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Aims

◦ To introduce real-time adaptive estimation for streaming data

◦ Adaptive filters # “ARMA models with adaptive coefficients”

◦ Wiener filter and the method of steepest descent

◦ Stochastic gradient and the Least Mean Square (LMS) algorithm

◦ Role of learning rate (stepsize), bias and variance in estimation

◦ Adaptive filtering configurations (prediction, SYS ID, denoising, ...)

◦ Simple nonlinear structures (model of an artificial neuron)

◦ Stability and convergence of adaptive estimators, link with CRLB

◦ Applications (also a link with your Coursework)
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A big picture of estimators so far
OPTIMALITY

assumptions practicality
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◦ Minimum variance unbiased estimator (MVU), Cramer Rao Lower
Bound (CRLB) # known pdf, linearity assumption, stationarity

◦ Linear model # known pdf, stationarity, and linearity

◦ Best linear unbiased estimator (BLUE) # linear in the unknown
parameter, stationarity, pdf not needed

◦ Maximum likelihood estimation (MLE) # stationarity, known pdf

◦ Least squares estimation (LS) # stationarity, deterministic data model

◦ Wiener filter # stationarity, no other assumptions

◦ Adaptive filters # no assumptions
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Number guessing game
principle of adaptive estimation

Let us play a guessing game: One person will pick an integer between
−100 and 100 and remember it, and the rest of us will try to discover that
number in the following ways:

◦ Random guess with no feedback;

◦ Random guess followed by feedback  the only information given is
whether the guess was high or low;

◦ But we can make it a bit more complicated  the guessed number may
change along the iterations (nonstationarity).

Let us formalise this: If the current guess is denoted by gi(n), we can
build a recursive update in the form

gi(n+ 1) = gi(n) + sign
(
e(n)

)
rand

[
gi(n), gi(n− 1)

]
new guess = old guess + correction

Welcome to the wonderful world of adaptive filters!
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Adaptive filters
basis for machine intelligence

The last equation was actually an adaptive filter in the form:(
New

Estimate

)
=

(
Old

Estimate

)
+

(
Correction

Term

)
Usually(

Correction
Term

)
=

(
Learning

Rate

)
×
(

Function of
Input Data

)
×
(

Function of
Output Error

)

This is the very basis of learning in any adaptive machine!

The most famous example is the Least Mean Square (LMS) algorithm,
for which the parameter (weights) update equation is given by (more later)

w(n+ 1) = w(n) + µe(n)x(n)

where w(n) ∈ Rp×1 are (time-varying) filter coefficients, commonly called
filter weights, x(n) ∈ Rp×1 are input data in filter memory, e(n) is the
output error at time instant n, and µ > 0 is the learning rate (step size).
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Problem formulation
from a fixed h in digital filters to a time-varying w(n) in adaptive filters

Consider a set of p sensors at different points in space (filter order p)

Let x1, x2, . . . , xp be the individual signals from the sensors

w
output

summer
weightssensors

p

px

1
x

1

w

y(n)
Σ e(n)

x(n)

w (n)

y(n)

Adaptive System

Coefficients

Error

Σ

Response

Desired

Comparator

Algorithm
Control

Filter 

Signal

Input

+_ d(n)

◦ The sensor signals are weighted by the corresponding set of
time–varying filter parameters w(n) = [w1(n), . . . , wp(n)]T (weights)

◦ The weighted signals are then summed to produce the output

y(n) =

p∑
i=1

wi(n)xi(n) = xT (n)w(n) = wT (n)x(n), n = 0, 1, 2, . . .

where xT (n) = [x1(n), . . . , xp(n)], wT (n) = [w1(n), . . . , wp(n)]
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Wiener–Hopf solution: The setting

Objective: To determine the optimum set of fixed weights
wo = [wo1, . . . , wop]

T so as to minimize the difference between the
system output and some desired response d in the mean square sense.

◦ The input-output relation of the filter is given by

y(n) =

p∑
k=1

wk(n)xk(n) = wT (n)x(n)

◦ Let {d(n)} denote the desired response or (target output or teaching
signal) for the filter. Then, the error signal is

e(n) = d(n)− y(n)

◦ A natural objective function or cost function we wish to optimise is
the mean square error, defined as (note the expectation E{·})

J =
1

2
E{e2(n)} =

1

2
E
{(
d(n)−

p∑
k=1

wk(n)xk(n)
)2}

(= J(w))

In other words, we wish to minimise the expected value of error power.
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Wiener filter and the optimal filtering problem
for convenience we use 1

2E{e
2(n)} instead of E{e2(n)}  both have min. at wo

The optimal filtering problem for a given signal {x(n)}:
Determine the optimal set of weights wo = [wo1, . . . , wop]

T

(fixed) for which the mean square error J = 1
2 E{e

2(n)} is minimum.

The solution to this problem is known as the Wiener filter.

