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A Data Analytics Perspective of Power Grid Analysis—
Part 1: The Clarke and Related Transforms

Affordable, reliable, and readily acces-
sible electric power underpins our 
modern society in a multitude of 

ways, and in this context, the smart grid 
is becoming an increasingly important 
factor in power generation, transmission, 
and distribution. Current analytical tools 
for the planning, operation, and circuit 
design in power systems derive from the 
antecedent technology area of circuit the-
ory, which is both nonobvious for mod-
ern data analysts and assumes balanced 
conditions and a steady state, even though 
future power networks will routinely 
experience transient and steady-state 
unbalances. Next-generation analytical 
tools should therefore be fully equipped 
for dynamically unbalanced systems to 
approach the physical limits of power net-
works; data analytics is both well suited 
and necessary for this endeavor but is non-
obvious for power engineers. Hence, to 
fully exploit their evident and promised 
advantages, an analysis of the smart 
grid requires close collaboration and 
convergence between power engineers 
and experts in signal processing and 
machine learning, whereby analytical 
tools expressed in a common language 
would be a natural step forward. 

To this end, we revisit the Clarke 
and related transforms from subspace 
(see “Tribute to Edith Clarke, a Pioneer 
of Power Grid Analysis”) latent compo-

nent and spatial-frequency perspectives 
to establish fundamental relationships 
between the standard three-phase trans-
forms and modern data analytics. We  
show that the Clarke transform can be 
physically interpreted as a “spatial-
dimensionality reduction” technique, 
which is equivalent to principal compo-

nent analysis (PCA) for balanced systems 
but is suboptimal for dynamically unbal-
anced smart grids, while the related Park 
transform performs further “temporal” 
dimensionality reduction. 

Such a perspective opens up numer-
ous new avenues for the use of signal 
processing and machine learning in 
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Edith Clarke (1883–1959) was a 
true pioneer in the application of cir-
cuit theory and mathematical tech-
niques to electrical power systems. In 
1919, she became the first woman 
to obtain an M.S. degree in electrical 
engineering from the Massachusetts 
Institute of Technology and the first 
female professor of electrical engi-
neering in the United States, having 
been appointed at the University of 
Texas at Austin in 1947. Her pivotal 
contributions were concerned with 
the development of algorithms for the 
simplification of the laborious compu-
tations involved in the design and 
operation of electrical power systems 
[1]. One of her early inventions was 
the Clarke calculator in 1921, a 
graphical device that solved power 
system equations 10 times faster than 
a “human computer” [S1]. In 1943, 
she introduced the Clarke transform, 

also known as the ab  transform, 
which has since been established as 
a fundamental and indispensable 
tool for the analysis of three-phase 
power systems. Recent progress 
toward the smart grid has only rein-
forced the importance of the Clarke 
transform as a platform for the 
wider involvement of signal pro-
cessing and machine learning in 
numerous applications related to 
state estimation, frequency track-
ing, and fault detection [S2], [2], 
the most important data analytics 
aspects in the development of the 
future smart grid.
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power grid research and paves  the way 
for innovative optimization, transforma-
tion, and analysis techniques that are not 
accessible from the standard circuit theory 
principles. We expect to demonstrate this 
in part 2 of this “Lecture Notes” article, 
which will be published in a future issue 
of IEEE Signal Processing Magazine. 
In addition, the material may be useful 
for lecture courses in multidisciplinary 
research, from the smart grid to big data, 
or as interesting reading for the intellec-
tually curious and generally knowledge-
able reader. Teaching and supplementary 
material can be found at http://www 
.commsp.ee.ic.ac.uk/~mandic/DSP_
ML_for_Power.htm.

