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Abstract—Benefiting from the recent phenomenon that peo-
ple and technology are becoming increasingly intertwined, we
demonstrate that this also represents a paradigm-shift oppor-
tunity for Digital Signal Processing (DSP) educators to keep
the curriculum current by syncing it to technological and
educational developments. Our own first step in this direction
was to bring research into the classroom, through bio—presence,
which allowed us to center several classic DSP topics around
the analysis of students’ own physiological signals. This not only
facilitates student engagement in curiosity-driven learning but
also helps to broaden their perspective on next-generation health
care, entrepreneurship, and to appreciate the relevance of their
degree with respect to technological advancements. Case studies
on the use of students’ own Electroencephalogram (ECG) to
illuminate both current and emerging DSP concepts support
the approach, and include examples ranging from baseline drift
removal (nonstationarity) to multiscale approaches and DSP for
Big Data.

Index Terms—DSP Education, biopresence in curriculum,
students’ vital signs, gadgets in classroom, research in classroom

I. INTRODUCTION

The roots of Engineering education can be traced back to the
1770s, when the predecessor of today’s Ecole Polytechnique
started engaging in the education of artillery officers. This
was followed by the establishment of the West Point military
academy in the USA in 1802, with a similar aim. As much
as these early promoters of Engineering education saw the
opportunity to involve technology into the curriculum at that
time. In fact, we now face a similar challenge — we are on
the brink of a reform of Engineering education, in order
to facilitate and promote a technology— and gadget—driven
curriculum, within the emerging concept of Smart Classrooms.

Historically, the early Electrical and Electronics Engineering
(EEE) departments grew out of Physics, however, the EEE
discipline was not yet ready for the big challenges in the
early 1940s. Indeed, most of the EEE-related work supporting
WWII efforts (radar, sonar, code breaking, information theory)
was performed by mathematicians and physicists. The advent
of digital computers in the 1970s presented the opportunity for
the development of our own Digital Signal Processing (DSP)
discipline [1]-[3], while the EEE curriculum became too big
and branched out into related degrees such as Bioengineering
[4]. For most of the next 30 years the pendulum was firmly
inclined towards Engineering Science, and a wide availability
of personal computers in the 2000s helped to realise that this
could facilitate a shift towards hands—on experience [5] [6].

Classic DSP courses were developed with e.g. communica-
tions and radar problems in mind [7]. While the basic material
is still of fundamental importance and a backbone for current
and future applications, we are faced with new challenges in
presenting such material as:

o Students now approach new information and communi-
cation in a very different way from e.g. students 30 or
40 years ago;

« Hands—on experience, societal impact and entrepreneur-
ship opportunities are becoming almost equally important
as the core DSP taught material — one such example is
the Equinox project by Imperial undergraduate students
[81;

o The gadgets routinely used in our daily lives are a rich
source of information and their use in the curriculum can
trigger a paradigm shift in the way we approach modern
education;

o The challenges that stem from the modern culture of
impatience and instant gratification, together with the
availability of computing power in mobile devices and
personal computers, mean that the learning process
should incorporate various forms of visualisation and
“personalisation” of the taught material in order for
students to absorb the material efficiently;

o Computing has been recognised to be a key analytical
skill for engineers, and will inevitably have to become
an integral part of the developments of the future tech-
nologically orientated classroom - the Smart Classroom.

In other words, we are on the verge of the next revolution in
engineering education, which aims to refresh many classic and
timeless maths—heavy modules across science and engineering,
such as our own DSP discipline, with easy to understand and
societally relevant hands—on experience [9] [10]. At the same
time, this will help address the challenges related to societal
changes in a fun and physically meaningful way, thus promot-
ing student engagement and encouraging them to participate in
curiosity driven learning. Our DSP discipline, being naturally
close to the data acquired from various wearable sensors, is
likely to play a pivotal role in this endeavour, as it serves both
as an enabling technology for most wearable devices and their
applications, and a mathematical lens into the physics behind
the underlying signal generating mechanisms.