The cost function is quadratic in the error (and thus in the weights), it is
convex and has exactly one minimum Jmin = J(wo), corresponding to wo

J =
1

2
E{e2} =

1

2
E{d2} − E

{
p∑
k=1

wkxkd

}
+

1

2
E


p∑
j=1

p∑
k=1

wjwkxjxk


where the “double summation” calculates the square of a sum, that is(∑

k

)2

=
∑
k

∑
j, and the time index “n” is omitted for brevity.

Then J =
1

2
E{d2} −

p∑
k=1

wkE{xkd}+
1

2

p∑
j=1

p∑
k=1

wjwkE{xjxk}
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Wiener filter: Error surface

Introduce the notation:

σ2
d = E{d2} → power of the teaching (desired) signal

rdx(k) = E{dxk}, k = 1, 2, . . . , p → crosscorrelation between d & xk

rx(j, k) = E{xjxk}, j, k = 1, 2, . . . , p → autocorrelation at lag (j − k)

Plug back into J to yield

J =
1

2
σ2
d −

p∑
k=1

wkrdx(k) +
1

2

p∑
j=1

p∑
k=1

wjwkrx(j, k)

Definition: A multidimensional plot of the cost function J versus the
weights (free parameters) w1, . . . , wp constitutes the error performance
surface or simply the error surface of the filter.

The error surface is bowl–shaped with a well–defined bottom (global
minimum point). It is precisely at this point where the spatial filter from
Slide 6 is optimal in the sense that the mean squared error attains its
minimum value Jmin = J(wo).

Recall that J = J(e) = J(w), as the unknown parameter is the weight vector.
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Error Performance Surface and Wiener solution
Error Performance Surface (EPS) and Contour Plots Contour Plot.m

Error Performance Surface (EPS): A plot of the cost function
J = J(e) = J(w) against the whole range of possible weights, w

Contour plot: A 2D plot of the projections (horizontal slices) of the 3D
EPS on the weights plane; in our case, projections on the [w1, w2] plane

Shape of the error surface and contours depends on the statistics of the
input (concentric circles for white data, ellipses for correlated data)
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Finally, the Wiener solution
(fixed set of optimum weight # a static solution)

To determine the optimum weights, follow the least squares approach:

∇wkJ =
∂J

∂wk
=

∂

∂wk

[1
2
σ2
d −

p∑
k=1

wkrdx(k) +
1

2

p∑
j=1

p∑
k=1

wjwkrx(j, k)
]

k = 1, . . . , p

Differentiate wrt to wk and set to zero to give

∇wkJ = −rdx(k) +

p∑
j=1

wjrx(j, k) = 0

Let wok denote the optimum value of weight wk. Then, the optimum
weights are determined by the following set of simultaneous equations

p∑
j=1

wojrx(j, k) = rdx(k), k = 1, 2, . . . , p ⇔ Rxxwo = rdx

or in a compact form wo = R−1
xx rdx

This system of equations is termed the Wiener-Hopf equations. The filter
whose weights satisfy the Wiener-Hopf equations is called Wiener filter.
(Rxx is the input autocorrelation matrix and rdx the vector of {rdx})

Notice, this is a block filter, operating on the whole set of data (non-sequential)
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Wiener solution and error performance surface

◦ The Wiener solution is now illustrated for the two–dimensional case, by
plotting the cost function J(w) against the weights w1 and w2, which
are elements of the two–dimensional weight vector w(n) = [w1, w2]T .

◦ The distinguishing feature is that a linear system can find a unique
global minimum of the cost function, whereas in nonlinear adaptive
systems (neural networks) we can have both global and local minima.

xo=

w1opt

w2opt

w1

w1

w2

w2

wo

contoursconstant
of J for white input

J
w

J
= 0

minimum

r(0) 0

r(0)0
=R

R
−1
rdw
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Vector-matrix formulation of the Wiener filter

The cost (error, objective) function, J = 1
2e

2(n) can be expanded as

J =
1

2
E{e eT} =

1

2
E
{(
d−wTx

)(
d−wTx

)T}
=

1

2
E{d2 − dxTw − dwTx + wTxxTw}

=
1

2
E{d2 − 2dxTw + wTxxTw}

=
1

2
E{d2} − 1

2
2wTE{xd}+

1

2
wTE{xxT}w

where the cross-correlation vector rdx ≡ E[xd]T and autocorr. matrix R ≡ E[xxT ]

Thus, (w is still a fixed vector for the time being) the cost function

J =
1

2
σ2
d −wTrdx +

1

2
wTRw

is quadratic in w and for a full rank R, it has a unique minimum, J(wo).

