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T
he Kalman filter and the 
least mean square (LMS) 
adaptive filter are two of the 
most popular adaptive esti-
mation algorithms that are 

often used interchangeably in a number 
of statistical signal processing applica-
tions. They are typically treated as sepa-
rate entities, with the former as a 
realization of the optimal Bayesian esti-
mator and the latter as a recursive solu-
tion to the optimal Wiener filtering 
problem. In this lecture note, we con-
sider a system identification framework 
within which we develop a joint perspec-
tive on Kalman filtering and LMS-type 
algorithms, achieved through analyzing 
the degrees of freedom necessary for 
optimal stochastic gradient descent adap-
tation. This approach permits the intro-
duction of Kalman filters without any 
notion of Bayesian statistics, which may 
be beneficial for many communities that 
do not rely on Bayesian methods [1], [2]. 

There are several and not immediately 
patent aspects of common thinking 
between gradient descent and recursive 
state-space estimators. Because of their 
nonobvious or awkward nature, these are 
often overlooked. Hopefully the frame-
work presented in this article, with the 
seamless transition between LMS and Kal-
man filters, will provide a straightforward 
and unifying platform for understanding 
the geometry of learning and optimal 
parameter selection in these approaches. 
In addition, the material may be useful in 
lecture courses in statistical signal pro-
cessing, or indeed, as interesting reading 
for the intellectually curious and generally 
knowledgeable reader. 

Notation
Lowercase letters are used to denote sca-
lars, e.g., ;a  boldface letters for vectors, 

;a  and boldface uppercase letters for 
matrices, A.  Vectors and matrices are 
respectively of dimensions M 1#  and 

.M M#  The symbol ( ) T$  is used for vec-
tor and matrix transposition and the 
subscript k  for discrete time index. 
Symbol E ·" , represents the statistical 
expectation operator, tr ·" , is the matrix 
trace operator, and · 2  the l2  norm. 

Problem Formulation
Consider a generic system identification 
setting 

	 ,x wd no
k k

T
k k= + � (1)

where the aim is to estimate the unknown 
true system parameter vector, wo

k  (optimal 
weight vector), which characterizes the sys-
tem in (1) from observations, ,dk  corrupted 
by observation noise, .nk  This parameter 
vector can be fixed, i.e., ,w wk

o o=  or time 
varying as in (1), while xk  designates a 
zero-mean input vector and nk  is a zero-
mean white Gaussian process with variance 

.E nn k
2 2v = " ,  For simplicity, we assume 

that all signals are real valued.
To assist a joint discussion of state-

space and regression-type models Table 1 
lists the terms commonly used across dif-
ferent communities for the variables in 
the system identification paradigm in (1). 

We first start the discussion with a deter-
ministic and time-invariant optimal weight 

vector, ,w wk
o o=  and build up to the gen-

eral case of a stochastic and time-varying 
system to give the general Kalman filter.  

Performance  
Evaluation Criteria
Consider observations from an unknown 
deterministic system 

	 .x wd nk k k
oT= + � (2)

We desire to estimate the true parameter 
vector wo  recursively, based on the 
existing weight vector estimate wk 1-  
and the observed and input signals, i.e., 

( , , ) .w w w xf dk k k k1
o = = -t  Notice that 

, ,w xdk k k1-  are related through the out-
put error 

	 .x we dk k k k 1
T= - - � (3)

Performance of statistical learning 
algorithms is typically evaluated based 
on the mean square error (MSE) crite-
rion, which is defined as the output error 
power and is given by 

	 .E eMSE k k
2def

p= = " , � (4)

Since our goal is to estimate the true 
system parameters, it is natural to also 
consider the weight error vector 

	 ,w w wk k
def o= -u � (5)

and its contribution to the output error, 
given by 

	 .x we nk k k k1
T= +-u � (6)
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[Table 1] The Terminology used in different communities.

