Blind source extraction based on a linear predictor
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Abstract: A rigorous analysis of the blind source extraction (BSE) approach based on a linear
predictor is provided. It is shown that by minimising the mean squared prediction error (MSPE),
as originally proposed, it is only possible to reach a solution subject to an arbitrary orthogonal
transformation. To remove this ambiguity, a new cost function based on the normalised
MSPE is introduced which by design provides a unique solution to this class of BSE problems.
Depending on whether the pre-whitening operation is required or not, a novel class of
BSE algorithms are derived and approaches with both fixed and adaptive linear predictor coeffi-
cients are considered. The proposed algorithms are justified by both the analysis and simulation

results.

1 Introduction

Recently, due to its wide application in the areas of biome-
dical engineering, sonar, radar, speech enhancement, tele-
communications, and so on, blind source separation (BSS)
has been studied extensively. It is a technique to recover
the original sources from all kinds of their mixtures,
without the knowledge of the mixing process and the
sources themselves. Many methods have been proposed,
based on different assumptions, such as independent
sources [1—4], spatial decorrelation and temporal corre-
lation of the sources [5, 6], and non-stationarity of the
sources [7, 8]. In BSS, we can either simultaneously
recover all the source signals from their mixtures, or
extract only one or a subset of the sources at a time. The
latter case is also referred to as blind source extraction
(BSE). An obvious advantage of BSE over BSS is its sim-
plicity in cases where we are only interested in a small
subset of the source signals. Algorithms specifically
designed for BSE include those based on high-order stat-
istics (HOS) [1, 9—11] and second-order statistics (SOS)
[12—16]. A comprehensive overview of BSE algorithms,
is given in [17].

In this paper, we provide a rigorous analysis for a class of
BSE algorithms using a linear predictor [12—15] and
propose solutions in order to mitigate some of the problems
associated with this approach. This class of algorithms
assumes that the sources are not correlated with each
other and every source has a different temporal structure.
Fig. 1 shows this architecture, where the extracted signal
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y[n] and the instantaneous output error e[n] of the linear pre-
dictor with a length P are given by

T

yn] =w x[n]

e[n] = y[n] — b'y[n] (1)

where x[n] denotes the mixture vector at time instant n, w
is a weight vector belonging to the demixing matrix,
and b is the coefficient vector of the linear predictor,
given by

b=[bb, - bpl"
ylnl = [vln — 1y[n —2]---y[n — P]I"
x{n] = [xolnlx [n] - - - xyy_y [n]]" )

In the analysis of this approach, it has been assumed that,
as long as the source signals exhibit different temporal
structures, they can be extracted successfully by minimis-
ing the mean square prediction error (MSPE) E{e’[n]}
[17] subject to various constraints. However, for those
algorithms which constrain only the length of the demix-
ing vector [12—15], the success rate of the extraction per-
formed in this way is fairly low, although it improves
significantly with pre-whitening.

Here, we further address the issue of the success rate and
provide a critical study of this BSE structure and the associ-
ated learning algorithms. A rigorous analysis shows that,
by simply minimising the mean square prediction error
E{e*[n]}, we will not be able to guarantee a successful
extraction. It is also shown that the reason for this lies in
the ambiguity of the power levels of the source signals.
To circumvent this ambiguity, we propose a novel cost
function and associated learning algorithms, which impose
the required constraints intrinsically and in a natural way.
The analysis also shows that by performing pre-processing
in the form of pre-whitening of the sensor data, together
with normalisation of the demixing vector w[n] as necessary
measures, the previously proposed methods of this kind can
extract the sources successfully.
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Fig. 1 BSE architecture based on a linear predictor
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2 BSE using a linear predictor
In Fig. 1, the vector x[n] of mixed signals is given by
x[n] = As[n] 3)

where A4 is the M x L mixing matrix and s[#] is the L x 1
zero-mean source signal vector given by