Now: For Jmin = J(wo) # ∂J / ∂w = −rdx + R ·w = 0 ⇒ −rdx + R ·wo = 0

Finally wo = R−1rdx the co-called Wiener–Hopf equations
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Applications: Adaptive filtering configurations
(valid for all adaptive filtering algorithms, more later in the context of LMS)

System identification Noise cancellation

Σ
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Unknown

System Output

d(n)x(n)

_

+

y(n)

e(n)
Σ

(n)
s(n) (n)o+N

N1

_
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Adaptive

Filter

Primary input

+

d(n)

x(n)

e(n)
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Delay
Filter
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+

_

Σ

x(n) Adaptive

e(n)

x(n)

Unknown

System

Adaptive

Filter

Delay

y(n)

+

_

Σ

d(n)

e(n)

Adaptive prediction Inverse system modelling
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A zoom-in into adaptive system identification

Consider a System Identification (SYS-ID) configuration of adaptive filters

Σ

Input

Adaptive

Filter

Unknown

System Output

d(n)x(n)

_

+

y(n)

e(n)

◦ Our goal is to identify the parameters, h = [h1, . . . , hp]
T , of an unknown

FIR system (plant) in an adaptive, on–line manner

◦ To this end, we connect the adaptive filter “in parallel” with the
unknown system, with the aim to achieve w(∞) ≈ h after convergence

◦ The unknown parameters, h, are found by minimising a suitable convex
error function, for example, the error power, J(e) = J(w) = E{e2(n)}
◦ Then, the optimum set of adaptive filter weights, wo = w(∞) ≈ h
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Example 1: Performance of the Wiener filter (in SYS ID)
Wiener Chirp Denoising

Set up: Consider the system model d(n) = x(n)− 1.5x(n− 1) + q(n)

where x ∼ N (0, 1) and noise q ∼ N (0, 0.16)

Task: Find the “system coefficients”, wo = [1,−1.5]T , from the available
noisy observations, d(n), without any knowledge about wo or q

Solution: We can write d(n) = wT
o x(n) + q(n)

and use the Wiener filter in the System Identification (SYS-ID)

setting to find the unknown system coefficients as wo = R−1rdx.

Σ

Input
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Filter

Unknown

System Output

d(n)x(n)

_

+

y(n)

e(n)

0 50 100 150
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h
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True weights

Wiener

R Observe that the performance of the Wiener filter depends on filter length
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Method of steepest descent: Iterative Wiener solution
we reach wo through iterations w(n+ 1) = w(n) + ∆w(n) = w(n)− µ∇wJ(n)

Problem with the Wiener filter: it is computationally demanding to
calculate the inverse of a possibly large correlation matrix Rxx.

Solution: Allow the weights to have a time–varying form, so that they
can be adjusted in an iterative fashion along the error surface.

ww(n+1)

w(n)

J

Wo

w

2
q

σ

∆

Jmin

w
J

This is achieved in the
direction of steepest descent
of error surface, that is,
in a direction opposite
to the gradient vector
whose elements are defined
by ∇wkJ, k = 1, 2, . . . , p.

For a teaching signal, assume

d(n) = xT (n)wo + q(n),

where q ∈ N (0, σ2
q), so that

we have Jmin = σ2
q
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Method of steepest descent # continued

The gradient of the error surface of the filter wrt the weights now takes a
time varying form

∇wkJ(n) = −rdx(k) +

p∑
j=1

wj(n)rx(j, k) (*)

where the indices j, k refer e.g. to locations of different sensors in space,
while the index n refers to iteration number.

According to the method of steepest descent, the adjustment applied to
the weight wk(n) at iteration n, called the weight update, ∆wk(n), is
defined along the direction of the negative of the gradient, as

∆wk(n) = −µ∇wkJ(n), k = 1, 2, . . . , p

where µ is a small positive constant, µ ∈ R+, called the learning rate
parameter (also called step size, usually denoted by µ or η).
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Method of steepest descent: Final form
Recall ∇wk

J(n) = −rdx(k) +
∑p

j=1wj(n)rx(j, k) or ∇wJ(n) = −rdx + Rw

Given the current value of the kth weight wk(n) at iteration n, the
updated value of this weight at the next iteration (n+ 1) is computed as

wk(n+ 1) = wk(n) + ∆wk(n) = wk(n)− µ∇wkJ(n)

a vector form w(n+ 1) = w(n) + ∆w(n) = w(n)− µ∇wJ(n)

R updated filter weights = current weights + weight update
Upon combining with (*) from the previous slide, we have

wk(n+ 1) = wk(n) + µ

rdx(k)−
p∑
j=1

wj(n)rx(j, k)

 , k = 1, . . . , p

or in a vector form: w(n+ 1) = w(n) + µ
[
rdx −Rw(n)

]
(**)

The SD method is exact in that no approximations are made in the
derivation # the key difference is that the solution is obtained iteratively.

Observe that there is no matrix inverse in the update of filter weights! U

c© D. P. Mandic Statistical Signal Processing & Inference 19



Method of steepest descent: Have you noticed?

