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For musicians, performing in front of an audience can cause considerable

apprehension; indeed, performance anxiety is felt throughout the profession,

with wide ranging symptoms arising irrespective of age, skill level and

amount of practice. A key indicator of stress is frequency-specific fluctuations

in the dynamics of heart rate known as heart rate variability (HRV). Recent

developments in sensor technology have made possible the measurement of

physiological parameters reflecting HRV non-invasively and outside of the

laboratory, opening research avenues for real-time performer feedback to

help improve stress management. However, the study of stress using standard

algorithms has led to conflicting and inconsistent results. Here, we present an

innovative and rigorous approach which combines: (i) a controlled and repea-

table experiment in which the physiological response of an expert musician

was evaluated in a low-stress performance and a high-stress recital for an

audience of 400 people, (ii) a piece of music with varying physical and cogni-

tive demands, and (iii) dynamic stress level assessment with standard and

state-of-the-art HRV analysis algorithms such as those within the domain of

complexity science which account for higher order stress signatures. We

show that this offers new scope for interpreting the autonomic nervous

system response to stress in real-world scenarios, with the evolution of stress

levels being consistent with the difficulty of the music being played, super-

imposed on the stress caused by performing in front of an audience. For an

emerging class of algorithms that can analyse HRV independent of absolute

data scaling, it is shown that complexity science performs a more accurate

assessment of average stress levels, thus providing greater insight into the

degree of physiological change experienced by musicians when performing

in public.
1. Introduction
Performing music in public requires the management of intense physical and

mental demands. How musicians perceive and respond to these demands, and deli-

ver high-quality performances consistently under pressure, can determine not only

the success of single events but also the path and length of their careers [1,2].

In this respect, musicians are not unlike elite performers in other domains.

Under intense stress, physiological and psychological responses such as heart

rate and level of state anxiety are markedly increased for both those who

must work hard physically, such as athletes [3], as well as those whose work

requires mental exertion, such as surgeons [4] and chess grandmasters [5].

While the analysis of physiological responses is well explored in sports science

and in many clinical fields, studies in music, particularly those examining stress

in real-world contexts and at the highest of international levels, are rare.

Stress is managed by the autonomic nervous system (ANS). In particular, a

reaction to stress can be characterized by the interactions between two ANS

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2013.0719&domain=pdf&date_stamp=2013-09-25
mailto:aaron.williamon@rcm.ac.uk
mailto:d.mandic@imperial.ac.uk


rsif.royalsocietypublishing.org
JR

SocInterface
10:20130719

2
components: the parasympathetic nervous system (PNS),

associated with homoeostasis and balance, and the sympath-

etic nervous system (SNS), associated with greater arousal

[6]. SNS/PNS interactions have been shown to influence the

temporal fluctuations of the peak-to-peak times in the electro-

cardiogram (ECG)—the R-to-R (RR) interval—known as heart

rate variability (HRV; [7,8]). The simplest measures of HRV are

the mean of the RR time series and its standard deviation about

the mean. Stress often causes a decrease in the mean RR

(increased heart rate) in healthy individuals, with the opposite

effect in chronically stressed individuals [9], while in the case of

standard deviation, certain studies have found that it fails to

vary significantly in conditions of mental stress [10]. Moreover,

both the mean and standard deviation statistics are based on

the absolute magnitude of the RR interval, whereas in many

applications relative measures of a process are understood to

exhibit a greater consistency for inter-individual comparisons.

For instance, the resting heart rate can vary considerably from

individual to individual.

In recent years, studies of HRV in the stress assessment con-

text have focused on its low-frequency (LF) and high-frequency

(HF) components: 0.04–0.15 Hz and 0.15–0.4 Hz, respectively

(for a review, see [6–8]). It has been widely accepted that the

HF element reflects PNS activity whereas the LF element,

although more complicated, reflects SNS activity [11]. Changes

induced by pharmacological stress have been shown to cause

an increase in SNS activity while reciprocally causing a withdra-

wal in PNS activity, a phenomenon known as the sympatho-

vagal balance. However, in real-world contexts, the response

of the ANS to stress is diverse and depends on the nature of

the stressor (physical/psychological) and in some cases, the

individual [6]. For instance, a study of psychological stress

[12] found that the extent of changes in PNS activity relative

to SNS activity is person dependent. Nonetheless, it has been

proposed that the LF/HF power ratio, a relative measure, can

characterize the ‘balance’ relationship between the SNS and

PNS [13,14] and has been widely used to study the effect of

stress on performance.