'SL—1[”]]T
m=0,.... M—1, [=0,...

s[n] = [so[nlsi[n] --

[A]m,l = > 5[‘ -1 (4)

We assume that the sources are stationary, spatially uncor-
related and can be modelled by an AR process. The corre-
lation matrix for zero lag is expressed as

R[0] = E{s[n]s' [n]}
= diag{p[0], p,[0], ..., p;_,[0]} ©)
with p,, [0] = E{s,,[n] - s,,[n]}, m=0,1,..., L — 1, where

E{-} denotes the statistical expectation operator. For
non-zero correlation lags we have

R [An] = E{s[n]s" [n — An]}

= diag{po[An], pi[An],...,p_i[An]}  (6)

with p'[An] # 0 for some non-zero delays An.

The linear predictor in the BSE structure can be an FIR or
IIR filter, adaptive or with fixed weights [17]. Without loss
of generality, we shall assume a P-tap FIR filter with coeffi-
cient vector b. The MSPE of the structure from Fig. 1 can be
expressed as [17]

E{e’[n]} = E{y*[n]} — 2E{y[n]b"y[n]}
+ E{b"y[nly"[n]b}
= E{w x[nlx" [n]w}

P
—2> bW E{x{nlx"[n — pl}w
p=1

,
+ > bbw E{x[n — plx'[n — gl}w

=1
»
=wR,[0lw—2) bw'R,[p]w
p=1
P
+ Y bbw R lg—plw @)
=1

where R, [An] = E{x[n]x"[n — An]}. From (3), we have

E{x[n]x"[n — An]} = AE{s[n]s"[n — An]}A"

= AR [An]A" )
Since, by assumptlon the source signals are not correlated
with each other, using this result, the MSPE E{e?[n]} now
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becomes [17]

P
E{e*[n]} = w AR [0]4"w — 2 Z b,w' AR [pld"w
p=1

bewTAR [q —plA™w
pa=l1

= w AR A"w )

where ﬁss is a diagonal matrix given by

= R [0] — 22 R [p] + beq g —pl (10)

pg=1

It should be noted that the diagonal elements of the matrix
R, represent the mean square prediction errors introduced
by the corresponding source signals. They are, in general,
different from each other for a specific power level, but
change accordingly when the power levels of the sources
vary. Due to this ambiguity of the power levels of the
source signals, the differences in the diagonal elements of
R, can be conveniently absorbed into_the mixing matrix
A and we can therefore always assume RSS to be the identity
matrix I. Thus, (9) becomes

E{e*[n]} =w'AIA"w (11)

For an arbitrary mixing matrix A = AF, where F is an arbi-
trary orthogonal matrix, we will have the same mean square
error £ {e [#]}, no matter whether the norm of the demixing
vector is constrained or not.

Based on the above analysis, we can conclude that, by
minimising E{e’[n]} with respect to the demixing vector
w, we can only obtain a result subject to an arbitrary orthog-
onal transformation. Essentially, this method is similar to
the principal component analysis [17] and therefore it
cannot guarantee successful extraction of the source signals.

In the next section, based on these observations, we
propose a new cost function within this framework, which
will remove the ambiguities associated with the previous
approaches, and therefore greatly improve the success rate
and performance.

3 Proposed algorithms for BSE with a linear
predictor

3.1 General algorithm using the normalised MSPE

From the above analysis, we can see that the problem with
minimising the cost function E{e*[n]} is the ambiguity
associated with the prediction error (or the power level)
for each source signal. Since the power levels of the
source signals are unknown and arbitrary, they can have
the same mean square prediction error for the same linear
filter model. To remove this ambiguity, we propose a
novel cost function, which is based on a normalised
version of the MSPE, given by

E{e’[n]}
E{?[n]}

The idea behind this approach is that, the normalised MSPE
of a signal will not change with its power level and this nor-
malised MSPE is normally different from those associated
with the other signals. Notice that predictability is a funda-
mental property of a signal, and the normalised prediction