Relevance
There is substantial interest in transform-
ing the way we both produce and use 
energy as current ways are not sustain-
able. For the electrical power grid, this 
involves fundamental paradigm shifts 
as we build a smart grid, adopt more 
renewable energy sources, and promote 
more energy-efficient practices [3]. A 
smart grid delivers electricity from sup-
pliers to users using digital technology 
and has a number of properties, includ-
ing various forms of energy generation 
and storage, reliance on sensor informa-
tion, active participation by end users, 
security and reliability, and the use of 
optimization and control to make deci-
sions (see the Energy Independence and 
Security Act 2007, Section 1304 [8]). 
This will require fundamental shifts in 
the way we analyze and design power 
systems, together with the prominent 
involvement of modern data analytics 
disciplines that are currently outside the 
standard power systems operation, such 
as those enabled by signal processing 
and machine learning. 

Although we have just begun to in
vestigate a whole host of signal process-
ing issues for the smart grid strategy, 
these new technologies will undoubted-
ly be critical to the efficient use of lim-
ited and intermittent power resources in 
the future. The first fundamental step 
in this direction is to bridge the gap 
between the power systems and data 
analytics communities by establishing a 
common language for the understanding 

and interpretation of system behavior, 
the ultimate goal of this perspective.

Regarding the opportunities for data 
analytics research, three-phase systems 
can be inherently difficult to analyze 
because the electrical quantities involved 
are coupled by design, while also exhibit-
ing redundancies. Early in her career as a 
“human computer” with General Electric, 
Edith Clarke routinely faced problems 
related to the simplification of analyses of 
three-phase circuits. Fast-forward a centu-
ry, and three-phase systems pose another 
class of practical problems, essentially of 
a signal processing and machine-learning 
nature, including the following.
1)	 In smart grids, the effects arising 

from the on–off switching of various 
subgrids and the dual roles of genera-
tors/loads will produce transients and 
spurious frequency/phasor estimates; 
the analysis thus requires modern sig-
nal processing and machine-learn-
ing techniques.

2)	 Accurate rate of change of frequen-
cy trackers are a prerequisite for the 
operation of smart grid, while rapid 
frequency trackers are envisaged to 
be part of many appliances, but their 
design is beyond the remit of power 
systems engineering.
All in all, it is critical that the esti-

mation of the frequency/phasor remains 
accurate during the various intercon-
nections, transients, faults, and voltage 
sags (IEEE Standard 1159-2009), while 
at the same time having the intelligence 
to determine whether the system experi-
enced a one-, two-, or three-phase fault; 
this “smart frequency” area has been the 
subject of recent patents [4] and ongoing 
research [2], [5], [6].

Prerequisites
Basic knowledge of power system anal-
ysis, linear algebra, and PCA is neces-
sary. It is also advantageous if the reader 
is familiar with complex algebra and the 
discrete Fourier transform (DFT).

Problem statement and solution

Problem statement
We set out to investigate the redundan-
cy within information-bearing signals 
in three-phase systems to establish a 

link between the current circuit-theo-
ry-inspired dimensionality-reduction 
techniques and a more general latent-
component-analysis viewpoint rooted 
in data analytics.

Solution: Essential overview
We first explore the redundancy in 
three-phase signal representation. To 
this end, consider a sampled three-phase 
voltage measurement vector, ,sk  which 
at a discrete time instant ,k  is given by
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where , ,V V Vanda b c  are the amplitudes 
of the phase voltages , , ,v v vand, , ,a k b k c k  
while f T2~ r=  is the fundamental 
angular frequency, with f  as the fun-
damental power system frequency, and 
T  as the sampling interval. The phase 
values for phase voltages are denoted by 

, ,a bz z  and ,cz  respectively.

Remark 1
The three-phase power system is con-
sidered to be in a balanced condition if
1)	 the magnitudes of the phase voltages 

in (1) are equal, that is, V V Va b c= =

2)	 the phase angle separation between 
the phase voltages is uniform and 
equal to ,/2 3r  i.e., a b cz z z= =  
across the phase voltages.
Early power engineers were able to 

effectively reduce the dimensionality 
in representing the three-phase voltage 
signal in (1) by changing its reference 
frame (or basis), the so-called voltage 
transformations. Figure 1 illustrates the 
effects of the three-phase transforma-
tions considered in this article, i.e., the 
Clarke transform and the closely related 
Park transform.