Area dk xk wk
o

Adaptive filtering Desired signal Input regressor True/optimal weights

Kalman filtering Observation Measurement State vector

Machine learning Target Features Hypothesis parameters
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Without loss of generality, here we 
treat xk  as a deterministic process, 
although in adaptive filtering convention 
it is assumed to be a zero-mean stochas-
tic process with covariance matrix 

.x xER k k
T= " ,  Our assumption con-

forms with the Kalman filtering litera-
ture, where the vector xk  is often 
deterministic (and sometimes even time 
invariant). Replacing the output error 
from (6) into (4) gives 

	
( )wx

x x

E n

P
k k k k

k k k n

1
2

1
2

T

T

p

v

= +

= +

-

-

u" ,

� (7a)

	 ,, mink
def

exp p= + � (7b)

where w wEPk k k1 1 1
def T=- - -u u" , is the sym-

metric and positive semidefinite weight 
error covariance matrix, and the noise 
process nk  is assumed to be statistically 
independent from all other variables. 
Therefore, for every recursion step, ,k  
the corresponding MSE denoted by kp  
comprises two terms: 1) the time-vary-
ing excess MSE (EMSE), ,,kexp  which 
reflects the misalignment between the 
true and estimated weights (function of 
the performance of the estimator), and 2) 
the observation noise power, ,min n

2p v=  
which represents the minimum achiev-
able MSE (for )w wk

o=  and is indepen-
dent of the performance of the estimator. 

Our goal is to evaluate the perfor-
mance of a learning algorithm in identify-
ing the true system parameters, ,wo  and a 
more insightful measure of how closely 

the estimated weights, ,wk  have 
approached the true weights, ,wo  is the 
mean square deviation (MSD), which rep-
resents the power of the weight error vec-
tor and is given by 

	
.

w wwJ E EMSD

tr P
k k k k

k

2def T= = =

=

u uu" "

"

,

,

,

�(8)

Observe that the MSD is related to the 
MSE in (7a) through the weight error 
covariance matrix, ,w wEPk k k

T= u u" ,  and 
thus minimizing MSD also corresponds to 
minimizing MSE. 

Optimal Learning Gain  
for Stochastic Gradient 
Algorithms
The LMS algorithm employs stochastic 
gradient descent to approximately mini-
mize the MSE in (4) through a recursive 
estimation of the optimal weight vector, 
wo  in (2), in the form w wk k 1= -  

.E ewk k
2dn- " ,  Based on the instanta-

neous estimate ,E e ek k
2 2." ,  the LMS 

solution is then given by [3] 

	
.

w w w

w x e

LMS: k k k

k k k k

1

1 n

D= +

= +

-

- � (9)

The parameter kn  is a possibly time-vary-
ing positive step-size that controls the 
magnitude of the adaptation steps the 
algorithm takes; for fixed system parame-
ters this can be visualized as a trajectory 
along the error surface—the MSE plot 
evaluated against the weight vector, 

( ) .wkp  Notice that the weight update 

w x ek k k knD =  has the same direction as 
the input signal vector, ,xk  which makes 
the LMS sensitive to outliers and noise in 
data. Figure 1 illustrates the geometry of 
learning of gradient descent approaches 
for correlated data (elliptical contours of 
the error surface)—gradient descent per-
forms locally optimal steps but has no 
means to follow the globally optimal 
shortest path to the solution, .wo  It is 
therefore necessary to control both the 
direction and magnitude of adaptation 
steps for an algorithm to follow the short-
est, optimal path to the global minimum 
of error surface, ( ) .wop  

The first step toward Kalman filters is 
to introduce more degrees of freedom by 
replacing the scalar step-size, ,kn  with a 
positive definite learning gain matrix, ,Gk  
so as to control both the magnitude and 
direction of the gradient descent adapta-
tion, and follow the optimal path in 
Figure 1. In this way, the weight update 
recursion in (9) now generalizes to 

	 .w w x eGk k k k k1= +- � (10)

Unlike standard gradient-adaptive step-
size approaches that minimize the MSE 
via /k k2 2p n  [4], [5], our aim is to intro-
duce an optimal step-size (and learning 
gain) into the LMS based on the direct 
minimization of the MSD in (8). For con-
venience, we consider a general recursive 
weight estimator 