J(w) =
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error is an inherent characteristic of the signal, just like the
normalised kurtosis [9, 17].
From

E{*[n]} = w'R_[0]w = w AR [0]4"w  (12)

and following these arguments, the proposed cost function
can now be expressed as

wTAIAZSSATw

Jw) = ———
*) WwTAR [0]A w

(13)

Since the matrices kss and R[0], in general, cannot be an
identity matrix at the same time, multiplying the mixing
matrix 4 by an orthogonal matrix will change the value of
the cost function, therefore the power level ambiguity is
removed.

Let g = A"w denote the global demixing vector. Then
(13) becomes

-
8 Rg
JW) = S5 (14)
g'R[0]g

As pointed out before, without loss of generality, we shall
assume that R [0] = I, as the differences in the diagonal
elements of R,[0] can always be absorbed into the
mixing matrix 4. This way, the diagonal elements of R,
become the normalised MSPEs and they are assumed to
be different from each other, otherwise the scheme will
not be able to extract all the sources successfully. This
yields

TRg
g's

J(w) = (15)

Let us define a new vector § = g/(g'g), which has a prop-
erty g'2 = 1. Then the cost function becomes

Jw) =g"R. & (16)

Consider the optimisation problem formulated as

ming"R g subjectto g'g=1 (17)
Z

The solution to this problem is a vector g,,, with only one
non-zero element, which is strictly equal to unity at the pos-
ition correspondlng to the smallest diagonal element of the
matrix Ry, [17]. Asg = g/(\/g"%g), the correspondlng global
demixing vector g, will be the same as g,,,, except that the
non-zero element in g, is an arbitrary constant c. Since we
are minimising J(w) with respect to w, instead of g, we need
to prove that there ex1sts a w,,, which results in g,,,.

In fact, from g = A"w, when A is of full rank and the
number of mixtures M is larger or equal to the number of
sources L, w,,, can be obtained using the pseudo-inverse
of A" as

-1
Wop = AA'A) g, (18)

For the case M < L, in general we cannot find a w,,, which
satisfies the equation g = A"w, except for perhaps some
special forms of 4. However, since A is unknown, it is
difficult to know whether this w,,, exists or not.

Since the possible minimum value of J(w) is reached only
when g = g,,,, as long as there exists such a w = w,,, so
that g = g,,;, we can state that when we minimize J(w)
with respect to w, this will result in a successful extraction
of the source signal with a minimum normalised MSPE.
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To derive the weight updates, applying the standard gra-
dient descent method to J(w), we have

_ 2 A E{’[n]}
Vi = W <E{e[n]x[n]} - E{yz[n]}E{y[n]x[n]})
(19)
where
P
x[n] = x[n] = Y _ b,x[n — p] (20)
p=1

The MSPE E{e?[n]} and the power of the output of the
demixing stage E{y°[n]} can be estimated recursively by

o?[n] = B0’ [n — 11+ (1 — B,)é*[n]
1)
ol [n] yoi[n—l 1+ (1 = By’ [n]

where B, and B, are the corresponding forgetting factors.

Following some standard stochastic approximation tech-
niques [18], from (19), we obtain the following online
update equation for w[n]

AL
w[n]—(éfﬂ(e[n]x[n]— @[Z]y[n]x[n]) (22)

where w is the learning rate.