Remark 2
Figure 1 gives a modern interpretation 
of the operation of the Clarke and Park 
transforms, whereby the Clarke trans-
form reduces the 3D “spatial informa-
tion space” in three-phase power signals 
to the 2D ab  space, whereas the Park 
transform employs a 2D time-varying 
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basis in the form of a rotation matrix to 
“demodulate” the Clarke transform. 
The Park bases rotate at the fundamental 
power system frequency of 50–60 Hz, 
which further reduces the “temporal in
formation space” to only two constants, vd  
and .vq

We now offer a signal processing view of 
spatial redundancy in three-phase power 
systems, showing that the voltage signal 
in (1) is essentially overparameterized, thus 
paving the way for a data analytics per-
spective of the Clarke transform. To this 
end, consider the empirical covariance 
matrix of the three-phase voltage signal, 
sk  in (1), defined as ( ) ,cov s Rsk

def
=  which 

can be computed from N-consecutive 
samples of sk  as
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where the symbol ( )H$  denotes the Her-
mitian-transpose operator [note that, in 
(3)–(8), sk  is complex valued; hence, 
for consistency, we use sH

k  here instead 
of sT

k ] .
From the three-phase voltage, sk  

i n  (1), upon employing the identity 
( )cos x = ( ) /e e 2jx jx+ -  we arrive at its 

complex-valued phasor representation 
in the form
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where, for compactness, the time-in
dependent phasors, ,/( )V V e2a a

j a= zr  
/( )V V e2 ( / )( )

b b
j 2 3b= z r-r  a n d  Vc =r

( / )V e2 ( / )( )
c

j 2 3cz r+  can be comprised 
into the complex-valued phasor vector

	 , , ,v V V V T
a b c

def
= r r r6 @ � (4)

so that the three-phase voltage vector in 
(3) now becomes

	 .s v ve e
2
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To arrive at the final expression 
for the empirical covariance matrix, 
Rs  in (2), observe from (5) that the 
individual outer products, s sH

k k  in 
(2), represent an average of four outer 
products, i.e.,
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For 0!~  or ,!~ r  and for a large 
enough ,N  the following holds:
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so that the last two outer products in (6) 
vanish and every individual outer prod-
uct within the covariance matrix for a 
general three-phase power-voltage mea-
surement becomes
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where Rev vr = " , and Imv vi = " , de
note the real and imaginary part of the 
phasor vector v in (4).

Remark 3
Observe from (8) that the 3 3#  covari-
ance matrix, Rs  in (2), of the trivariate 
three-phase-voltage signal s ,k  is rank-
deficient (rank-2), since it represents a 
sum of two rank-1 outer products, i.e.,  
v vT

r r  and .v vT
i i  In other words, with-

out loss in information, the three-phase 
signal in (3) can be projected onto a 2D 
subspace spanned by vr  and .vi  This 
implies that the use of all three data 
channels (system phases) is redundant in 
the analysis and offers a data analytics 
justification for the Clarke transform.

We next proceed with the formal 
definition of the Clarke transform and 
show that its dimensionality-reduction 
principle admits a PCA interpretation.

Clarke transform: A fundamental 
tool in power system analysis
The Clarke transform, also known as 
the ab  transform, was introduced from 
a circuit theory viewpoint. It aims to 
change the basis of the original vector 
space where the three-phase voltage sig-
nal sk  in (1) resides, to a basis defined 
by the columns of the so-called Clarke 
matrix to yield the Clarke-transformed 

, ,v v vand, , ,k k k0 a b  voltages in the form
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The quantities v ,ka  and v ,kb  are 
referred to as the a  and b  sequences, 
while the term v ,k0  is called the zero-
sequence since it is zero when the 
three-phase signal sk  is balanced (see 
Remark 1).