Nakahara et al. [15] compared the LF/HF ratio elicited while

musicians performed and listened to music, finding a higher

ratio during performance. Harmat & Theorell [16] studied

HR and HRV in professional singers and flautists during low-

and high-stress performances. They found increased HR and

supressed HRV in the high-stress condition, but contrary to

findings from previous research [6], LF power was significantly

lower in high stress. Harmat et al. [17] examined HR and HRV

in expert pianists while playing a familiar piece and while

sight-reading a technically demanding unfamiliar piece. They

found significantly higher LF power in the latter condition,

which corresponded to a more cognitively demanding and

(by implication) more stressful task.

The ambiguities and inconsistencies encountered using

the LF/HF model might be explained by recent work

[9,11], which argued that it oversimplifies the complex

relationship between the SNS and PNS and challenged its

accuracy. This has motivated us to investigate more appropri-

ate methods for modelling the variable interactions within

RR rhythms in conditions of stress.

Complexity science quantifies the ability of a living system to

adapt to changes in the environment characterized by long-term

auto- and cross-correlations within its physiological responses

(coupled dynamics) at different scales. Multiscale sample

entropy (MSE) is one such method that evaluates signal
regularity, determined by sample entropy (SE), across multiple

temporal scales and is particularly suited to revealing long-

range correlations—a key feature of complex systems [18,19].

According to MSE theory, a complex system exhibits high

sample entropy at multiple temporal scales. The method has

been used in numerous human-centred applications and has

demonstrated a good agreement with complexity-loss theory,

which asserts that the complexity of physiological time series

of an organism under constraints (owing to illness, ageing or

stress) is lower than for unconstrained (healthy) organisms

[20–22]. There are several advantages of the MSE method in

HRV analysis. The algorithm can account for nonlinear

couplings, enabling greater accuracies compared with standard

linear measures (mean, standard deviation and LF/HF ratio),

and is a relative measure (examines RR fluctuations indepen-

dent of their absolute magnitude) making it more suitable for

inter-individual analysis but without making rigid assumptions

about the underlying generating mechanisms as is the case with

other relative measures (LF/HF ratio). Studies of stress level

changes induced in HRV by physical exertion [23,24] or medita-

tion [25] suggest that complexity—determined by the MSE

approach—is lowest during states of high stress, a result that is con-

sistent with the complexity-loss theory. Despite the potential of

the method in the study of stress, the precise data conditioning

and pre-processing steps undertaken prior to MSE analysis are

often not reported, yet these have a major impact on the

coherence and interpretation of the results.

1.1. Aims of this study
Musical performance requires considerable motor precision

integrated with sustained management of cognitive, perceptual

and social processes and is a natural domain for studying the

response to high-stress performance situations [26]. While con-

sistency in executing domain-specific skills over time is a

characteristic of expertise in any domain [27,28], the physical

control exhibited by an expert classical musician in repeated

performances [29,30] offers a unique opportunity to investigate

the degree of stress caused by public performance.

In our study, the HRV of a concert pianist was assessed

for performances of the same piece in low-stress and high-

stress conditions. We set out to dynamically examine stress

signatures caused by (i) varying physical and cognitive

demands within the musical piece (identical across perform-

ances) and (ii) audience-induced anxiety (different across

performances). For rigour, HRV analysis was performed

using both standard and state-of-the-art techniques with

identical pre-processing (considered frequency range, identi-

cal time windows) applied where relevant, in this way

ensuring a fair comparison between the analysis methods.
2. Material and methods
2.1. Participant
Melvyn Tan (born 1956) is an internationally renowned pianist and

performs regularly in many of the world’s leading concert halls.