To avoid the critical case where the norm of win]
becomes too small, after each update, we normalise it to
unit length, which yields

wn+1]=

win + 11 < w[n + 11/y/wTn + 1wln + 1] (23)
3.2 Algorithm with pre-whitening

Altematively, instead of the proposed approach based on
minimising the normalised prediction error, we can
constrain E{y*[n]} to a constant, which can be achieved
in two ways. One is to add a new cost function
(1 — E{y*[n]})* and we minimise both of them at the same
time [17]. But the problem is how much weight we give
to the new cost function, and this weight will affect the per-
formance of the derived algorithm. Another way is, we first
pre-whiten the observed mixtures x[#], so that R, [0] = I,
and then normalise the demixing vector w[n] according to
(23). Under this condition, we have

E{*[n]} =w' R [0lw=w'w=1 (24)
and
E 2
JOow) = % — E{Pn]) 25)

Therefore, in this way the constraint to £ {yz[n]} is achieved
independently from the minimisation of the cost function,
and we can perform BSE by simply minimising the standard
MSPE.

To show this, it can be seen that from (12), we have

E{y'[n]} = g Ry[0lg (26)
Assume R [0] = I. From (24), we have
gg=1 7)

Then the optimisation problem with pre-whitening and nor-
malisation can be formulated as

min gTIAISSg subjectto glg =1 (28)
g
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Performing an analysis similar to that in the previous
subsection, it can be shown that this scheme can indeed
successfully extract the source signals.

From this platform, by simply minimising the MSPE, we
can obtain the previously proposed BSE methods [12—15].
We have shown that, in this scenario, for those algorithms to
work, the pre-whitening operation is a necessary preproces-
sing step, and not an optional one as often indicated
(explicitly or implicitly) in the literature. Due to the fact
that pre-whitening is usually performed before the actual
extraction, and normalisation of the demixing vector (23)
during the extraction, we did not find obvious problems
with the performance of the previously proposed algorithms
[12—15]. However, without pre-whitening, those methods
will usually fail, as they are, in principle, simply minimising
the MSPE.

In this case, for a fixed linear predictor, applying the stan-
dard gradient descent method to E{e*[n]}, we can derive the
following online update rule

wln + 1] = w[n] — ue[n]x{n] 29

where x[n] is given in (20). This update is followed by the
normalisation of the demixing vector by (23). Compared to
(22), the update equation (29) appears much simpler.
However, it requires a pre-whitening operation, which is
not convenient and may be difficult to implement online.
The algorithm proposed in (22), on the other hand, does
not require any preprocessing, and is more suitable for
online implementation.

It should be noted that after pre-whitening, by simply
minimising the mean square error given in (7) subject to
the normalisation of the demixing vector, the derived algor-
ithm (29) can be considered as an adaptive version of
finding the eigenvector of the weighted sum of both
R, [0] and R [n], n=1,..., P, as shown in (7). In this
sense, this algorithm (29) is closely related to the SOBI
(second-order blind identification) algorithm [5], where
after pre-whitening, a demixing matrix is found by diagona-
lising the correlation matrices R, [n] at non-zero time lags.
However, for the first proposed algorithm in (22), the
pre-whitening step is not necessary, which is the major
difference from the SOBI algorithm.

3.3 Choice of the coefficients of the linear
predictor

From the above analysis, which proves the existence of the
solution for the normalised MSPE-based cost function, we
can see that for a chosen linear predictor with coefficient
vector b, as long as the source signals have different normal-
ised MSPEs, such sources can be extracted successfully.
This is achieved by minimising J(w) using the proposed
adaptive algorithms, which guarantees source extraction,
however, the actual BSE performance is dependent on the
specific choice of the coefficients within b.

By intuition, the larger the relative differences of the nor-
malised MSPEs of the source signals, the better the extrac-
tion performance. Indeed, in an ideal scenario, we wish to
choose a linear predictor for which the normalised MSPEs
of the source signals have the largest relative differences.
However, due to the blind nature of the problem, it is
impossible to find such an optimal linear predictor analyti-
cally. Alternatively, following the ideas from adaptive fil-
tering, we may opt to minimise J(w) with respect not only
to the demixing vector w, but also the coefficients of the
linear predictor [12—15].

