Vector and Matrix Derivatives

Introduction

This lecture supplement is not meant to be an exhaustive compilation all vector and matrix derivatives. Instead, it
presents (with proofs) several commonly used results in digital signal processing and estimation theory, for both real—
and complex—valued vectors and matrices. Students should be able to use the examples of the proofs presented in this
supplement as a starting point for many other derivatives of scalars and vectors with respect to vectors and matrices. For
a more comprehensive list of matrix identities, we refer to [1}2].

Real Valued Vectors and Matrices

Definitions:
e Column vectors with elements € R
T T T
°oYy= [y17y27"'7yN] , X = [‘rlaan"'va:I » 4= [217227"'72K:| ,and a = [a17a27~"7aM

e General (N x M) matrix A and (M x M) square matrices B and C where

ail @12 - aim C11 Ci2 - Cim b11 bz - bim

a1 a2 - az M C21 Co2 ¢ Com ba1 bag  --- bant
A= c=|. . . . B=

aNi GN2 ' GNM CM1 CM2 ' CMM bari baz - buwm

e The partial derivatives of a scalar o with respect to a vector x and matrix A are defined as

da da da L. da
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ox | oA |
da da da L da
Oznm - Mx1 dan1  Oanaz danm = NxM
e The partial derivative of a vector y with respect to vector x is{ﬂ
Oy1  Oy2 .. Oy~
Ox Oz O
T Oyr  Qy2 ..  Oyn
al é 3y — 8.1‘2 aﬂcz 57:2 (2)
ox  Ox : : :
Oy Ody2 ., Oyn
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Summary
Linear Form: 9 {xTa} = 9 {aTx} =x 3)
T 0% ox
. 0 .
Quadratic Form: I {x"Cx} = (C+C")x =2Cx, *for symmetric C 4)
6 T
Vector Form: y = Ax, G AT %)
ox
Chain Rule
9 . oxT  9al
Linear Form: — Ja'x;=—a+ —x 6
Oz { } Oz Oz ©)
. 0 oxT oxT .
Quadratic Form: —— {x"Cx} = — (C+C")xZ2—Cx, *for symmetric C (7)
Oz 0z Oz
oyT  oxT
Vector Form: y = Ax, v AT )
Oz 0z
IBe aware that some texts define g—i’( = a‘i—yT which would alter the results of the derivatives.



Matrix Derivatives

Linear Form: 8% {Tr(BC)} =C7” )

Quadratic Form: 8% {Tr (ACAT)} =A (CT + C) Z 2AC, *for symmetric C (10)



Complex Valued Vectors and Matrices
Definitions:

e Complex-valued column vectors y € CN*!, x € CM*1 z ¢ CK*! anda € CM*1,

Matrices A € CN*XM B ¢ CMXM gnd C € CM*M,

The partial derivative of a scalar « with respect a vector x* and matrix A* is

da Jole Jole . Jole
ox* dai1 da* da*
da da Y i
Ja | 93 O | Oa3y dal, dal,, (11
ox* " OA~ : : - :
Joe Jole JoJe - oo
9z d prxt day,  day, dafnd Nx M
e Unlike the real-valued case, the partial derivative of a complex valued vector can be defined in two ways
dyr  Oy2 ... Oyn 9yi  Oyz .. Oyy
oxy oxy oxy 6zi ami ij
T 9yi  Oya ... Oyn I oy dys .. Oyn
dy" | ox5  9a3 oz} oy" | Gz Oay 93 (12)
ox* : : . : ox*
Oy1 dy2 ... Oyn Ay; dys . Oyn
oz, ox}, Oz, d pru N oz, oz, Oz, | N

Conjugate Gradient

The complex valued derivatives used in this text are not the conventional complex derivatives used in the standard mathe-
matics and engineering complex variables courses. This is because standard complex derivative operators are only defined
for holomorphic functions that obey the Cauchy-Riemann conditions [3]]. Since many useful functions in engineering are
non-holormopic (e.g. squared error cost function), we resort to the partial derivatives operators from the so-called CR—
calculus framework. For more information, we refer the reader to the tutorial in [3].