2.2. Procedure
A preliminary health screening was first conducted. ECG data

were recorded for performances in: (i) a low-stress condition,

where only the performer and research team were present, and

(ii) a high-stress condition with an audience of 400 people at



Table 1. The times that the performer completed each of the movements
for the low- and high-stress performances.

movement
low-stress
performance (s)

high-stress
performance (s)

Preludea 255 259

Allemande 462 485

Courantea 563 578

Sarabande 802 814

Bourrèe I and II 1040 1048

Gigue 1236 1212
aThe performer reported that the Prelude and Courante were the most
challenging movements of the piece.
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the 2012 Cheltenham Music Festival. The data were collected

using a wireless Zephyr Bioharness [31,32] at a sampling rate

of 250 Hz. Analysis was focused on data obtained during the

first piece in the recital programme, J. S. Bach’s English Suite in
A minor (BWV 807), where early stages of performance are

particularly physically and psychologically stressful [33,34].

2.3. Data treatment
Each performance produced approximately 20 min of ECG data.

The time difference between successive R peaks in ECG was esti-

mated, which was converted into an RR time series using cubic

spline interpolation with samples at regular time intervals of

0.25 s. The RR signal was bandpass filtered (0.04–0.4 Hz) via a

fourth-order Butterworth filter before estimating the following

features using overlapping windows of the same length:

— standard deviation of the RR signal about its mean;

— power in the LF (0.04–0.15 Hz) and HF components (0.15–

0.4 Hz) of the RR signal obtained using a fourth-order

Butterworth filter;

— LF/HF ratio obtained from the estimated power in the LF and

HF bands; and

— SE estimated at different timescales for the complete fre-

quency range (0.04–0.4 Hz), the LF range (0.04–0.15 Hz)

and the HF range (0.15–0.4 Hz). In all cases, each windowed

segment was normalized (zero mean, unit variance) before

estimating the SE with the embedding dimension and toler-

ance level at 2 and 0.15, respectively (see Multiscale sample

entropy below).

Windows of 7 min length were selected as the longest period of

the considered RR component was 25 s (0.04 Hz), and at least 10

times the lowest oscillation period is advised in HRV analysis to

sample short-term variations adequately [7]. It is worth noting

that the LF/HF ratio and the MSE method, when estimated

over normalized data segments, are relative measures, and do

not depend on the absolute scaling of the RR data.

2.4. Multiscale sample entropy
MSE estimation is performed by two steps:

— The different temporal scales are estimated by coarse graining

(moving average) the N-sample time series, fxig, i¼ 1,. . ., N.
For a scale factor, 1, the corresponding coarse-grained time

series is given by: y1
j ¼ ð1/1ÞSixi where i ¼ ( j 2 1)1þ 1,. . ., j1

and j¼ 1,. . ., N/1.

— The SE is evaluated for each intrinsic scale y1
j . Underpinning

the method is the estimation of the conditional probability

that two similar sequences will remain similar when the

next data point is included. First, composite delay vectors

of the scale are formed, with embedding dimension M, and

the average number of neighbouring delay vectors for a

given tolerance level, r, are estimated. This is known as the

frequency-of-occurrence and reflects the level of self-similarity
within the scale. This process is repeated for an embedding

dimension of M þ 1, and the ratio of the two frequency-of-

occurrence values gives the SE of the scale.

For further information on the MSE method, see Costa et al.
[18,19].
3. Results
Table 1 shows the completion time of each movement within

the piece of music. The time difference between the two per-

formances was 24 s, reflecting a high degree of consistency
over a 20 min task and enabling a fair comparison across per-

formances. The performer reported an increase in perceived

pressure during the performance in front of the audience.

He furthermore reported that the Prelude and Courante

(the first and third movements) were the most challenging

in both scenarios.