32

To illustrate this approach within the proposed frame-
work of Section 3, we apply the normalised least mean
square (NLMS) algorithm to perform updates of vector b
[18], which for the cases with and without pre-whitening
gives, respectively

b[n + 1] = b[n] —i—)#];[n]e[n]y[n] (30)
and
Mp
b 1]1=05 31
[n+ 1] = b[n] + (aﬂn])w[nh[n])e[nlv[n] (1)

Although by using (30) and (31) we can achieve a smaller
prediction error e[n], it is not immediately obvious
whether this way we can also achieve the desired larger
relative difference of the normalised MSPEs of the source
signals. A simulation result in the next section illustrates
the time variation of the relative differences of normalised
MSPEs when adjusting the coefficients b adaptively.

As in the case with a fixed coefficient vector b, our argu-
ment is that based on the analysis from Section 3, every
source signal will have a different normalised MSPE
(although the relative differences of the values of the result-
ing normalised MSPEs may not be very distinct), which
guarantees a successful extraction.

4 Simulations

We performed experiments on four benchmark signals
S0, - - -, 53 taken from the file ABio7.mat provided by the
ICALAB toolbox [17], as shown in Fig. 2. The coefficients
of a randomly generated linear predictor with a length of
P = 20 are given by

b =10.8904 —0.2785 —0.8312 0.8970 0.3817
0.2310 0.7900 —0.9749 —0.3982 0.9302
—0.7958 0.1920 —0.0620 0.4347 0.7177
—0.6288 —0.0753 0.8066 —0.9558 0.5208] (32)

The normalised prediction errors of the four signals from
Fig. 2 were, respectively, {9.0987, 4.0003, 2.4263,
0.6681}. Following the analysis from Sections 2 and 3,
the signal with the smallest normalised prediction error
will be extracted, which in this case is the fourth signal s3.

In the first set of simulations, we illustrate the perform-
ance of the algorithm from (29). For this algorithm to
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10 T T T T T T T T T
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@ 0 1
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

time index n

Fig. 2 Source signals used in simulations
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Fig. 3 Performance index using method expressed in (29)

work, we must pre-whiten the observed mixtures and nor-
malise the demixing vector after each update. To measure
the demixing effect of the algorithm, we employ the per-
formance index defined as [17]
-1
.81} ))

1 L—1 g2
PI:lOlogm(L_l(Z !
(33)

2 2
‘5 max {gj, g7, - - -

with g = A"w = [go g1 ---g11]-

The learning curve of the performance index with a step-
size u = 3 is shown in Fig. 3. The curve was obtained by
averaging 100 trials of independent simulations, each with
a randomly generated mixing matrix and a randomly gener-
ated initial value of the demixing vector. Observe that this
way we were able to extract source s3 successfully, which
conforms to the results of the above analysis.

We next performed simulations for the proposed method
without the pre-whitening given in (22). The forgetting
factors were B.=8,=0.975 and the stepsize
= 0.0025. A learning curve for this case is shown in
Fig. 4 and it was also obtained by averaging 100 trials of
independent simulations. As the performance index
reaches a level of between —30 dB and —40 dB, we can
say that the signal s3 has been extracted successfully, as
shown in Fig. 5. Comparing the extracted signal in Fig. 5
with the original s3, it can be seen that 53 is a scaled
version of s3, which conforms to the principle that in BSS
for instantaneous mixtures, the source signal can only be
recovered subject to an arbitrary scalar.

The change of the linear predictor output e[#n] during the
adaptation is shown in Fig. 6. At the initial stage of

performance index [dB]
1
o
&

35}

_50 ! ! ! ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration number n

Fig. 4 Performance index using method expressed in (22)
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Fig.5 Source signal s; extracted using method expressed in (22)

adaptation, the output signal y[n] of the demixing vector
w was still a mixture of all the four source signals, and
after the filtering operation of the linear predictor, the
output e[n] did not look like any of the individual source
signals, which can be verified by the values of e[x] for the
first 500 iterations in Fig. 6. With the adaptation of the
demixing vector, the performance index reached a very
small value, which means that the signal y[n] has become
one of the source signals and the linear predictor output
e[n] is simply a filtered version of the extracted signal
y[n] and in this case it is s3. We can verify this by checking
the similarity between the original signal s; and that of
Fig. 6 for the part about n > 1000.