II. BIOPRESENCE IN THE CLASSROOM: A REAL
OPPORTUNITY AND A PARADIGM SHIFT

In the academic years 2014-2015, 2015-2016 and 2016—
2017, we investigated whether using wearable technology
in the classroom would enrich students intellectual curiosity
and engagement, and perhaps even performance, especially
in maths-heavy DSP modules such as Estimation Theory. In
a related research project on Hearables [11], we developed
a miniature biosignal acquisition device — the iAmp shown
in Fig. 1 (A) — that can measure up to eight channels of
physiological data for 14 hours. An accompanying computer
app gave onscreen instructions on how and when to gather
data, in order to produce datasets of students’ own heart and
breathing rates via small electrodes on the wrist, as shown
in Fig. 1 (B) [12]. For more information, please visit www.
commsp.ee.ic.ac.uk/~mandic/Biopresence_Material.htm.

Fig. 1. A) Our iAmp biosignal recording device against one UK pound coin
(22.5 mm in diameter). Data can be stored on an SD card or transported in
real time to a computer via a mini USB port. B) Placement of electrodes on
the forearms for the recording of ECG.

As part of the coursework, the students applied the taught
mathematical concepts of signal estimation to their recorded
vital signs and were graded as usual. The convenience and an
over—arching nature of the approach taken in our DSP courses
is self—evident from the real-life recorded ECG traces shown
in Fig. 2. The students were asked to breathe according to
different regimes of a metronome app on computer screen,
which induced modulation into the ECG envelope and thus
a multi-scale signal nature (visible in red on the top right
corner), while the “wearable effects” on the recorded signal in-
cluded various degrees and natures (deterministic, random) of
baseline drifts (downwards, upwards, oscillatory), and artefacts
(impulsive, effects of external electromagnetic fields). Overall,
this bio—inspired approach offered a rich source of a real-
world signal processing aspects, which are routinely covered
in standard DSP courses, while benefiting from a convenient
way for students to measure and physically interpret their own
ECG.

III. OPPORTUNITIES IN A SMART CLASSROOM THROUGH
PHYSICAL RELEVANCE OF TAUGHT MATERIAL

Baseline drift is the most common artefact in real-world
recordings from electrodes and refers to a time—varying signal
mean. This variation of mean can be piece—wise linear or
assume any form of nonstationarity, as observed in Fig. 2 (B)
for ECG recordings. Many other disciplines, such as finance,
often have to deal with trends in data which typically exhibit
similar properties to baseline drift; in both cases trend removal
is the first step in the analysis. We next show that this issue
in real-world recordings can serve as a rich resource for DSP
education, as such a physically interpretable case study can
be conveniently used when teaching a whole range of filtering
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Fig. 2. An exemplar of a student’s own ECG recording from the wrists. A) Three segments corresponding to different regimes of metronome-controlled
breathing. Observe the different natures of trends (deterministic, random), impulsive artefacts, and the multiscale nature of respiration—-modulated ECG
(Modulation, in red). B) A zoom-in into the middle segment of data. C) The clean ECG after the student applied several DSP concepts to the raw data in A).

Observe the very clean R— and T-waves in ECG after digital filtering.



techniques, from moving average (MA) FIR filters through to
Kalman filters [13].

We next demonstrate the virtues of the proposed approach
through concrete practical examples in teaching:

1) Digital filter design for baseline drift removal

2) Numerical differentiation and integration

3) Tensor decompositions for big data applications

A. Digital filter design for baseline drift removal

Consider an MA filter which averages input data over N
samples, given by

y[n]:x[n]+x[n—1]—|—}-\f~-+x[n—N—1] 0

for which the frequency response is given in Fig. 3. Clearly,

an appropriate choice of data segment N would yield a

good estimate of time—varying signal mean. Fig. 4 shows the
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Fig. 3. Frequency response of the MA filter in (1).

estimates of baseline drift using least-squares linear regression
(LR) and the MA filter in Eq. (1) with a window of 2 seconds
(N = 2000). Observe that the MA filter was able to mitigate
the effects of drift, while also serving as a fertile ground for
students to experience the effects of parameter tuning, data
window length and the corresponding frequency responses.