To provide insight into the level of resolution in time

afforded by the standard deviation, LF/HF ratio and MSE

methods, some of the movement ending times are shown in

figure 1 relative to the window length (7 min). Figure 2 shows

the results of the basic measures of HRV. Figure 2a shows the

RR interval time series for the same performance under

the low-stress (grey line) and high-stress (black line) perform-

ance conditions. The mean RR interval for the high-stress

condition was significantly lower than that for the low-stress

condition (the Bhattacharyya coefficient, a measure of the

amount of overlap between two distributions, was zero).

Figure 2b shows the standard deviation of the RR time series

filtered within the frequency range 0.04–0.4 Hz. The standard

deviation was lower for the high-stress performance (black

line), conforming with some studies of the effects of stress on

RR standard deviation [9]. There was a high level of similarity

between the relative changes in standard deviation for each of

the two performances: the standard deviation decreased at

around 600 s. This result may support the reported difficulty

experienced during the Courante, which ended at 578 s (high-

stress performance), and indicates a reduction in stress possibly

caused by the relief at having completed and passed through

the most challenging parts of the piece, the reduced physical

demands of the subsequent musical material, or both.

Figure 3a shows the total power in the LF bands

(figure 3a(i)) and HF bands (figure 3a(ii)). The high-stress per-

formance (black line) resulted in reduced HF activity but also in

a decrease in the LF activity (grey line). Thus the LF/HF ratio,

as shown in figure 3b, was as expected for the initial stages of

performance—it was highest for the high-stress condition—

but for performance times after approximately 600 s, the ratio

of the low-stress condition was highest. This runs counter to

predictions of the physiological stress model based on an

increase in the LF/HF ratio [6] and suggests that the ratio is

inconsistent. Nonetheless, the relative decreases observed for

the standard deviation features after approximately 600 s,

potentially caused by the shift into less challenging movements

of the piece, is also found in the LF/HF analysis.
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Figure 1. The vertical bars denote times that the performer completed the first four movements: (1) Prelude, (2) Allemande, (3) Courante and (4) Sarabande. Grey
bars denote the end times for the low-stress performance, and black bars the end times for the high-stress performance. The first and third movements, denoted by
asterisk (*), were reported as being the most challenging. The horizontal arrow represents the length of the window used in the standard deviation, LF/HF ratio and
MSE analyses, providing some insight into the level of time resolution afforded by the methods. (Online version in colour.)
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Figure 3c,d shows the results of the SE analysis applied to

the complete frequency range (0.04–0.4 Hz) for the first (no

coarse graining) and second scale factors, respectively. The

results indicate lower complexity, particularly at the second

scale factor, for the high-stress performance (black line),

which is in agreement with previous results: high-stress

conditions yield lower complexity. In this way, the results

are similar to those for the LF/HF ratio (figure 3b), and yet a

greater separation between the two performances was

facilitated by the MSE analysis (figure 3d). Also, a relative

increase in complexity was found in both the high- and low-

stress performances at around 600 s, which is consistent with

the standard deviation and LF/HF analyses. For the same

scale factors, the SE of the LF band only is given in figure

3e,f, and the SE for the HF band only is given in figure 3g,h.

The SE analysis for the HF band discriminates between the

high-stress (black line) and low-stress (grey line) performances

and is consistent with complexity-loss theory, but there was no

separation for the LF band. In both cases (figure 3e,h), how-

ever, a relative increase in complexity was not observed at

around 600 s.
4. Discussion
This study presents the first rigorous examination of real-

world autonomic response in the musical performance

domain, demonstrating the degree of physiological change

experienced by an expert musician when performing in

public. Both standard and state-of-the-art tools were used

to examine dynamically the components of heart rate gov-

erned by autonomic control, revealing signatures in HRV
that indicate higher stress levels caused by public perfor-

mance and also technically challenging movements in the

considered piece.

In this instance, basic measures (mean RR and RR

standard deviation) were able to distinguish clearly between

the states of low and high stress. The results of the stan-

dard deviation analysis also provide insight into the

reported difficulties experienced by the performer during

the first and third movements of the piece, as the relative

values decreased once the third movement ended, suggesting

a relative decrease in stress. It is well known, however,

that such basic measures are not always reliable [9,10].