Summary
Linear Form: 4 {xTa} =0 (13)
©oox*
. 0 I
Linear Form: g {x a} =a (14)
Quadratic Form: 8?{* {x"Cx} = Cx (15)
Quadratic Form: 8?{* {x"Cx*} = C"x (16)
8YH H
Vector Form: y =Ax, —— =A 17)
ox*
Chain Rule
, 0 [y oxfl — fal |
Linear Form: p {x a} = Wa—i— %x (18)
. 0 g _oxt oxT - .,
Quadratic Form: p {x Cx} = WCX + pe C'x (19)
o oyt oxt . oyT  ox' .
Vector Form:  y = Ax, o~ om A", 2 om A 20)
Matrix Derivatives
. 0 * T
Linear Form: B {Tr(B*C)} =C 21
Quadratic Form: &i* {Tr (ACAH )} =AC (22)



Proofs — Real Case

We will prove the results for the chain rules in () and (8) and show that the proofs for (3) — (3) and (7) are special cases
of (6) and (8).

Linear Form

Proof of (6): Consider the inner product of the vectors a and x, that is the sum of the products of the elements of the two
vectors:

M
alx = Z apxy (23)
=1

0 0
The k-th element of the partial derivative vector is [82 {aTx}] =5 {a”x} where
k “k
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T
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=1 =1
M M
3xT] oaT
=Y %] me X || es)
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el - = = 26
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Proof of (3): a special case of where z = x therefore
0
o { aTX} —a 27
o oxT - . oal
since —— = I and the vector a is independent of x, this gives — = 0.
ox ox

Vector Form

Proof of (8): For the equation y = Ax, the i-th element of vector y is the inner product between the i—th row of the
matrix A and the vector x, such that

M
vi= Y it (28)
=1
T
The ki—th element (k—th row, i—th column) of the partial derivative matrix 5 is then given by
Z
M
0y, Oxy
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M
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oyt oxT .
= A 32
0z 0z (32)
Proof of (3)): The result in (3)) is a special case of (32) where z = x giving
T
Oy _ a7 (33)
ox



Quadratic Form

o)
Proof of (7): The the partial derivative P2 {x"Cx} can be derived using the results in by defining a £ C”'x
Z

0 ( rp 0 oxT oaT
— Cxj;=— = — —_— 4
0z {X X} 0z {a X} 0z at Oz X (34)
Using the chain rule result for the vector form in (32), we have
dal B oxT
0z Oz
Therefore
3 T oxT
T T _ T
92 {x Cx }— C e Cx o (C +C)X (35)
If the matrix C is symmetric i.e. CT = C, then
0
{xTc } = zaicX (36)
Proof of (@): From , when z = x, we obtain the well-known result
0
g {xTCx} = (CT + C)x =2Cx, for symmetric C 37

Matrix Derivatives — Linear Form

Proof of (9): The trace of a matrix, denoted by the operator Tr (-), is the sum of all its diagonal elements. Tr (BC) can be
expressed as

Tr(BC) = [BCl, =Y > [Bl,, [Cl,. (38)
l ¢ m

The jk—th element of the partial derivative matrlx {Tr (BC)} is given by

ablm
ab {Tr(BC)} = ZZ The (39)

Assuming all the elements of B are independent of each other, we have

8bgm_ { 1, =j3m=k

objr | 0, otherwise
Therefore
foe} }
x| = [Cly (40)
{aA i kg
Ja
— =CT 41
~ 9A “h
Matrix Derivatives — Quadratic Form
Proof of (I0): Using the property Tr (BC) = Tr (CB), we have
Tr(ACA™) =Tr (ATAC) (42)

Z [ATAC Z Z [ATA] o [Clne (43)
4 L m

The jk—th element of the partial derivative matrix 6% {Tr (ACAT) } is

{Tr(aca”)} = =33 W [Clane (44)