	 ,w w egk k k k1= +- � (11)

which represents both (9) and (10), where 
the gain vector 

,
,

( ),
( ) .

x
x

9
10

for the conventional LMS in
for a general LMS in

g

G

k

k k

k k

def

n

=

'
�

(12)

To minimize the MSD, given by 
,wJ E tr Pk k k

2= =u" ", ,  we first estab-
lish the weight error vector recursion for 
the general LMS by subtracting wo  from 
both sides of (11) and replacing the output 
error with ,x we nk k k k1

T= +-u  to give 

	 .w w x w ng gk k k k k k k1 1
T= - -- -u u u � (13)

The recursion for the weight error covari-
ance matrix, ,Pk  is then established upon 
postmultiplying both sides of (13) by their 

w1

w
2

Gradient
Descent Path

Optimal Path

True Weights

w  = [w1, w2 ]T° ° °

[FIG1]  Mean trajectories of an ensemble of noisy single-realization gradient descent 
paths for correlated data. The LMS path, produced based on (9), is locally optimal 
but globally slower converging than the optimal path.
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respective transposes and applying the sta-
tistical expectation operator E ·" , to both 
sides, to yield 

	

.

w w

x P x

x x

EP

g g
P P g g P

k k k

k k k k k k k

k k k k k n1
2

1 1 1

T

T

T T

T v

=

+ +

= - +

-

- - -

u u

^

^

h

h

" ,

�

(14)

Using the well-known matrix trace 
identities, x xtr trP g g Pk k k k k k1 1

T T=- -" ", ,  
xg Pk k k1

T= -  and ,tr g g gg gk k k k k
2T T= =" ,  

the MSD evolution, ,J tr Pk k= " ,  is 
obtained as 

	
.

x

x x

J J 2g P
g P

k k k k k

k k k k n

1 1

2
1

2T

T

v

= -

+ +

- -

-^ h � (15)

Optimal scalar  
step-size for LMS
The standard optimal step-size approach 
to the LMS aims at  achieving 

,x we d 0|k k k k k1
T= - =+  where the a pos-

teriori error, ,e |k k1+  is obtained using the 
updated weight vector, ,wk  and the cur-
rent input, .xk  The solution is known as 
the normalized LMS (NLMS), given by (for 
more details, see [6]) 

.w w
x

x e1NLMS: k k
k

k k1 2= +- � (16)

The effective LMS-type step-size, 
/ ,x1k k

2n =  is now time varying and 
data adaptive. In practice, to stabilize the 
algorithm a small positive step-size kt  can 
be employed, to give / .xk k k

2n t=  
The NLMS is therefore conformal with 
the LMS, whereby the input vector, ,xk  
is normalized by its norm, xk

2  (input 
signal power). 

To find the optimal scalar step-size 
for the LMS in (9), which minimizes the 
MSD, we shall first substitute the gain 

xgk k kn=  into (15), to give the MSD 
recursion 

	
( ) .

x x

x x x

J J 2 P

P

k k k k k k

k k k k k n

1 1

2 2
1

2T

T

,ex k

k

n

n v

= -

+ +

p

p

- -

-1 2 3444 444

1 2 344 44

� (17)

The optimal step-size, which minimizes 
MSD, is then obtained by solving for kn  
in (17) via / ,J 0k k2 2n =  to yield [7] 

	
.

x x x
x x

x

1

1

P
P

,

k
k k k k n

k k k

k k

k

2
1

2
1

2

T

normalization

ex

T

n
v

p

p

=
+

=

-

-

correction

^ h

= :

� (18)

Remark 1 
In addition to the NLMS-type normaliza-
tion factor, / ,x1 k

2  the optimal LMS 
step-size in (18) includes the correction 
term, / ,1,k kex 1p p  a ratio of the EMSE, 

, ,ex kp  to the overall MSE, .kp  A large devi-
ation from the true system weights causes 
a large /, k kexp p  and fast weight adaptation 
(cf. slow adaptation for a small / ) ., k kexp p  
This also justifies the use of a small step-
size, ,kt  in practical NLMS algorithms, 
such as that in “Variants of the LMS.”