Another disadvantage is that these measures are based on

the absolute magnitude of the RR signal whereas, in general,

relative measures of a process are understood to exhibit

greater consistency.

The results of the two relative measures, the LF/HF ratio

and the MSE method, were similar when applied to the same

RR frequency components: both methods indicate a higher

level of stress for the first part of the performance and a rela-

tive decrease in stress after the end of the third movement.

However, the LF/HF ratio exhibits inconsistent results from

600 s suggesting the performance for the audience became

less stressful than the performance without an audience, con-

tradicting the reported experience of the musician. On the

other hand, the MSE method clearly shows lower regularity

across the intrinsic data scales for the state of high stress—

indicating a lower complexity of the physiological state.

This is in agreement with the complexity-loss theory for

living organisms under constraint: stress causes a reduction

in complexity. In addition, it was found that the complexity

of the HF band, typically associated with PNS activity, was
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reduced for the state of high stress. Little change in complexity

was observed in the LF band.

While this case study offers valuable insight into how

MSE analysis can be applied to data collected in real-world

contexts, subsequent investigations are needed to establish

the extent in which the results generalize to larger samples

of expert performers and to those at lower levels of skill.

Also, the MSE method should be extended to investigate

jointly the dynamics of other physiological parameters (e.g.

respiration rate) under stressful conditions. Finally, the utility

of physiological complexity as a measure in stress-reduction
interventions needs to be investigated, such as in cognitive-

behavioural training or biofeedback. The findings reported

here also offer promising new avenues for identifying stress

responses in a wide range of performance situations, both

in music and in other performance domains.

This study was conducted according to ethical guidelines of the Brit-
ish Psychological Society. Our research is a case study in which the
participant is named and large amounts of personal (physiological)
data were collected. For ethical reasons, we are unable to submit
our dataset to a public repository. We would, however, consider
releasing extracts of the data to third parties upon request (e.g. for



rsif.royals

6
verification of calculations), but only after obtaining written
permission from the participant.
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Nonlinear analysis of electroencephalogram and
magnetoencephalogram recordings in patients with
Alzheimer’s disease. Phil. Trans. R. Soc. A 367,
317 – 336. (doi:10.1098/rsta.2008.0197)

22. Takahashi T, Cho RY, Murata T, Mizuno T, Kikuchi M,
Mizukami K, Kosaka H, Takahashi K, Wada Y. 2009
Age-related variation in EEG complexity to photic
stimulation: a multiscale entropy analysis. Clin.
Neurophysiol. 120, 476 – 483. (doi:10.1016/j.clinph.
2008.12.043)

23. Buchman TG, Karsch RE. 2009 Changes in temporal
structure of heart rate variability during clinical
stress testing. J. Crit. Care 24, e34. (doi:10.1016/j.
jcrc.2009.06.041)

24. Turianikova Z, Javorka K, Baumert M, Calkovska A,
Javorka M. 2011 The effect of orthostatic stress on
multiscale entropy of heart rate and blood pressure.
Physiol. Meas. 32, 1425. (doi:10.1088/0967-3334/
32/9/006)

25. Sarkar A, Barat P. 2008 Effect of meditation on
scaling behaviour and complexity of human heart
rate variability. Fractals 16, 199 – 208. (doi:10.1142/
S0218348X08003983)

26. Williamon A, Valentine E. 2002 The role of retrieval
structures in memorizing music. Cogn. Psychol. 44,
1 – 32. (doi:10.1006/cogp.2001.0759)

27. Shaffer LH. 1984 Timing in solo and duet piano
performances. Q. J. Exp. Psychol. 36, 577 – 595.
(doi:10.1080/14640748408402180)

28. Ericsson KA. 2008 Deliberate practice and acquisition
of expert performance: a general overview. Acad.
Emerg. Med. 15, 988 – 994. (doi:10.1111/j.1553-
2712.2008.00227.x)

29. Iñesta C, Terrados N, Garcı́a D, Pérez JA. 2008 Heart
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