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Aims

◦ To introduce the concept of least squares estimation (LSE)

◦ Establish parallels with the ML estimation, BLUE, MVUE, and CRLB

◦ Geometry of LS: The signal, noise, and measurement subspaces

◦ Show how to exploit the orthogonality of the signal space and the
estimation error

◦ Linear least squares, nonlinear least squares, separable least squares,
constrained least squares, order recursive least squares

◦ Move from block-based estimation to estimation based on streaming
data: Sequential least squares, link with state space models

◦ Weighted least squares, confidence levels in data samples

◦ Practical applications
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The method of Least Squares

This class of estimators has, generally, no optimality properties

◦ But, do we necessarily desire optimality # an optimal estimator may be
mathematically intractable or computationally too complex

◦ Makes good sense for many practical problems # this dates back to
Gauss who in 1795 introduced the method to study planetary motions

◦ LS is not statistically based # no probabilistic assumptions are made
about the data, no need for a pdf model

◦ We only need to assume a deterministic signal model

◦ Usually easy to implement, either in a block–based or sequential
manner, this amounts to the minimisation of a quadratic cost function

◦ Within the (LS) approach we attempt to minimise the squared difference
between the observed data and the assumed model of noiseless data

◦ Rigorous statistical performance cannot be assessed without some
specific assumptions about probabilistic structure in the data
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Motivation: A simpler model often generalises better
Consider two models for x[n] = A+Bn+ q[n] (q  noise)
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R Observe the usefulness of a model over an exact fit! Least Squares Order.m
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But, careful with over–fitting

Data considered was a noisy line: x[n] = A+Bn+ q[n], q ∼ N (0, σ2)

R So, the correct data model was LS of order–1 (blue line in the figures below)
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Observations of x[n] = A + Bn + w[n] (blue dots)
and LS estimates of varying order

Raw data
Order-0: error power =177.09
Order-1: error power =130.7
Order-7: error power =122.94
Order-15: error power =106

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
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New observations of x[n] = A + Bn + w[n] (orange dots)
and old LS estimates of varying order

Raw data
Order-0: error power =165.95
Order-1: error power =100.1
Order-7: error power =115.13
Order-15: error power =120.65

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn

R Order–7 and Order–15 Least Squares (LS) fits to the data gave a lower “within–sample”

error power than the correct Order–1 fit (122.9 and 106 versus 130.7) (left panel)

R But this leads to over–fitting, i.e. worse extrapolation (prediction) on “out-of-sample” test

data from the same generative model (120 for Order–15 vs 100 for Order–1) (right panel)
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Data model and the Least Squares Error (LSE) criterion
no probabilistic assumptions made about the data!

The signal s[n] is assumed to be purely deterministic, generated by a model
which depends upon an unknown parameter θ or a vector parameter θ.

bation

θ

x[n]s[n]

noise model

inaccuracies

signal

model

pertur−

Least squares data model

The observed signal x[n] is subject to:

◦ external noise q[n]

◦ model inaccuracies

No probabilistic assumptions ©
Only signal model assumed # wide
range of applications

θ

errormodelsignal 

deterministic

assumed

input

observed

noisy

−
+

Σ

e[n]

model

signal s[n]

x[n]

J(θ) =

N−1∑
n=0

e2[n]=

N−1∑
n=0

(x[n]− s[n]︸ ︷︷ ︸
e[n]

)2

LSE : min
θ
J(θ) (our objective)

The LS estimator of the unknown

parameter θ finds the value of θ

that makes the model output s[n]

closest to the observed data x[n];

the closeness is measured by the LS

error criterion (error power)
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Example 1: DC Level in WGN

Our old example: DC level in WGN (in MLE, we needed a pdf!)

Data model: s[n; θ] = A

Measurement model: x[n] = s[n] + q[n] = A+ q[n], q[n] # any noise

LSE formulation:
J(A) =

N−1∑
n=0

(x[n]−A)2

LSE solution:

set the derivative to zero
dJ(A)

dA
= −2

N−1∑
n=0

(x[n]−A) = 0

the LS estimator : Â =
1

N

N−1∑
n=0

x[n]

We cannot claim optimality in the MVU sense, except for the
Gaussian noise q ∼ N (0, σ2). All we can say is that the LSE
estimator minimises the sum of squared errors (error power).