We now have an adaptive parameter estimator in the sense
new parameter estimate = old parameter estimate + update

The derivation is based on minimising the mean squared error

J(n) =
1

2
E{e2(n)}

For a spatial filter (sensor array), this cost function is an ensemble
average taken at a time instant n, over an ensemble of spatial filters (e.g.
nodes in sensor network).

For a temporal filter, the SD method can also be derived by minimising
the sum of error squares

Etotal =

n∑
i=1

E(i) =
1

2

n∑
i=1

e2(i)

In this case the ACF etc. are defined as time averages rather than
ensemble averages. If the physical processes considered are jointly ergodic
then we are justified in substituting time averages for ensemble averages.
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The role of learning rate (also called ’step size’)
the step size governs the behaviour of gradient descent algorithms

Care must be taken when selecting the learning rate µ, because:

◦ For µ small enough, the method of SD converges to a stationary point
of the cost function J(e) ≡ J(wo), for which ∇wJ(wo) = 0. This
stationary point can be a local or a global minimum.

◦ The method of steepest descent is an iterative procedure, and its
behaviour depends on the value assigned to the step–size parameter µ.

◦ When µ is small compared to a certain critical value µcrit, the
trajectory traced by the weight vector w(n) for increasing number of
iterations, n, tends to be monotonic.

◦ When µ is allowed to approach (but remain less than) the critical value
µcrit, the trajectory is oscillatory or overdamped.

◦ When µ exceeds µcrit, the trajectory becomes unstable.

Condition µ < µcrit corresponds to a convergent or stable system,
whereas condition µ > µcrit corresponds to a divergent or unstable
system. Therefore, finding µcrit defines a stability bound. (see Slide 30)
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The Least Mean Square (LMS) algorithm
unlike the block-based steepest desc., LMS operates in a real-time online fashion

Problem: The need for full second order statistics so far, e.g.

steepest descent: w(n+ 1) = w(n) + µ
[
rdx −Rw(n)

]
However, in unknown environments or for streaming data, the correlations
rdx,R are either not readily available or are time-consuming to compute.

Solution: The Least Mean Square (LMS) employs instantaneous
estimates of the autocorrelation, Rxx, and crosscorrelation, rdx, given by

R̂(n) = x(n)xT (n) r̂dx(n) = d(n)x(n) J(n) =
1

2
e2(n)

Substitute these into the equation for steepest descent above, to arrive at

w(n+ 1) = w(n) + µ
[
d(n)x(n)− x(n)xT (n)w(n)︸ ︷︷ ︸

y(n)

]
= w(n) + µ[d(n)− y(n)︸ ︷︷ ︸

e(n)

]x(n)

Finally, the LMS: w(n+ 1) = w(n) + µe(n)x(n)

Because of the ’instantaneous statistics’ within the LMS, the weights follow a “zig-zag”

path, converging to the optimum solution w0, if µ is chosen properly, as in Example 3.
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Example 2: Wiener filter vs Steepest Descent vs LMS
LMS SD Wiener OnePlot.m

Task: Adaptive SYS-ID of MA(2) system yn = xn − 1.5xn−1 + qn, x, q ∼ N (0, 1).

Filter length, L = 2, µLMS = 0.1, µSD = 0.01. LMS took longer to converge.

Steepest descent produces smoother learning trajectories, but LMS is
computationally much cheaper to implement.
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Summary of the LMS algorithm
(simple yet effective, also it operates in an “unknown” environment)

◦ The LMS operates in “unknown” environments, and the weight vector
follows a random trajectory along the error performance surface

◦ Along the iterations, as n→∞ (steady state) the weights perform a
random walk about the optimal solution w0 (measure of MSE)

◦ The cost function of LMS is based on an instantaneous estimate of the
squared error. Consequently, the gradient vector in LMS is “random”
and its direction accuracy improves “on the average” with increasing n

The LMS summary:

Initialisation. wk(0) = 0, k = 1, . . . , p ≡ w(0) = 0

Filtering. For n = 1, . . . , (∞) compute

y(n) =

p∑
j=1

wj(n)xj(n) = xT (n)w(n) = wT (n)x(n)

w(n+ 1) = w(n) + µe(n)x(n)
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Further perspective on LMS: Temporal problems

Our spatial problem with sensors signals: x(n) = [x1(n), . . . , xp(n)]T

becomes a temporal one where x(n) = [x(n), . . . , x(n− p+ 1)]T .

x(n)

w w w w1 2 3 p

z z z z-1 -1 -1 -1

y(n)

(n)(n)

x(n-1) x(n-2)

(n) (n)

x(n-p+1)

The output of this temporal filter of memory p is y(n) = wT (n)x(n)

Alternative derivation of LMS: Since e(n)=d(n)-y(n)=d(n)−wT (n)x(n), then

J(n) =
1

2
e2(n) → ∇wJ(n) =

∂J(n)