As mentioned in Section 3, although the algorithm based
on pre-whitening seems simpler than the one based on the
normalised MSPE, it is more difficult to implement it
online. A comparison of the results of Figs. 3 and 4 shows
the difference in the performance of the algorithms (22)
and (29). For the one given in (22), the normalisation of
the MSPE is performed by an approximation of the
powers of e[n] and y[n], therefore it is not so precise as
the one in (29), where the pre-whitening operation and
normalisation of the demixing vector ensure a constant var-
iance of the demixing vector output. As a result, in Fig. 4
we see a larger magnitude of oscillations of the steady-state
performance index than in Fig. 3.

Finally, to further illustrate the effect of an adaptive
linear predictor b within the analysed BSE structure, we
next perform a comprehensive statistical analysis of this
method and support it by numerical examples. As men-
tioned in Section 3.3, by adapting the coefficients of the
linear predictor, we can achieve a smaller prediction error.
The question is whether this leads to a larger relative differ-
ence of the normalised MSPEs of the source signals. Let us
illustrate this on an example, where for simplicity, we
consider the algorithm from Section 3.2. To analyse the
time-varying behaviour of the relative differences of he nor-
malised MSPEs during adaptation, we analysed the index
PE, which shows the ratio between the two smallest normal-
ised MSPEs.

Denote the normalised MSPEs of the source signals at the
nth iteration by peg[n], pe,[n], ..., pe,—[n]. The relative
difference index PE at the nth iteration is calculated in the
following way

— minZ {peO[n]a . 5 PeL,I[n]}

E = . 34
,PeL_l["]} (34)

min {pey[n],. ..

prediction error

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iteration number n

Fig. 6 Prediction error e[n] using method expressed in (22)
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Fig. 7 Change of relative difference of the normalised MSPEs
with an adaptive linear predictor
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Fig. 8 Performance index using the adaptive linear predictor
approach

where the symbol min, denotes the second smallest value
among the L normalised MSPEs. This is a natural
measure of the minimum distance between the smallest nor-
malised MSPE and the other MSPEs. Since the BSE algor-
ithm extracts one of the sources at each stage, a larger PE
indicates that one of the sources has a much smaller normal-
ised MSPE than the remaining ones, and hence it is easier to
extract it.

Fig. 7 shows the change of the PE during the adaptation
of b. Although the value of the PE shows a large variation
between about 4 and 70, the PFE is always greater than unity
and on average it exhibits an increasing trend, which indi-
cates that we can achieve a larger PE and hence an
improved performance when using an adaptive linear pre-
dictor. The performance index of the BSE with pre-
whitening operation based on an adaptive linear predictor
is shown in Fig. 8. Compared to the learning curve of
Fig. 3, the adaptive linear predictor approach clearly outper-
forms the fixed one. This can be explained by the fact that
the average PE value of the adaptive linear predictor
approach is much larger than the one with a fixed linear pre-
dictor, which is approximately 2.4263/0.6681 ~ 4.

5 Conclusions

The problem of BSE based on a linear predictor structure
has been addressed. The conditions for the existence of

34

the solution have been highlighted, and the corresponding
analysis has shown that based on the minimisation of the
MSPE it is not possible to reach a unique solution to this
problem. It has been further shown that this is due to the
ambiguity associated with the power levels of the sources.
To achieve a unique solution to this problem, a novel cost
function has been introduced, based on which two novel
adaptive BSE algorithms have been derived, each with
either fixed or adaptive linear predictor coefficients.
Simulation results have shown the usefulness of the
proposed approach.
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