R Still, this leads to a very powerful and practically useful class of estimators.
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The method of Least Squares is very convenient
how do we use it in practice?

1. Problem with signal mean. If the noise is not zero–mean, then the
sample mean estimator actually models x[n] = A+ q[n] + q′[n]

q[n] ∼ nonzero mean noise q′[n] ∼ zero mean noise → E{x[n]} = A+ E{q[n]}
R The presence of non-zero mean noise q[n] biases the LSE estimator, as

the LS approach assumes that the observed data are composed of a
deterministic signal (described by a model) and zero mean noise.

2. Nonlinear signal model, for instance s[n] = cos 2πf0n, where the
frequency f0 is to be estimated. The LSE criterion

J(f0) =

N−1∑
n=0

(x[n]− cos 2πf0n)2

is highly nonlinear in f0 → closed form minimisation is impossible.
◦ However, for s[n] = A cos 2πf0n, if f0 is known and A is unknown,

then we can use the LS method, as A is “linear in the data”

◦ When estimating both A and f0, the error is quadratic in A and
non-quadratic in f0  minimize J wrt A for a given f0, reducing to
the minimisation of J over f0 only (separable least squares).
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Geometric interpretation & Example: Fourier analysis
Recall, our cost function: J(θ) =

∑N−1
n=0 e

2[n] =
∑N−1

n=0 (x[n]− s[n]︸ ︷︷ ︸
e[n]

)2 = eTe

Example 2: Consider a sig. model s[n]=a cos 2πf0n+b sin 2πf0n, with f0 known
Task: Determine the unknown parameters, that is, the amplitudes a, b.

Solution: With f0 known and θ = [a, b]T , we have
s[0]
s[1]

...
s[N − 1]


︸ ︷︷ ︸

s

=


1 0

cos 2πf0 sin 2πf0
... ...

cos 2πf0[N − 1]︸ ︷︷ ︸
h1

sin 2πf0[N − 1]︸ ︷︷ ︸
h2


[
a
b

]
=
[
h1 |h2

]︸ ︷︷ ︸
H

[
a
b

]
︸ ︷︷ ︸
θ

R We must assume that H is full rank otherwise multiple θ map to the same s

s = ah1+bh2 (linear combination of h1 & h2); error ε = x−s

Signal model s = Hθ ⇔ s =
[
h1 | · · · |hp︸ ︷︷ ︸
columns of H

][
θ1, . . . , θp

]T
=
∑p
i=1 θihi

R Signal model is a linear combination of “signal space” basis vectors {h1, . . . , hp}

and the Least Squares (LS) cost is given by J(θ) =
(
x−Hθ

)T (
x−Hθ

)
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Geometric interpretation # continued
the signal vector s is a linear combination of the columns of H

This can be rewritten in a more elegant form.

Recall that the Euclidean length ‖ · ‖2 of an N × 1 vector
q = [q1, q2, . . . , qN ]T ∈ RN×1 is given by

‖ q ‖2=

√√√√ N∑
i=1

q2
i =

√
qTq =

√
< q,q >

Then (recall that ‖ a− b ‖ is the distance between the vectors a and b)

J
(
θ
)

=
(
x−Hθ

)T (
x−Hθ

)
=
∥∥x−Hθ

∥∥2

2
=
∥∥x− p∑

i=1

θihi
∥∥2

2

R The LSE attempts to minimise the square of the distance between the
measured data vector x and the signal estimate, ŝ, given by

ŝ =
∑p
i=1 θ̂ihi

R The signal estimate, ŝ, resides in a p–dimensional subspace, S, spanned by
the columns h1, . . . ,hp of H (range of H). For the LS estimation, N > p.
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Geometry of LSE: Vector space projections
signal dimension is lower than measurement dimension (signal lives in a subspace)

The vector x ∈ RN×1, however, all signal vectors must lie in a p-dimen.
subspace of Sp ⊂ RN . For example, for N=3, and p = 2, we have:

ε=

h

hh1

1h

subspace spanned

by

x

−

2

x ŝ

S
2

a) Signal subspace b) Orthogonal projection to determine signal estimate

ŝ

={ }, 2 S
2

ε

~ The vector in S2 which is closest

to x in the Euclidean sense is the

component ŝ ∈ S2, that is the

”orthogonal projection” of x onto

S2, ŝ = Px, P# projection matrix.