∂w(n)
=

1

2

∂e2(n)

∂e(n)

∂e(n)

∂y(n)

∂y(n)

∂w(n)

These partial gradients can be evaluated as

∂e2(n)

∂e(n)
= 2e(n),

∂e(n)

∂y(n)
= −1,

∂y(n)

∂w(n)
= x(n) ⇒ ∂e(n)

∂w(n)
= −x(n)
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Finally, we obtain the same LMS equations

Finally
∂J(n)

∂w(n)
= − e(n)x(n)

The set of equations that describes the LMS is therefore given by

y(n) =

p∑
i=1

xi(n)wi(n) = wT (n)x(n)

e(n) = d(n)− y(n)

w(n+ 1) = w(n) + µ e(n)x(n)

◦ The LMS algorithm is a very simple yet extremely popular algorithm for
adaptive filtering.

◦ LMS is robust (optimal in H∞ sense) which justifies its practical utility.

◦ The forms of the spatial and temporal LMS are identical # it us up to
us to apply adaptive filters according to the problem in hand.
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Example 3: LMS convergence vs. stepsize µ

(Matlab function ’nnd10nc’ or ‘LMS Contour Convergence nnd10nc Mooh.m’)

Original signal and its prediction Error contour surface

Top panel  learning rate µ = 0.1 Bottom panel  learning rate µ = 0.9
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Convergence of LMS # parallels with MVU estimation.
The unknown vector parameter is the optimal filter weight vector wo

◦ Convergence in the mean  bias in parameter estimation (think
of the requirement for an unbiased optimal weight estimate)

E{w(n)} → w0 as n→∞ (steady state)

◦ Convergence in the mean square (MSE)  estimator variance,
(fluctuation of the instantaneous weight vector estimates around wo)

we desire E{e2(n)} → constant as n→∞ (steady state)

We can write this since the error is a function of the filter weights.

R We expect the MSE convergence condition to be tighter: If LMS is
convergent in the mean square, then it is convergent in the mean. The
converse is not necessarily true (if an estimator is unbiased # it is not
necessarily minimum variance ! if it is min. var. # likely unbiased).

R The logarithmic plot of the mean squared error (MSE) along time,
10 log e2(n) is called the learning curve.

For more on learning curves see your Coursework booklet and Slide 29

c© D. P. Mandic Statistical Signal Processing & Inference 28



Example 4: Learning curves and performance measures
Task: Adaptively identify an AR(2) system given by
x(n) = 1.2728x(n− 1)− 0.81x(n− 2) + q(n), q ∼ N (0, σ2

q)

Adaptive system identification (SYS-ID) is performed based on:

LMS system model: x̂(n) = w1(n)x(n− 1) + w2(n)x(n− 2)

LMS weights: (see slide 48 for the normalised LMS (NLMS))

LMS weights (i=1,2): wi(n+ 1) = wi(n) + µe(n)x(n− i)
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Convergence analysis of LMS: Mean– and Mean–Square
convergence of the weight vector Contour Plot, LMS ConditionN

1) Convergence in the mean. Assume that the weight vector is
uncorrelated with the input vector, E

{
w(n)x(n)

}
= 0, and d ⊥ x

(the usual “independence” assumptions but not true in practice)

Then, from Slide 19 E
{
w(n+ 1)

}
=
[
I− µRxx

]
E{w(n)}+ µrdx

The condition of convergence in the mean becomes (for an i.i.d input)

0 < µ <
2

λmax
(see Appendix 4)

where λmax is the largest eigenvalue of the autocorrelation matrix Rxx.

2) Mean square convergence. Analysis is more complicated and gives

µ

p∑
k=1

λk
1− µλk

< 1 ≈ bounded as 0 < µ <
2

tr[Rxx]
using tr[Rxx] =

p∑
k=1

λk

Since “The trace” = “Total Input Power”, we have

0 < µ <
2

total input power
=

2

p σ2
x
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Adaptive filtering configurations
ways to connect the filter, input, and teaching signal

◦ LMS can operate in a stationary or nonstationary environment

◦ LMS not only seeks for the minimum point of the error surface, but it
also tracks it if wo is time–varying

◦ The smaller the stepsizse µ the better the tracking behaviour (at the
steady state, in the MSE sense), however, this means slow adaptation.

Adaptive filtering configurations:

~ Linear prediction. The set of past values serves as the input vector,
while the current input sample serves as the desired signal.

~ Inverse system modelling. The adaptive filter is connected in series
with the unknown system, whose parameters we wish to estimate.

~ Noise cancellation. Reference noise serves as the input, while the
measured noisy signal serves as the desired response, d(n).

~ System identification. The adaptive filter is connected in parallel to
the unknown system, and their outputs are compared to produce the
estimation error which drives the adaptation.
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Adaptive filtering configurations: Block diagrams
the same learning algorithm, e.g. the LMS, operates for any configuration

System identification Noise cancellation
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Applications of adaptive filters

Adaptive filters have found an enormous number of applications.