From LMS to Kalman Filter
The optimal LMS step-size in (18) aims to 
minimize the MSD at every time instant, 
however, it only controls the magnitude of 
gradient descent steps (see Figure 1). To 
find the optimal learning gain that con-
trols simultaneously both the magnitude 

and direction of the gradient descent in 
(10), we start again from the MSD recur-
sion [restated from (15)] 

	
.

x

x x

J J 2g P
g P

k k k k k

k k k k n

1 1

2
1

2T

T

v

= -

+ +

- -

-^ h
	

The optimal learning gain vector, ,gk  
is then obtained by solving the above MSD 
for ,gk  via / ,gJ 0k k2 2 =  to give 

	
.

x x
x x

x

g
P

P P

G

k
k k k n

k
k

k

k
k

k k

1
2

1 1
T v p

=
+

=

=

-

- -

� (19)

This optimal gain vector is precisely the 
Kalman gain [8], while the gain matrix, 

,Gk  represents a ratio between the weight 
error covariance, ,Pk 1-  and the MSE, .kp  
A substitution into the update for Pk  in 
(14) yields a Kalman filter that estimates 
the time-invariant and deterministic 
weights, ,wo  as outlined in Algorithm 1.

Remark 2
For ,1n

2v =  the Kalman filtering equa-
tions in Algorithm 1 are identical to the 
recursive least squares (RLS) algorithm. 
In this way, this lecture note complements 
the classic article by Sayed and Kailath [9] 
that establishes a relationship between the 
RLS and the Kalman filter. 

Scalar Covariance Update
An additional insight into our joint per-
spective on Kalman and LMS algorithms 
is provided for independent and identically 
distributed system weight error vectors, 
whereby the diagonal weight error 

Variants of the LMS

To illustrate the generality of our results, consider the NLMS 
and the regularized NLMS (also known as f-NLMS), given 
by 

	 : ,w w
x
x eNLMS k k k
k

k
k1 2t= -- � (S1)

	 : ,w w
x

x eNLMS k k
k

k
k

k
1 2f

f
- = +

+
- � (S2)

where kt  is a step-size and kf  a regularization factor. Based on 
(17) and (18), the optimal values for kt  and kf  can be found as 

	
,
, .

P
P

Px x
x x

x x
x

k
k k k n

k k k
k

k k k

k n

1
2

1

1

2 2

T

T

Tt
v

f
v

=
+-

-

-

� (S3)

Upon substituting kt  and kf  from (S3) into their respective 
weight update recursions in (S1) and (S2), we arrive at 

	
( )

,
P

Pw w
x x

x x
x
x e1k k
k

k

k k k n

k k k
k

1
2

1
2T

T

=
v

+
+-

-
- � (S4)

for both the NLMS and f-NLMS, which is identical to the LMS 
with the optimal step-size in (18). Therefore, the minimization 
of the mean square deviation with respect to the parameter: 
1) kn  in the LMS, 2) kt  in the NLMS, and 3) kf  in the -f NLMS, 
yields exactly the same algorithm, which is intimately related 
to the Kalman filter, as shown in Table 2 and indicated by the 
expression for the Kalman gain, .gk



[lecture notes] continued

	 IEEE SIGNAL PROCESSING MAGAZINE  [120] no vember 2015	

covariance matr ix  i s  g iven by 
,P I,k P k1 1

2v=- -  while the Kalman gain, 
,gk  in (19) now becomes 

	 ,
x x

x
x

xg
,

,
k

P k k k n

P k
k

k k

k

1
2 2

1
2

2Tv v

v

f
=

+
=

+-

-

� (20)

where / ,k n P k
2

1
2def

f v v= -  denotes the regu-
larization parameter and ,P k 1

2v -  is the 
estimated weight error vector variance.