Remark 4
Under nominal conditions, only v ,ka  
and v ,kb  are used in the analysis since 
balanced phase voltages yield .v 0,k0 =  
The “standard” version of the Clarke 
transform thus employs only the last 
two rows of the Clarke matrix in (9), 
to project the three-phase voltage in 
(1) onto a 2D subspace spanned by its 
columns, i.e.,

Three-Phase Frame Clarke Basis Park Basis

vc
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vb

vb

Spatial
Dimensionality
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Temporal
Dimensionality
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vd
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vq

vq

θk

FIGURE 1. The geometric interpretation of “spatial” and “temporal” dimensionality reduction pro-
vided by the corresponding Clarke and Park transforms.
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This is further visualized in Figure 2, 
which provides a geometric interpreta
tion of the Clarke transform for bal-
anced power systems. Observe the 
mutually orthogonal nature of the v ,ka  
and v ,kb  components, which allows for 
the compact complex-valued representa-
tion, .v v jv, , ,k k k= +ab a b

Park transform
The Park transform (also known as 
the dq transform) is closely related to 
the Clarke transform and projects the 
three-phase signal sk  onto an orthog-
onal time-varying frame, which, by 
virtue of rotating at the fundamental 
power system f requency /f 2~ r=  
(50–60 Hz), yields stationary constant 
outputs, .v vand, ,d k q k  In other words, 
the Park voltages v vand, ,d k q k  are ob
tained from the Clarke ab  voltages in 
(10) using a time-varying transforma-
tion given by [7]
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where .kki ~=  Similar to the compo-
nents of the Clarke transform, the orthog-
onal direct and quadrature components, 
v ,d k  and ,v ,q k  can be combined into a 
complex variable .v v jv, , ,dq k d k q k= +

Remark 5
From the modern data analytics per-
spective, the Park matrix, ,Pi  is a 
full-rank and time-varying clockwise 
rotation matrix, with the determinant 

( )det 1P =i  and the unit-norm eigen-
values .1,1 2m =  It therefore does not 
amplify the original Clarke vector 
[ , ]v v, ,k k

T
a b  but performs a rotation, 

with the speed of rotation equal to the 
fundamental angular frequency of the 
power system, .~

PCA
Modern data analytics often employs 
PCA, also known as the Karhunen–

Loeve transform, to either separate 
meaningful data from noise or to re
duce the dimensionality of the origi-
nal signal space while maintaining the 
most important information-bearing 
latent components in data. Consider 
a gene ra l  data vector,  ,x Rk

M 1! #  
for which the covariance matrix is de
fined as

( ) .cov limx x x
N
1R T

xk
N

k
k

N

k
0

1
def
= =

"3
=

-

/ � (12)

Then, this symmetric covariance 
matrix Rx  admits the following eigen-
value decomposition

	 ,Q R QT
x K= � (13)

where the diagonal eigenvalue matrix, 
, , , ,diag M1 2 fm m mK = " ,  indicates the 

power of each component within x ,k  
while the matrix of eigenvectors, Qr = 

, , , ,q q qM1 2 f6 @  designates the principal 
directions in the data.

Suppose the signal xk  is to be trans-
formed into a vector, ,u Rk

M 1! #  of the 
same dimensionality as the original 
signal x ,k  using a linear transformation 
matrix ,W  to give

(, ) .x covu uwhereWk k k K= = � (14)

PCA states that the transformation 
matrix W  can be obtained from the 

eigenvector and eigenvalue matrices in 
(13) as .W QT=  In other words,
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This formulation admits a convenient 
dimensionality reduction by retaining 
only r M1  largest eigenvalues and the 
corresponding eigenvectors of .Rx  The 
so-obtained transformed data vector, 