B. Numerical methods

Numerical differentiation and integration are at the very core
of DSP education. The ECG is perfectly suited to demonstrate
the imperfections of numerical methods, as it contains both
low frequency components (P-, Q-, S- and T- waves), high fre-
quency components (sharp R-peaks), and broadband recording
noise. Fig. 5 (A) and (B) show respectively an ECG signal
and its numerical derivative, obtained through the simplest
z[n] — x[n — 1] approximation. Students can immediately
observe that even this crudest derivative has the desired effect
of removing low—frequency components (the T-wave) but also
comes with a drawback of amplifying high frequency noise.
In the next step, after applying ‘leaky’ numerical integration
through an MA filter (as in Eq. (1), with N = 10), the high
frequency noise becomes suppressed, as desired, so that the
R-waves become more prominent but the information in the
the low—frequency T-waves is irretrievably lost, as shown in
Fig. 5 (C). This example can be straightforwardly extended to
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Fig. 4. Baseline drift removal from ECG using linear regression (LR) and a
moving average (MA) filter in (1). Observe both the “deterministic” (straight
line) and “stochastic” (random local oscillations) component in ECG drift in
the top panel. A) Drift removal using LR. B) Drift removal using the MA
filter.

cover the effects of sampling frequency, and to explore other
numerical derivatives and integrators.
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Fig. 5. The effects on ECG of numerical differentiation followed by numerical
integration. A) Original ECG signal. B) Numerical derivative of ECG in A)
using first order time difference z(n) — x(n — 1). C) Signal in B after
numerical integration using MA filtering.

C. Signal processing for big data

Multidimensional arrays (or tensors) are common in the
analysis of big data, but despite their enormous practical
usefulness it is still rare to cover tensors within the DSP
curriculum. This is largely because it is difficult to find easy
to digest and intuitive examples which would demonstrate
the power of tensor algebra. We next provide such an il-
luminating example based on students’ own ECG, our own
recent developments in tensor visualisation [14] [15] and our



open source software package HOTTBOX [16]. Although 5-
10 minutes of ECG does not qualify as big data source per
se, we first show that methods of tensorisation introduce
redundancy and thus enlarge dimensionality in data, which
then admits the use of subsequent tensor factorisations to
extract physically meaningful information. Fig. 6 illustrates
the construction of a third order tensor from the vector of
ECG, constructed by taking the short-time Fourier transform
(STFT) of the Hankel-folded first order derivative of the ECG.
The one—factor Canonical Polyadic Decomposition (CPD) was
then applied which extracted the fundamental frequency of
heart rate, modulated by respiration in its envelope (see also
Fig. 2, top right panel). In this way, students also experience
direct exposure to high—dimensional alternatives to Principal
Component Analysis (PCA).
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Fig. 6. Using “bio—presence” to teach tensor decompositions for Big Data
analytics, an example where Canonical Polyadic Decomposition (CPD) reveals
the fundamental periodic pattern in ECG. Counterclockwise from top right:
First order derivative of the ECG; Data tensor formed by Hankel-folding and
STFT; Principle of tensor factorisation using CPD; Fundamental periods in
data identified in factor-one CPD (heart rate modulated by respiration).

IV. CONCLUSION

We have illuminated some of the opportunities in next—
generation DSP education that arise through the use of wear-
able sensing in the classroom. This approach has been shown
to not only bridge the gap between the mathematics—heavy
DSP backbone and its practical applications, but also to serve
as a vehicle to modernise current DSP curricula and provide
enhanced physical insight into the taught material. The so
enabled framework for the unification of multiple aspects
of DSP curriculum under the umbrella of “bio—presence”,
established through processing of students’ own vital signs,
has also been demonstrated to permit seamless migration
of ideas from standard DSP curriculum to curiosity driven
learning, and vice versa, together with an open platform for
further developments. It is our hope that this “participatory
approach” to DSP education will both demystify the role of
DSP as a mathematical lens into the real world and further
empower educators and students with enhanced intuition and
freedom in algorithmic design.

It could not be more appropriate but to conclude with:

“The roots of education are bitter, but the fruit is
sweet”. Aristotle 384-322 BC

EPILOGUE

More than 85% out of the 450 students involved described
increased intellectual satisfaction and engagement with the
overall approach. They expressed their appreciation for the
opportunity to enhance their creativity by exploring additional
concepts not covered, or only partially so, during the lectures,
together with the experience that difficulties in experimenta-
tion and signal analysis are surmountable.
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