Remark 3 
A physical interpretation of the regulariza-
tion parameter, ,kf  is that it models our con-
fidence level in the current weight estimate, 

,wk  via a ratio of the algorithm-independent 
minimum MSE, ,min n

2p v=  and the algo-
rithm-specific weight error variance, 

.,P k 1
2v -  The more confident we are in cur-

rent weight estimates, the greater the value 
of kf  and the smaller the magnitude of the 
weight update, .w egk k kD =  

To complete the derivation, since 
P I,k P k

2v=  and ,Mtr P ,k P k
2v=" ,  the 

MSD recursion in (15) now becomes 

	
( )

.
x
x

M
, , ,P k P k

k k

k
P k

2
1

2
2

2

1
2v v

f
v= -

+
- -

� (21)

The resulting hybrid “Kalman-LMS” algo-
rithm is given in Algorithm 2. 

Remark 4
The form of the LMS algorithm outlined 
in Algorithm 2 is identical to the class of 
generalized normalized gradient descent 
(GNGD) algorithms in [5] and [10], 
which update the regularization param-
eter, ,kf  using stochastic gradient 
descent. More recently, Algorithm 2 was 
derived independently in [11] as an 
approximate probabilistic filter for linear 
Gaussian data and is referred to as the 
probabilistic LMS. 

From Optimal LMS  
to General Kalman Filter
To complete the joint perspective on the 
LMS and Kalman filters, we now consider 
a general case of a time-varying and sto-
chastic weight vector wk

o  in (1), to give 

	 , ~ ( , ),w w q q Q0F Nk k k k k s1
o o= ++ � (22a)

	 , ~ ( , ) .x wd n n 0Nk k k k k n
2oT v= + � (22b)

The evolution of the true weight vector 
wk

o  is governed by a known state transi-
tion matrix, ,Fk  while the uncertainty in 
the state transition model is represented 
by a temporally white state noise vector, 

,qk  with covariance ,EQ q qs k k
T= " ,  

which is uncorrelated with observation 
noise .nk  The optimal weight vector evo-
lution in (22a) requires both the update of 
the current state estimate, ,w |k k  in an 
LMS-like fashion and the prediction of the 
next state, ,w |k k1+  as below 

( ),w w x wdg| | |k k k k k k k k k1 1
T= + -- -

� (23a)
	 ,w wF| |k k k k k1 =+ � (23b)

where gk in (23a) is the Kalman gain. Figure 2 
illustrates that, unlike the standard LMS or 
deterministic Kalman filter in Algorithm 1, 

Algorithm 2: �A hybrid Kalman-LMS algorithm.

At each time instant ,k 02  based on measurements { , }xdk k

1) Compute the confidence level (regularisation parameter): 

	 / ,k n P k
2

1
2f v v= -

2) Update the weight vector estimate: 

	 ( )w w
x
x x wdk k

k k

k
k k k1 2 1

T

f
= +

+
-- -

3) Update the weight error variance: 

	
( )x

x
M

, , ,P k P k
k k

k
P k

2
1

2
2

2

1
2v v

f
v= -

+
- -

M
ea

n 
S

qu
ar

e 
E
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or

Fk

Fkξmin

ξk (w )

ξk+1|k (w )

ξ (wk |k )
ξ (wk+1|k )

wk° wk+1
°

[FIG2]  The time-varying state transition in (22a) results in a time-varying MSE 
surface. For clarity, the figure considers a scalar case without state noise. Within the 
Kalman filter, the prediction step in (23b) preserves the relative position of w |k k1+

with respect to the evolved true state, .wk 1
o
+

Algorithm 1: �The Kalman filter for deterministic states.

At each time instant ,k 02  based on measurements { , }xdk k

1) Compute the optimal learning gain (Kalman gain): 

	 /x xg P x Pk k k k k k n1 1
2T v= +- -^ h

2) Update the weight vector estimate: 

	 ( )w w x wdgk k k k k k1 1
T= + -- -  

3) Update the weight error covariance matrix: 

	 xP P g Pk k k k k1 1
T= -- -
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the general Kalman filter in (23a) and (23b) 
employs its prediction step in (23b) to track 
the time-varying error surface, a “frame of 
reference” for optimal adaptation. 