The matrix derivative

O[AT A)e, 0 T
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= @jm =k, m+#k
aje, m=k, L#*k

Substituting @9) into @4) gives

ZZ %G/Ak Im mé = 2@]]@ [C]kk + ZCLJ[ [C]ke + Z Ajm [C}
= > a;e[Cly, + Zajm €],
4

- Z[A]ﬂ o + Z im |

Therefore, we have the result

i {Tr (ACA™)} = [ACT];, + [AC]jk

_ {Tr (ACA")} = A (C" +C) =2AC, for symmetric C
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Proofs — Complex Case

Similar to the methodology used in the proofs of the real case, we will first prove the general result for the chain rules,
then deduce the other results.

Linear Form

Proof of (T8): Firstly, the inner product xa is expressed as

M

xfa = Z xTyap (56)

0
The k-th element of the vector of partial derivatives e {xH a} is
z

M da
xa} = Z Z i (57)
8aT]
‘ (58)
} ; [8z* ke Il
aaT o
P 0 {x" a} =5 at o (59)

Proof of (T3)): By definition, the partial derivative of x”'a is taken with respect to x* by keeping x constant, it is clear that

=0 (60)

Proof of (T4): If z* = x*, we can see that (39) is

—a (61)

Vector Form

Proof of (20): For the equation y = Ax, the i—th element of vector y is the inner product between the i—th row of A and
the vector x, such that

M
Yi = E ATy
=1

3]
The ki—th element (k—th row, i—th column) of the matrix of partial derivatives e { yi }
Z

M

oy} ox;
9z Z %itp, 5 62)
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M
oxt .
-3 [5] 6
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] n o,
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oyt oxH
= 8};* =50 A (65)
Proof of (I7): For the special case z* = x*, we have
ovH
% — A" (66)



Quadratic Form

In the complex-valued case, quadratic forms can take the form of either x* Cx and x” Cx*. (Note: We will not consider
the the partial derivatives of xH Cx* or xT Cx, but it will be a useful exercise to the reader to carry out these derivations.)

0
Proof of (I9): For the case of pos {x"Cx} we will first define a £ Cx and use the result in (39) to yield
z

oxH oa”
H *
C =
x} pe a+ pe X
al
Then using (63) we find an expression for e
Z
ox
T\ _
al}= 0z
Therefore
oxT
H
Cx; = 67
} = o (67)
Proof of (I3)): For the special case of z* = x*, we have
~ {xox} = ox (68)
Proof of (I6): The partial differential of the quadratic form x” Cx*, is
oxH oxT
c’ Cx* 6
oz = N oz (69)
Tcx*} = C'x (70)
Matrix Derivatives — Linear Form
Proof of (21)): First, Tr (B*C) is expressed as
Tr(B*C)= > [B*C], (71)
¢

=> > B0, (72)
L m

The jk—th element of the matrix of partial derivatives with respect to B* is

ob;,
o (TEO)] =YY G, 73)
O
Since = 1 only for ¢ = j and m = k, we have
obsy,
5 ()| i, 7
J
— 8B* {Tr(B*C)} =CT (75)

Matrix Derivatives — Quadratic Form

Proof of (22)): Using the identity Tr (CB) = Tr (BC), the quadratic form of the trace expression is

Tr (ACAT) = Tr (A7 AC) ZZ [AT A4 [Cline (76)

The jk—th element of the matrix of partial derivatives with respect to A* is

a8 8[A A]gm
Tr (A" AC } = E E ———[C]m 77
8A*{ ( )} ik - Bajk [Clone

(78)




The partial derivative of A A with respect to the individual matrix elements ajy is

OAT Al Z 8anéanm

das, da’, 7
- { gfm’ :)lt;er{;/isi: ’ (80
As a consequence
aA* {Tr (AHAC)}] %:a]m mk = [AC]j3 (81)
= 3 A* {Tr (A"AC)} = AC (82)
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