,u R,r k
r 1! #  is now of a lower-dimen-

sion r M1  and is given by

	 ,u xQT
, :r k r k1= � (16)

where [ , , , ],q q qQ :r r1 1 2 f=  and r  stands 
for the r-largest eigenvalues in .K  In 
other words, the PCA-based dimension-
ality-reduction scheme in (16) selects the 
directions along which the data express-
es maximum variance, as designated by 
the principal eigenvectors of the data 
covariance matrix, .Rx

Clarke transform as a principal 
component analyzer
Without loss of generality, we consider 
normalized versions of the phasors, ,v  
relative to Var  and define / ,V Vi i a

def
d = r r  

{ , , },i a b c!  with ,1ad =  to yield
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For a balanced power system, the 
normalized phasor vector in (17) takes 
the form
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so that the covariance matrix of the 
normalized three-phase-voltage sig-
nal becomes
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and thus admits the eigen decomposi-
tion in (13) to yield

	 .R Q QT
s K= � (20)

By inspecting Rs  in (19) from the 
first eigenvector–eigenvalue pair, ( , ),q1 1m  
we have

	 , .q q
3

1 00 1Rs 1 1 1& m= = = � (21)

To find the remaining eigenvector–
eigenvalue pairs, consider again the outer 
products within the covariance matrix, 

given in (8), and the normalized phasor 
vector, vbr  in (18). Notice that its real part,  
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it s  imagina r y pa r t ,  Imv vi

b= =r r" ,
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-6 @  are orthogonal, 

i.e., .v v 0T
r i =r r

Therefore, the remaining two eigen-
vectors of Rs  are /q v vr r2 = r r  and 

/ ,q v vi i3 = r r  with the correspond-
ing eigenvalues ( / ) v1 4 r2m = r  and 

( / ) .v1 4 i3m = r  The matrix of eigen-
vectors  QT  and the diagonal matrix of 
eigenvalues K  in (20) thus take the form
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Inspection of the diagonal elements 
of K  in (22) reveals only two nonzero 
eigenvalues. This verifies Remark 3, which 
states that the covariance matrix of  
a three-phase system voltage, ,Rs  is  
of rank-2 and thus rank-deficient. 
The factor / ,2 3  which premultiplies 
QT  in (22), serves to normalize the 
length of the eigenvectors to unity 
(orthonormality).

Remark 6
The matrix of eigenvectors, Q<  in (22), 
is identical to the Clarke transformation 
matrix defined in (9). Therefore, all of 
the variance in three-phase power sys-
tem voltages can be explained by the two 
eigenvectors associated with the non-
zero eigenvalues (principal axes) of the 
Clarke-transform matrix. This offers the 
modern, data analytics interpretation of 
Clarke transform as a principal compo-
nent analyzer, which performs a projec-
tion of three-phase power system voltages 
that reside in R3  onto a 2D subspace 
spanned by the two largest orthogo-
nal eigenvectors of the phase-voltage-
correlation matrix, , ( / ), ( / )1 1 2 1 2 T- -6 @  
and , / ,[0 3 2  ( / )] ,3 2 T-  as shown 
in Figure 3.

Remark 7
Remark 6 and Figure 3 offer a modern 
interpretation of the Clarke transform 
from a PCA-based dimensionality-re
duction viewpoint. This new perspec-
tive opens numerous new avenues for 
using data analytics (such as signal pro-
cessing and machine learning) in power 
grid research and paves the way for 
innovative transformation and analysis 
techniques for the future smart grid that 
were not previously possible with the 
standard circuit theory principles.

We next provide a modern, spectral-
analysis based interpretation of issues 
when using the Clarke and related trans-
formations for the analysis of dynami-
cally unstable smart grids.

Clarke and symmetrical component 
transforms as a three-point DFT
The well-known limitations of current 
power system analysis techniques in un
balanced grid scenarios is difficult to 
explain from a circuit theory perspective. 
To help provide a more generic interpre-
tation of this issue, we shall next exam-
ine a link with the well-known effects of 
incoherent sampling in spectral analysis 
of coarsely sampled data.