1. Forward prediction (the desired signal is the input signal advanced
relative to the input of the adaptive filter). Applications in financial
forecasting, wind prediction in renewable energy, power systems

2. System identification (the adaptive filter and the unknown system are
connected in parallel and are fed with the same input signal x(n)).
Applications in acoustic echo cancellation, feedback whistling removal
in teleconference scenarios, hearing aids, power systems

3. Inverse system modelling (adaptive filter cascaded with the unknown
system), as in channel equalisation in mobile telephony, wireless sensor
networks, underwater communications, mobile sonar, mobile radar

4. Noise cancellation (the only requirement is that the noise in the
primary input and the reference noise are correlated), as in noise
removal from speech in mobile phones, denoising in biomedical
scenarios, concert halls, hand-held multimedia recording

c© D. P. Mandic Statistical Signal Processing & Inference 33



From Lecture 6: Adaptive noise canc. with reference
(such as in noise-canceling headphones on an airplane)

In the adaptive noise cancellation configuration (below right), the variables in the

adaptive filter have the following roles.

Headphones

Reference
microphone, N1

Speech or music
plus additive noise
          s+N0

ANC

BABET.FI?as*..B.oqaBBBBBB
§

z%Ég•!¥÷¥¥¥③B•z@
go

Σ

(n)
s(n) (n)o+N

N1

_

Reference input

Adaptive

Filter

Primary input

+

d(n)

x(n)

e(n)

y(n)

Input to the filter, is the Reference Noise signal, that is, x(n) = N1(n). The only

requirement is that N1 is correlated with the measurement noise, N0, but not with the

signal of interest, s(n). The filter aims to estimate N0 from N1, that is, y = N̂0.

Teaching signal, d(n), is the noise-polluted signal of interest, s(n) +N0(n), which

serves as the Primary Input to the filter. Since s ⊥ N1, the filter can only yield y = N̂0.

Filter output, y = N̂0, provides the best MSE estimate of the measurement noise, N0,

from the reference noise, N1. The more correlated N1 and N0 the faster the convergence.

Output error, e = s+N0 − N̂0, serves as a “system output”, whereby the adaptive

filter aims to achieve e ≈ s. In other words, the standard e serves as an output, e = ŝ.
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Example 5: Adaptive LMS cancellation of cockpit noise
ALE Handel, Denoising Reference Drum WienerAndLMS

Consider an adaptive noise cancellation problem, like that in noise cancelling headphones

when you are listening to music on the plane.
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Example 6: Noise cancellation for foetal ECG recovery
Data acquisition

ANC with Reference

Signal
Σ

e

Output

n

n

Input Error

Primary

Input

Reference

System

Output

Filter

1

0 −+

y

e

s+

Filter

Adaptive

source

Noise

source

ECG recording (Reference electrode 6= Reference input)

c© D. P. Mandic Statistical Signal Processing & Inference 36



Example 6: Noise cancellation for foetal ECG estimation
(similar to your CW Assignment IV)

Maternal ECG signal Foetal heartbeat
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Example 7: Adaptive Line Enhancement # ANC with no
reference ‘lms fixed demo’, ‘Denoising Adaptive GUI’, ’ALE Handel’

Enhancement of a 100Hz signal in band–limited WN, with a p = 30 FIR LMS filter

◦ Adaptive line enhancement (ALE) refers to the case where a noisy
signal, u(n) = sin(n) + w(n), is filtered to obtain y(n) = ŝ(n) = sin(n)

◦ ALE consists of a de-correlation stage, denoted by z−∆ and an adaptive
predictor. The value of ∆ should be greater than the ACF lag for w

◦ The de-correlation stage attempts to remove any correlation that may
exist between the samples of noise, by shifting them ∆ samples apart

◦ This results in a phase shift at the output (input lags ∆ steps behind)
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Lecture summary

◦ Adaptive filters are simple, yet very powerful, estimators which do not
require any assumptions on the data, and adjust their coefficients in an
online adaptive manner according the the minimisation of MSE

◦ In this way, they reach the optimal Wiener solution in a recursive fashion

◦ The steepest descent, LMS, NLMS, sign-algorithms etc. are learning
algorithms which operate in certain adaptive filtering configurations

◦ Within each configuration, the function of the filter is determined by the
way the input and teaching signal are connected to the filter (prediction,
system identification, inverse system modelling, noise cancellation)

◦ The online adaptation makes adaptive filters suitable to operate in
nonstationary environments, a typical case in practical applications

◦ Applications of adaptive filters are found everywhere (mobile phones,
audio devices, biomedical, finance, seismics, radar, sonar, ...)

◦ Many more complex, models are based on adaptive filters (neural
networks, deep learning, reservoir computing, etc.)

