‘i LK) |et(k)|2). The
weight update of the CPRNN is finally given by-
wl,n(k + 1) = w[,n(k) - T]Vw,‘nE(k)m,‘n:wl'n(k)
= wi,n(k) + ne(k)my (k)
= win(k) + e (k) {* (nets (k)} x
[6inZi (k) + Wi (k)mr (k- 1)] (2D

IV. SIMULATION RESULTS

The complex-valued real-world wind signal
. is used as an input to the CPRNN. The
wind data are obtained from the website

"http://mesonet.agron.iastate.edu/request/awos/Imin.php’
which gives wind velocities and directions at 1-min
averages.
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The nonlinearity at the neuron was chosen to be the
logistic sigmoid function ®(z) = H_—el_,;; where z is
complex-valued. The slope was chosen to be § = 1 and
learning rate for the CPRNN architecture was choosen
to be 7 = 0.01. The forgetting factor for the CPRNN
architecture was A = 0.8. The number of modules is
chosen to be M = 5, number of neurons in a module
N =2 and number of tap inputs p = 5.

Fig 4 shows the prediction performance of the CPRNN
applied to the complex-valued wind signal. It can be
observed that the CPRNN was able to track the complex
wind signal very accurately. On the contrary, Fig 5 shows
a poor wind prediction when algorithm with split-complex
activation function is employed.

Wind Speed (m/s)

0 1000 2000 3000 402}0 5000
Number of iterations (k)

Fig. 4. Prediction of complex wind signal using ’fully’ CRTRL. Solid

curve: nonlinear prediction of wind signal. Dashed curve: actual wind

signal

Wind Speed (nvs)

: - :
0 1000 20‘00 3(;&) d[)‘()(] 5000
Number of iterations (k}

Fig. 5. Prediction of complex wind signal using CRTRL employing
split activation function. Solid curve: nonlinear prediction of wind

signal. Dashed curve: actual wind signal

To illustrate the importance of wind direction, the
power prediction with respect to the predicted wind
direction is shown in Fig 6 for both the split and ’fully’
case of the CRTRL algorithm. It could be observed that
wind blowing from different directions has different speed
which results in different wind turbine power output. It
is also worth noticing that while both methods capture
the strongest wind directions, the split-based CRTRL al-
gorithm predicts a slightly wider range of directions with
strong wind. Similarly, the split-based power estimation
mainly results in higher power estimates than a fully-
complex one as shown in Fig 7.

V. CONCLUSION

The paper formulates and solves the problem of esti-
mation of wind profile and wind turbine power in the
complex domain taking into account the strong corre-
lation of two wind components, wind speed and wind
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Fig. 6. Prediction of WT power with respect to wind direction
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Fig. 7. Prediction of WT power with respect to time

direction. A complex-valued pipelined recurrent neural
network (CPRNN) for prediction of nonlinear and non-
stationary signals has been used. The complex-valued
real time recurrent learning (CRTRL) algorithm has been
introduced for nonlinear adaptive filtering performed by
RNNs in the complex domain, and has been derived
for a general complex activation function of a neuron.
Unlike the previous algorithms of this kind, the proposed
CRTRL algorithm is generic and applicable for a variety
of complex signals including those with strong component
correlations. The performance of the CPRNN architecture
has been evaluated on real-life wind signals and have
shown to give high accuracy of wind profile and wind
turbine power prediction.
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