Here, we provide a spatial DFT in
terpretation of the symmetrical com-
ponent transform (see “Dealing with 
Unbalanced Phasors: The Symmetrical 
Component Transform”). The vector of 
three-phase time-domain voltages, sk  
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this case, phase mismatch 0a bz z= =  and ),2cz =  the fixed nature of the Clarke subspace means 
that it is still spanned by the original bases q2  and q3  (in blue) as in (a). Observe that the correct 
2D subspace, identified by PCA, is designated by the plane in red, which is spanned by the correct 
eigenvectors [ . , . , . ]0 48 0 61 0 63q2

T= -l  and [ . , . , . ]0 88 0 40 0 28q3
T= - - -l  (in red). This exemplifies 

the limitations of the Clarke and related transforms in the analysis of modern, dynamically unbal-
anced power systems.
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in (1), is typically considered as a col-
lection of three, univariate time-domain 
signals, i.e., [ , , ] .s v v v T

, , ,k a k b k c k=  It is 
interesting to note that, for balanced 
systems, due to the equal phase spac-
ing between phase voltages of / ,2 3r  the 
corresponding normalized phasor vec-
tor vbr  in (18) can be equally treated as 
a collection of samples of a monocom-
ponent complex sinusoid, which rotates 
at a spatial frequency ,( / )2 3rX=-  
to yield

	 , , ,v e e1 Tb j j2= X Xr 6 @ � (23)

thus offering a vehicle for spectral re
presentation of this essentially time-
domain phenomenon.

Remark 8
Under unbalanced conditions, the ele-
ments of the normalized phasor vector 
will not have equal spacing of /2 3r  in 
the spatial-frequency domain, due to 
different amplitudes and/or nonuniform 
phase separation of the individual pha-
sors, as defined in (4). As a consequence, 
vr  will no longer represent a single, com-
plex-valued spatial sinusoid.

Consider now the DFT of the original 
phasor vector in (4), [ , , ]v v v v T

0 1 2= =

[ , , ] ,V V V CT
a b c

3 1! #r r r  given by

[ ] ,

, , ,

X k v e

k

3
1

0 1 2and

n
n

j nk

0

2

3
2

=

=

r

=

-/

which can be expressed in an equivalent 
matrix form as

	
[ ]
[ ]
[ ]

,
X
X
X

a
a

a
a

V
V
V

0
1
2 3

1
1
1
1

1 1 a

b

c
2

2=

r

r

r
> > >H H H � (24)

where .a e ( )/j 2 3= r-  The three-point DFT 
in (24) therefore transforms the phasor 
vector v  into a stationary (dc or zero) 
component [ ]X 0  and the components 

[ ]X 1  and [ ],X 2  which rotate at their 
respective spatial frequencies ( / )2 3r-  
and / .2 3r

Remark 9
The spatial DFT in (24) is identical to 
the symmetrical component transform 
in (S1). More specifically, the stationary 
DFT component, [ ],X 0  corresponds to 

the zero-sequence phasor, ,V0r  which is 
zero for balanced system conditions but 
nonzero for unbalanced ones, while the 
fundamental DFT components, [ ]X 1  
and [ ],X 2  represent the positive- and 
negative-sequence phasors, respective-
ly. This forms a basis for the treatment 
of three-phase component transforms 
from a spectral estimation perspective 
and offers an enhanced interpretation 
of the limitations of these transforms in 
smart grid problems together with new 
avenues for their mitigation.

In a signal processing interpretation, 
readers can observe that the spatial sam-
pling in (23) represents coarse critical 
sampling, whereby the spatial system 
frequency is contained in the first com-
ponent of the underlying three-point 
DFT with no provision for the inter-
pretation of drifting frequencies, as re
quired by the smart grid. This explains 
the well-known inability of the symmet-
rical component transform to deal with 
transients in three-phase power systems, 
together with the artefacts arising from 
incoherent sampling—a standard issue 
in coarsely sampled systems.

