
Vector and Matrix Derivatives

Introduction
This lecture supplement is not meant to be an exhaustive compilation all vector and matrix derivatives. Instead, it
presents (with proofs) several commonly used results in digital signal processing and estimation theory, for both real–
and complex–valued vectors and matrices. Students should be able to use the examples of the proofs presented in this
supplement as a starting point for many other derivatives of scalars and vectors with respect to vectors and matrices. For
a more comprehensive list of matrix identities, we refer to [1, 2].

Real Valued Vectors and Matrices
Definitions:

• Column vectors with elements ∈ R

◦ y =
[
y1, y2, . . . , yN

]T
, x =

[
x1, x2, . . . , xM

]T
, z =

[
z1, z2, . . . , zK

]T
, and a =

[
a1, a2, . . . , aM

]T
.

• General (N ×M ) matrix A and (M ×M ) square matrices B and C where

A =


a11 a12 · · · a1M
a21 a22 · · · a2M

...
...

. . .
...

aN1 aN2 · · · aNM

 C =


c11 c12 · · · c1M
c21 c22 · · · c2M

...
...

. . .
...

cM1 cM2 · · · cMM

 B =


b11 b12 · · · b1M
b21 b22 · · · b2M

...
...

. . .
...

bM1 bM2 · · · bMM


• The partial derivatives of a scalar α with respect to a vector x and matrix A are defined as

∂α

∂x
=


∂α
∂x1
∂α
∂x2

...
∂α
∂xM


M×1

∂α

∂A
=


∂α
∂a11

∂α
∂a12

· · · ∂α
∂a1M

∂α
∂a21

∂α
∂a22

· · · ∂α
∂a2M

...
...

. . .
...

∂α
∂aN1

∂α
∂aN2

· · · ∂α
∂aNM


N×M

(1)

• The partial derivative of a vector y with respect to vector x is1.

∂y

∂x
,
∂yT

∂x
=


∂y1
∂x1

∂y2
∂x1

· · · ∂yN
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂yN
∂x2

...
...

. . .
...

∂y1
∂xM

∂y2
∂xM

· · · ∂yN
∂xM


M×N

(2)

Summary

Linear Form:
∂

∂x

{
xTa

}
=

∂

∂x

{
aTx

}
= x (3)

Quadratic Form:
∂

∂x

{
xTCx

}
=
(
C+CT

)
x

?
= 2Cx, ?for symmetric C (4)

Vector Form: y = Ax,
∂yT

∂x
= AT (5)

Chain Rule

Linear Form:
∂

∂z

{
aTx

}
=
∂xT

∂z
a+

∂aT

∂z
x (6)

Quadratic Form:
∂

∂z

{
xTCx

}
=
∂xT

∂z

(
C+CT

)
x

?
= 2

∂xT

∂z
Cx, ?for symmetric C (7)

Vector Form: y = Ax,
∂yT

∂z
=
∂xT

∂z
AT (8)

1Be aware that some texts define ∂y
∂x

= ∂y
∂xT , which would alter the results of the derivatives.
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Matrix Derivatives

Linear Form:
∂

∂B
{Tr (BC)} = CT (9)

Quadratic Form:
∂

∂A

{
Tr
(
ACAT

)}
= A

(
CT +C

) ?
= 2AC, ?for symmetric C (10)
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Complex Valued Vectors and Matrices
Definitions:

• Complex-valued column vectors y ∈ CN×1, x ∈ CM×1, z ∈ CK×1 and a ∈ CM×1.

• Matrices A ∈ CN×M , B ∈ CM×M and C ∈ CM×M .

• The partial derivative of a scalar α with respect a vector x∗ and matrix A∗ is

∂α

∂x∗
=


∂α
∂x∗

1
∂α
∂x∗

2

...
∂α
∂x∗

M


M×1

∂α

∂A∗
=


∂α
∂a11

∂α
∂a∗12

· · · ∂α
∂a∗1M

∂α
∂a∗21

∂α
∂a∗22

· · · ∂α
∂a∗2M

...
...

. . .
...

∂α
∂a∗N1

∂α
∂a∗N2

· · · ∂α
∂a∗NM


N×M

(11)

• Unlike the real-valued case, the partial derivative of a complex valued vector can be defined in two ways

∂yT

∂x∗
=


∂y1
∂x∗

1

∂y2
∂x∗

1
· · · ∂yN

∂x∗
1

∂y1
∂x∗

2

∂y2
∂x∗

2
· · · ∂yN

∂x∗
2

...
...