◦ Adaptive filters are indispensable for streaming Big Data
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The next several slides introduce the concept of an
artificial neuron – the building block of neural networks

Lecture supplement:

Elements of neural networks
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The need for nonlinear structures

There are situations in which the use of linear filters and models is
suboptimal:

◦ When trying to identify dynamical signals/systems observed through a
saturation type sensor nonlinearity, the use of linear models will be
limited

◦ When separating signals with overlapping spectral components

◦ Systems which are naturally nonlinear or signals that are non-Gaussian,
such as limit cycles, bifurcations and fixed point dynamics, cannot be
captured by linear models

◦ Communications channels, for instance, often need nonlinear equalisers
to achieve acceptable performance

◦ Signals from humans (ECG, EEG, ...) are typically nonlinear and
physiological noise is not white  it is the so-called ’pink noise’ or
’fractal noise’ for which the spectrum ∼ 1/f
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An artificial neuron # a nonlinear adaptive filter

Biological neuron
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Model of an artificial neuron

◦ delayed inputs x

◦ bias input with unity value

◦ sumer and multipliers

◦ output nonlinearity (logistic, tanh, atan)

c© D. P. Mandic Statistical Signal Processing & Inference 42



Effect of nonlinearity: An artificial neuron
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◦ Observe the different
behaviour depending on
the operating point

◦ The output behaviour
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and slightly distorting
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to attenuating and
considerably distorting

◦ From the viewpoint of
system theory, neural
networks represent
nonlinear maps, mapping
one metric space to
another.

c© D. P. Mandic Statistical Signal Processing & Inference 43



A simple nonlinear structure, referred to as the
perceptron, or dynamical perceptron

◦ Consider a simple nonlinear FIR filter

Nonlinear FIR filter = standard FIR filter + memoryless nonlinearity

◦ This nonlinearity is of a saturation type, like tanh, arctan

◦ This structure can be seen as a single neuron with a dynamical FIR
synapse. This FIR synapse provides memory to the neuron.
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Model of artificial neuron for temporal data
(for simplicity, the bias input is omitted)

This is the adaptive filtering model of every single neuron in our brains

z

Φ
y(n)

(n)wp

x(n−p+1)
−1z−1z

3(n)w

x(n−2)

(n)2w

x(n−1)

1(n)w

−1z
x(n)

−1

The output of this filter is given by

y(n) = Φ
(
wT (n)x(n)

)
= Φ

(
net(n)

)
where net(n) = wT (n)x(n)

The nonlinearity Φ(·) after the tap–delay line is typically the so-called
sigmoid, a saturation-type nonlinearity like that on the previous slide.

e(n) = d(n)− Φ
(
wT (n)x(n)

)
= d(n)− Φ

(
net(n)

)
w(n+ 1) = w(n)− µ∇w(n)J(n)

where e(n) is the instantaneous error at the output of the neuron, d(n) is
some teaching (desired) signal, w(n) = [w1(n), . . . , wp(n)]T is the weight
vector, and x(n) = [x(n), . . . , x(n− p+ 1)]T is the input vector.
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Dynamical perceptron: Learning algorithm

Using the ideas from LMS, the cost function is given by

J(n) =
1

2
e2(n)

The gradient ∇w(n)J(n) is calculated from

∂J(n)

∂w(n)
=

1

2

∂e2(n)

∂e(n)

∂e(n)

∂y(n)

∂y(n)

∂net(n)

∂net(n)

∂w(n)
= − e(n) Φ′(n)x(n)

where Φ′(n) = Φ′
(
net(n)

)
= Φ′

(
wT (n)x(n)

)
denotes the first derivative

of the nonlinear activation function Φ(·).

The weight update equation for the dynamical perceptron finally becomes

w(n+ 1) = w(n) + µΦ′(n)e(n)x(n)

◦ This filter is BIBO (bounded input bounded output) stable, as the
output range is limited due to the saturation type of nonlinearity Φ.

R For large inputs (outliers) due to the saturation type of the nonlinearity, Φ,
for large net inputs  Φ′ ≈ 0, and the above weight update ∆w(n) ≈ 0.
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Notes

◦
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Appendix 1: Wiener filter vs. Yule–Walker equations
we start from x(n) = a1(n)x(n− 1) + · · ·+ap(n)x(n−p) + q(n), q=white

The estimate: y(n) = E{x(n)} = a1(n)x(n− 1) + · · ·+ ap(n)x(n− p)

Teaching signal: d(n), Output error: e(n) = d(n)− y(n)

1) Yule–Walker solution

Fixed coefficients a & x(n) = y(n)

Autoregressive modelling

rxx(1)= a1rxx(0)+· · ·+aprxx(p− 1)

rxx(2)= a1rxx(1)+· · ·+aprxx(p− 2)

... = ...

rxx(p)= a1rxx(p− 1)+· · ·+aprxx(0)

. . . . . .

rxx = Rxxa

Solution: a = R−1
xxrxx

2) Wiener–Hopf solution

Fixed optimal coeff. wo = aopt

J = E{1
2
e2(n)} = σ2

d−2wTrdx+wTRw

is quadratic in w and for a full rank
R, it has one unique minimum.