For example, the negative seq
uence phasor ( / )V V e1 3 a

j a= +z-r 6  
V e V e( / ) ( / )( ) ( )
b

j
c

j2 3 2 3b c+z r z r- + @  in  (S1) 
vanishes in balanced system conditions 

with V V Va b c= =  and ,0a b cz z z= = =  
while its nonzero value indicates an un
balanced system and an inadequate spa-
tial DFT representation in (23).

What we have learned
The operation of the future and almost 
permanently dynamically unbalanced 
smart grids requires close cooperation 
and convergence between the power sys-
tems and data analytics communities, 
especially those working in signal pro-
cessing and machine learning. A major 
prohibitive factor in this endeavor has 
been a lack of common language; for 
example, the most fundamental tech-
niques, such as the Clarke and Park 
transforms introduced in 1943 and 1929, 
respectively, have been designed from a 
circuit theory perspective and only for 
balanced “nominal” system conditions. 
This renders such methodologies both 
awkward for linking up with data analyt-
ics communities and only partially suited 
for the demands of future dynamically 
unbalanced smart grids. 

To help bridge this gap, we have 
provided modern interpretations of the 
Clarke and related transforms through 
the subspace and spatial DFT concepts. 
These have served as a mathematical 
lens into the inadequacies of current 

The symmetrical transform [S3] was 
introduced by Charles Fortesque in 
1918 with the aim of converting a 
general (possibly unbalanced) pha-
sor vector, , , ,v V V V T

a b c= r r r6 @  in (4), 
into three separate balanced com-
ponents, , ,V V0 +

r r  and ,V-r  which are 
referred to as the zero-, positive-, 
and negative-sequence phasor, 
respectively, and are given by

	 ,
V
V
V

a
a

a
a

V
V
V3

1
1
1
1

1 1 a

b

c

0

2

2=+

-

DFT  matrix

r

r

r

r

r

r
> > >H H H

1 2 3444 44

� (S1)

where .a e ( / )j 2 3= r-  Unl ike the 
Clarke and Park transforms, which 

are applied directly to the three-
phase time-domain voltage, ,sk  the 
symmetrical transform operates on 
the phasors vk  and thus admits a 
spatial spectral domain interpreta-
tion, as elaborated upon in (24) 
and Remark 9. The Clarke trans-
form can then be interpreted as the 
real part of the three-point DFT 
matrix in (S1) since the diagonal-
ization of the eigenvector matrix 
for circulant matrices yields the 
DFT matrix. 

Reference
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methodologies under unbalanced power 
system conditions and have enabled us 
to create a framework for the under-
standing and mitigation of the effects 
of off-nominal system frequency and 
dynamically unbalanced phase voltages 
and phases. All in all, such a conceptual 
insight helps demystify power system 
analysis for data analytics practitio-
ners and permits the seamless migra-
tion of ideas between these typically 
disparate communities.

It is fitting to conclude with a quote 
from J.E. Brittain’s article [1] on Clarke:

She (Clarke) translated what many 
engineers found to be esoteric 
mathematical methods into graphs 
or simpler forms during a time 
when power systems were becom-
ing more complex and when the 
initial efforts were being made to 
develop electromechanical aids to 
problem solving.
We hope that this modern perspec-

tive of the Clarke and related trans-
forms will help extend their legacy well 
into the Information Age, in addition 
to empowering analysts with enhanced 
intuition and freedom in algorithmic 
design. An important additional feature 
of our perspective is that it opens up 
new possibilities in the otherwise pro-
hibitive applications of Clarke-inspired 
transforms in future smart grids. We 
expect to address this aspect in part 2 of 
this “Lecture Notes” article. For an elec-
tronic supplement, please see http://
www.commsp.ee.ic.ac.uk/~mandic/
DSP_ML_for_Power.htm.
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