. . .
...

∂y1
∂x∗

M

∂y2
∂x∗

M
· · · ∂yN

∂x∗
M


M×N

∂yH

∂x∗
=


∂y∗1
∂x∗

1

∂y∗2
∂x∗

1
· · · ∂y∗N

∂x∗
1

∂y∗1
∂x∗

2

∂y∗2
∂x∗

2
· · · ∂y∗N

∂x∗
2

...
...

. . .
...

∂y∗1
∂x∗

M

∂y∗2
∂x∗

M
· · · ∂y∗N

∂x∗
M


M×N

(12)

Conjugate Gradient
The complex valued derivatives used in this text are not the conventional complex derivatives used in the standard mathe-
matics and engineering complex variables courses. This is because standard complex derivative operators are only defined
for holomorphic functions that obey the Cauchy-Riemann conditions [3]. Since many useful functions in engineering are
non-holormopic (e.g. squared error cost function), we resort to the partial derivatives operators from the so-called CR–
calculus framework. For more information, we refer the reader to the tutorial in [3].

Summary

Linear Form:
∂

∂x∗
{
xTa

}
= 0 (13)

Linear Form:
∂

∂x∗
{
xHa

}
= a (14)

Quadratic Form:
∂

∂x∗
{
xHCx

}
= Cx (15)

Quadratic Form:
∂

∂x∗
{
xTCx∗

}
= CTx (16)

Vector Form: y = Ax,
∂yH

∂x∗
= AH (17)

Chain Rule

Linear Form:
∂

∂z∗
{
xHa

}
=
∂xH

∂z∗
a+

∂aT

∂z∗
x∗ (18)

Quadratic Form:
∂

∂z∗
{
xHCx

}
=
∂xH

∂z∗
Cx+

∂xT

∂z∗
CTx∗ (19)

Vector Form: y = Ax,
∂yH

∂z∗
=
∂xH

∂z∗
AH ,

∂yT

∂z∗
=
∂xT

∂z∗
AT (20)

Matrix Derivatives

Linear Form:
∂

∂B∗
{Tr (B∗C)} = CT (21)

Quadratic Form:
∂

∂A∗
{

Tr
(
ACAH

)}
= AC (22)
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Proofs – Real Case
We will prove the results for the chain rules in (6) and (8) and show that the proofs for (3) – (5) and (7) are special cases
of (6) and (8).

Linear Form

Proof of (6): Consider the inner product of the vectors a and x, that is the sum of the products of the elements of the two
vectors:

aTx =

M∑
`=1

a`x` (23)

The k–th element of the partial derivative vector is
[
∂

∂z

{
aTx

}]
k

=
∂

∂zk

{
aTx

}
where

∂

∂zk

{
aTx

}
=

M∑
`=1

∂x`
∂zk

a` +

M∑
`=1

∂a`
∂zk

x` (24)

=

M∑
`=1

[
∂xT

∂z

]
k`

[a]` +

M∑
`=1

[
∂aT

∂z

]
k`

[x]` (25)

=⇒ ∂

∂z

{
aTx

}
=
∂xT

∂z
a+

∂aT

∂z
x (26)

Proof of (3): a special case of (26) where z = x therefore

∂

∂x

{
aTx

}
= a (27)

since
∂xT

∂x
= I and the vector a is independent of x, this gives

∂aT

∂x
= 0.

Vector Form

Proof of (8): For the equation y = Ax, the i–th element of vector y is the inner product between the i–th row of the
matrix A and the vector x, such that

yi =

M∑
`=1

ai`x` (28)

The ki–th element (k–th row, i–th column) of the partial derivative matrix
∂yT

∂z
is then given by

∂yi
∂zk

=

M∑
`=1

ai`
∂x`
∂zk

(29)

=

M∑
`=1

[
∂xT

∂z

]
k`

[A]i` (30)

[
∂yT

∂z

]
ki

=

M∑
`=1

[
∂xT

∂z

]
k`

[
AT
]
`i

(31)

=⇒ ∂yT

∂z
=
∂xT

∂z
AT (32)