Now:

∂J

∂w
= −rdx + R ·w = 0

Solution: w0 = R−1rdx
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Appendix 2: LMS algorithm, scalar derivation
unlike the block-based steepest desc., LMS operates in a real-time online fashion

The LMS is based on the use of instantaneous estimates of the
autocorrelation function rx(j, k) and the crosscorrelation function rdx(k)

r̂x(j, k;n) = xj(n)xk(n) r̂dx(k;n) = xk(n)d(n) J(n) =
1

2
e2(n)

Substituting these into the method of steepest descent in (**) we have

wk(n+ 1) = wk(n) + µ
[
xk(n)d(n)−

p∑
j=1

wj(n)xj(n)xk(n)
]

= wk(n) + µ
[
d(n)−

p∑
j=1

wj(n)xj(n)
]
xk(n)

= wk(n) + µ[d(n)− y(n)]xk(n) = wk(n) + µe(n)xk(n), k = 1, ...,p

or, the LMS in the vector form: w(n+ 1) = w(n) + µe(n)x(n)

Because of the ’instantaneous statistics’ used in LMS derivation, the
weights follow a “zig-zag” trajectory along the error surface, converging at
the optimum solution w0, if µ is chosen properly.
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Appendix 3: Improving the convergence and stability of
LMS. The Normalised Least Mean Square (NLMS) alg.

Uses an adaptive step size by normalising µ by the signal power in the
filter memory, that is

from fixed µ  data adaptive µ(n) =
µ

xT (n)x(n)
=

µ

‖ x(n) ‖22
Can be derived from the Taylor Series Expansion of the output error

e(n+ 1) = e(n) +

p∑
k=1

∂e(n)

∂wk(n)
∆wk(n) + higher order terms︸ ︷︷ ︸

=0, since the filter is linear

Since ∂e(n)/∂wk(n) = −xk(n) and ∆wk(n) = µe(n)xk(n), we have

e(n+ 1) = e(n)
[
1− µ

p∑
k=1

x2
k(n)

]
=
[
1− µ ‖ x(n) ‖22

]
as

( p∑
k=1

x2
k =‖ x ‖22

)
To minimise the error, set e(n+ 1) = 0, to arrive at the NLMS step size:

µ =
1

‖ x(n) ‖22
however, in practice we use µ(n) =

µ

‖ x(n) ‖22 +ε

where 0 < µ < 2, µ(n) is time-varying, and ε is a small “regularisation”
constant, added to avoid division by 0 for small values of input, ‖ x ‖→ 0
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Appendix 4: Derivation of the formula for the
convergence in the mean on Slide 30

◦ For the weights to converge in the mean (unbiased condition), we need

E{w(n)} = wo as n→∞ ⇔ E{w(n+ 1)} = E{w(n)} as n→∞

◦ The LMS update is given by: w(n+ 1) = w(n) + µe(n)x(n), then

E{w(n+ 1)} = E
{
w(n) + µ

[
d(n)− xT (n)w(n)

]
x(n)

}
since d(n)− xT (n)w(n) is a scalar, we can write

= E
{
w(n) + µx(n)

[
d(n)− xT (n)w(n)

]}
=

[
I− µE

{
x(n)xT (n)

}︸ ︷︷ ︸
Rxx

]
w(n) + µE

{
x(n)d(n)

}︸ ︷︷ ︸
rdx

=
[
I− µRxx

]
w(n) + µrdx =

[
I− µRxx

]n
w(0) + µrdx

# the convergence is governed by the homogeneous part
[
I− µRxx

]
 the filter will converge in the mean if |I− µRxx| < 1

c© D. P. Mandic Statistical Signal Processing & Inference 51



Appendix 5: Sign algorithms
Simplified LMS, derived based on sign[e] = |e|/e and ∇|e| = sign[e]

Good for hardware implementation and high speed applications.

◦ The Sign Algorithm (The cost function is J(n) = |e(n)|)
Replace e(n) by its sign to obtain

w(n+ 1) = w(n) + µ sign[e(n)]x(n)

◦ The Signed Regressor Algorithm

Replace x(n) by sign[x(n)]

w(n+ 1) = w(n) + µ e(n) sign[x(n)]

Performs much better than the sign algorithm.

◦ The Sign-Sign Algorithm

Combines the above two algorithms

w(n+ 1) = w(n) + µ sign[e(n)] sign[x(n)]
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Appendix 5a): Performance of sign algorithms
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Notes

◦
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Notes

◦
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Notes

◦
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