The update steps (indicated by the 
index | )k k  and the prediction steps 
(index | )k k1+  for all the quantities 
involved are defined below as 

	
,

,

w w w

w wEP

| |

| | |

k k k k k

k k k k k k

def o

def T

= -

=

u

u u" ,

	 ,w w w wF q| | |k k k k k k k k k1 1 1
def o= - = ++ + +u u

	
.

w wEP
F P F Q

| | |

|

k k k k k k

k k k k s

1 1 1
def T

T

=

= +

+ + +u u" ,

� (24)

Much like (13)–(17), the Kalman gain 
is derived based on the weight error vector 
recursion, obtained by subtracting the 
optimal time-varying wk

o  from the state 
update in (23a), to yield  

	 ,w w x w ng g| | |k k k k k k k k k k1 1
T= - -- -u u u �(25)

so that the evolution of the weight error 
covariance becomes 

	

.

w w
x x

x x

EP
P P g g P
g g P

|

| | |

|

| |k k k k k k

k k k k k k k k k k

k k k k k k n
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T T

T

v
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= - +
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-

T

u u

^

^

h

h
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� (26)

Finally, the Kalman gain, ,gk  which 
minimizes the MSD, ,J tr P| |k k k k= " ,  is 
obtained as [1] 

	 .
x x

x xg
P

P
G

|

|
k

k k k k n

k k
k k k

1
2

1
T v

=
+

=
-

- � (27)

which is conformal with the optimal LMS 
gain in (19). The general Kalman filter 
steps are summarized in Algorithm 3.

Remark 5 
Steps 1–3 in Algorithm 3 are identical to 
the deterministic Kalman filter that was 
derived starting from the LMS and is 
described in Algorithm 1. The essential 

difference is in steps 4 and 5, which cater 
for the time-varying and stochastic gen-
eral system weights. Therefore, the funda-
mental principles of the Kalman filter can 
be considered through optimal adaptive 
step-size LMS algorithms. 

Conclusions
We have employed “optimal gain” as a 
mathematical lens to examine conjointly 
variants of the LMS algorithms and Kalman 
filters. This perspective enabled us to create 
a framework for unification of these two 
main classes of adaptive recursive online 
estimators. A close examination of the rela-
tionship between the two standard perfor-
mance evaluation measures, the MSE and 
MSD, allowed us to intuitively link up the 
geometry of learning of Kalman filters and 
LMS, within both deterministic and sto-
chastic system identification settings. The 
Kalman filtering algorithm is then derived 
in an LMS-type fashion via the optimal 
learning gain matrix, without resorting to 
probabilistic approaches [12]. 

Such a conceptual insight permits 
seamless migration of ideas from the 
state-space-based Kalman filters to the 
LMS adaptive linear filters and vice versa 
and provides a platform for further devel-
opments, practical applications, and non-
linear extensions [13]. It is our hope that 
this framework of examination of these 
normally disparate areas will both demys-
tify recursive estimation for educational 
purposes [14], [15] and further empower 
practitioners with enhanced intuition and 
freedom in algorithmic design for the 
manifold applications. 
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[Table 2] a Summary of optimal gain vectors. The optimal step-sizes 
for the LMS-type algorithms are linked to the a priori variant of the 
Kalman gain vector, ,gk  since P P|k k k1 1=- -  for deterministic and time-
invariant system weight vectors.

Algorithm Gain vector Optimal gain vector 
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Algorithm 3: �The general Kalman filter.

At each time instant ,k 02  based on measurements { , }xdk k

  1) Compute the optimal learning gain (Kalman gain): 

	 /x x xg P P| |k k k k k k k k n1 1
2T v= +- -^ h

  2) Update the weight vector estimate: 

	 ( )w w x wdg| | |k k k k k k k k k1 1
T= + -- -

  3) Update the weight error covariance matrix: 

	 xP P g Pk k k k k1 1
T= -- -

  4) Predict the next (posterior) weight vector (state): 

	 w wF| |k k k k k1 =+

  5) Predict the weight error covariance matrix: 

	 P F P F Q| |k k k k k k s1
T= ++
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