Proof of (5): The result in (5) is a special case of (32) where z = x giving

∂yT

∂x
= AT (33)
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Quadratic Form

Proof of (7): The the partial derivative
∂

∂z

{
xTCx

}
can be derived using the results in (26) by defining a , CTx

∂

∂z

{
xTCx

}
=

∂

∂z

{
aTx

}
=
∂xT

∂z
a+

∂aT

∂z
x (34)

Using the chain rule result for the vector form in (32), we have

∂aT

∂z
=
∂xT

∂z
C

Therefore

∂

∂z

{
xTCx

}
=
∂xT

∂z
CTx+

∂xT

∂z
Cx =

∂xT

∂z

(
CT +C

)
x (35)

If the matrix C is symmetric i.e. CT = C, then

∂

∂z

{
xTCx

}
= 2

∂xT

∂z
Cx (36)

Proof of (4): From , when z = x, we obtain the well-known result

∂

∂x

{
xTCx

}
=
(
CT +C

)
x = 2Cx, for symmetric C (37)

Matrix Derivatives – Linear Form

Proof of (9): The trace of a matrix, denoted by the operator Tr (·), is the sum of all its diagonal elements. Tr (BC) can be
expressed as

Tr (BC) =
∑
`

[BC]`` =
∑
`

∑
m

[B]`m [C]m` (38)

The jk–th element of the partial derivative matrix
∂

∂B
{Tr (BC)} is given by

∂

∂bjk
{Tr (BC)} =

∑
`

∑
m

∂b`m
∂bjk

[C]m` (39)

Assuming all the elements of B are independent of each other, we have

∂b`m
∂bjk

=

{
1, ` = j,m = k
0, otherwise

Therefore [
∂α

∂A

]
jk

= [C]kj (40)

=⇒ ∂α

∂A
= CT (41)

Matrix Derivatives – Quadratic Form

Proof of (10): Using the property Tr (BC) = Tr (CB), we have

Tr
(
ACAT

)
= Tr

(
ATAC

)
(42)

=
∑
`

[
ATAC

]
``
=
∑
`

∑
m

[
ATA

]
`m

[C]m` (43)

The jk–th element of the partial derivative matrix
∂

∂A

{
Tr
(
ACAT

)}
is

∂

∂ajk

{
Tr
(
ACAT

)}
= =

∑
`

∑
m

∂[ATA]`m
∂ajk

[C]m` (44)
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The matrix derivative

∂[ATA]`m
∂ajk

=
∂

∂ajk

∑
n

[AT ]`n[A]nm (45)

=
∂

∂ajk

∑
n

[A]n`[A]nm (46)

=
∑
n

∂an`anm
∂ajk

(47)

=
∂aj`ajm
∂ajk

(48)

=

 2ajk, ` = m = k
ajm, ` = k, m 6= k
aj`, m = k, ` 6= k

(49)

Substituting (49) into (44) gives

∑
`

∑
m

∂[ATA]`m
∂ajk

[C]m` = 2ajk [C]kk +
∑
` 6=k

aj` [C]k` +
∑
m 6=k

ajm [C]mk (50)

=
∑
`

aj` [C]k` +
∑
m

ajm [C]mk (51)

=
∑
`

[A]j`
[
CT
]
`k

+
∑
m

[A]jm [C]mk (52)

(53)

Therefore, we have the result

∂

∂ajk

{
Tr
(
ACAT

)}
= [ACT ]jk + [AC]jk (54)

=⇒ ∂

∂A

{
Tr
(
ACAT

)}
= A

(
CT +C

)
= 2AC, for symmetric C (55)

6



Proofs – Complex Case
Similar to the methodology used in the proofs of the real case, we will first prove the general result for the chain rules,
then deduce the other results.

Linear Form

Proof of (18): Firstly, the inner product xHa is expressed as

xHa =

M∑
`=1

x∗`a` (56)

The k–th element of the vector of partial derivatives
∂

∂z∗
{
xHa

}
is

∂

∂z∗k

{
xHa

}
=

M∑
`=1

∂x∗`
∂z∗k

a` +

M∑
`=1

∂a`
∂z∗k

x∗` (57)

=

M∑
`=1

[
∂xH

∂z∗

]
k`

[a]` +

M∑
`=1

[
∂aT

∂z∗

]
k`

[x]∗` (58)

=⇒ ∂

∂z

{
xHa

}
=
∂xH

∂z∗
a+

∂aT

∂z∗
x∗ (59)

Proof of (13): By definition, the partial derivative of xTa is taken with respect to x∗ by keeping x constant, it is clear that

∂

∂x∗
{
xTa

}
= 0 (60)

Proof of (14): If z∗ = x∗, we can see that (59) is

∂

∂x∗
{
xHa

}
= a (61)

Vector Form

Proof of (20): For the equation y = Ax, the i–th element of vector y is the inner product between the i–th row of A and
the vector x, such that

yi =

M∑
`=1

ai`x`

The ki–th element (k–th row, i–th column) of the matrix of partial derivatives
∂

∂z∗
{
yH
}

∂y∗i
∂z∗k

=

M∑
`=1

a∗i`
∂x∗`
∂z∗k

(62)

=

M∑
`=1

[
∂xH

∂z∗

]
k`

[A∗]i` (63)

[
∂yH

∂z∗

]
ki

=

M∑
`=1

[
∂xH

∂z∗

]
k`

[
AH

]
`i

(64)

=⇒ ∂yH

∂z∗
=
∂xH

∂z∗
AH (65)

Proof of (17): For the special case z∗ = x∗, we have

∂yH

∂z∗
= AH (66)
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Quadratic Form

In the complex-valued case, quadratic forms can take the form of either xHCx and xTCx∗. (Note: We will not consider
the the partial derivatives of xHCx∗ or xTCx, but it will be a useful exercise to the reader to carry out these derivations.)

Proof of (19): For the case of
∂

∂z∗
{
xHCx

}
we will first define a , Cx and use the result in (59) to yield

∂

∂z∗
{
xHCx

}
=
∂xH

∂z∗
a+

∂aT

∂z∗
x∗

Then using (65) we find an expression for
∂aT

∂z∗

∂

∂z∗
{
aT
}
=
∂xT

∂z∗
CT

Therefore

∂

∂z∗
{
xHCx

}
=
∂xH

∂z∗
Cx+

∂xT

∂z∗
CTx∗ (67)

Proof of (15): For the special case of z∗ = x∗, we have

∂

∂x∗
{
xHCx

}
= Cx (68)

Proof of (16): The partial differential of the quadratic form xTCx∗, is

∂

∂z∗
{
xTCx∗

}
=
∂xH

∂z∗
CTx+

∂xT

∂z∗
Cx∗ (69)

∂

∂x∗
{
xTCx∗

}
= CTx (70)

Matrix Derivatives – Linear Form

Proof of (21): First, Tr (B∗C) is expressed as

Tr (B∗C) =
∑
`

[B∗C]`` (71)

=
∑
`

∑
m

[B∗]`m [C]m` (72)

The jk–th element of the matrix of partial derivatives with respect to B∗ is[
∂

∂B∗
{Tr (B∗C)}

]
jk

=
∑
`

∑
m

∂b∗`m
∂b∗jk

[C]m` (73)

Since
∂b∗`m
∂b∗jk

= 1 only for ` = j and m = k, we have

[
∂

∂B∗
{Tr (B∗C)}

]
jk

= [C]kj (74)

=⇒ ∂

∂B∗
{Tr (B∗C)} = CT (75)

Matrix Derivatives – Quadratic Form

Proof of (22): Using the identity Tr (CB) = Tr (BC), the quadratic form of the trace expression is

Tr
(
ACAH

)
= Tr

(
AHAC

)
=
∑
`

∑
m

[AHA]`m[C]m` (76)

The jk–th element of the matrix of partial derivatives with respect to A∗ is[
∂

∂A∗
{

Tr
(
AHAC

)}]
jk

=
∑
`

∑
m

∂[AHA]`m
∂a∗jk

[C]m` (77)

(78)

8



The partial derivative of AHA with respect to the individual matrix elements a∗jk is

∂[AHA]`m
∂a∗jk

=
∑
n

∂a∗n`anm
∂a∗jk

(79)

=

{
ajm, n = j, ` = k
0, otherwise (80)

As a consequence [
∂

∂A∗
{

Tr
(
AHAC

)}]
jk

=
∑
m

ajm[C]mk = [AC]jk (81)

=⇒ ∂

∂A∗
{

Tr
(
AHAC

)}
= AC (82)
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