~ Two vectors in RN are orthogonal

if their scalar product xTy = 0

~ Therefore, to determine ŝ, we use

the so-called orthogonality condition

ε = (x−ŝ) ⊥ H ⇔
(
x−ŝ

)
⊥ S2

ε ⊥ S ⇔ ε ⊥ h1 & ε ⊥ h2 (a) :
(
x− ŝ

)
⊥ h1 ⇒

(
x− ŝ

)T
h1 = 0

(b) :
(
x− ŝ

)
⊥ h2 ⇒

(
x− ŝ

)T
h2 = 0
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Finally: LS solution (through geometry, no derivatives)
Observe: ŝ = “projection” of x onto Range(H)

Letting s = θ1h1 + θ2h2 = Hθ

the conditions (a) and (b) from the previous slide, we have(
x− θ1h1 − θ2h2

)T
h1 = 0 ≡ εTh1 = 0(

x− θ1h1 − θ2h2

)T
h2 = 0 ≡ εTh2 = 0

Since H = [h1 |h2], θ = [a, b]T , and ε = x−Hθ, the above conditions
can be combined into a vector/matrix form (use aTb = bTa)

from εTH = 0T we have HTε = 0 so that HT (x−Hθ) = 0

R The equivalent system HTHθ = HTx is called the LS normal equations

We can now solve for the unknown vector parameter, θ, to yield the Least
Squares Estimate (LSE)

θ̂ls =
(
HTH

)−1
HTx

where H is the (N × p)-dimensional measurement (observation) matrix.
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Remark: Benefits of having orthogonal columns of H

The Least Squares estimator finds the coefficient vector in the form

θ̂ls =
(
HTH

)−1
HTx where H = [h1 |h2 | . . . |hp] so that

HTH =


hT1 h1 hT1 h2 · · · hT1 hp
hT2 h1 hT2 h2 · · · hT2 hp

... ... . . . ...
hTph1 hTph2 · · · hTphp

 =


〈h1,h1〉 〈h1,h2〉 · · · 〈h1,hp〉
〈h2,h1〉 〈h2,h2〉 · · · 〈h2,hp〉

... ... . . . ...
〈hTp ,h1〉 〈hTp ,h2〉 · · · 〈hTp ,hp〉



for orthonormal columns 〈hi,hj〉 = δij ⇒ HTH =


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

 = I

In that case θ̂ = HTx and ŝ = Hθ̂ = HHTx

R Easy, no inversion needed! Also, for every unknown parameter, θi = hTi x

R hTi x is a projection of the observed data x onto each column of H
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Example 2: Fourier analysis # continued
For more detail see Example 9 in Lecture 4

For f0 = k/N , with k = 1, 2, . . . , N/2− 1, and large N , the scalar product
of the columns of the observation matrix H becomes (orthogonality)

hT1 h2 =

N−1∑
n=0

cos
(
2π

k

N
n
)

sin
(
2π

k

N
n
)

= 0 ⇔ h1 ⊥ h2 (orthogonal)

while hT1 h1 =
N

2
hT2 h2 =

N

2
(not orthonormal)

Combining the above results gives HTH = N
2 I and therefore

θ̂ =

[
â

b̂

]
=
(
HTH

)−1
HTx =

2

N
HTx =

[
2
N

∑N−1
n=0 x[n] cos(2π kNn)

2
N

∑N−1
n=0 x[n] sin(2π kNn)

]

R For orthonormal columns,
(
HTH

)−1
HTx = HTx and ŝ = Hθ̂ = HHTx

In general, the columns of H are not orthogonal, and the signal estimate

ŝ = Hθ̂ = H
(
HTH

)−1
HT︸ ︷︷ ︸

projection matrix P

x = Px
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Linear least squares in a nutshell

Suppose a linear observation model x = Hθ + ε. Then the cost function

J(θ) =

N−1∑
n=0

(
x[n]− s[n, θ]

)2
=
(
x− Hθ︸︷︷︸

ŝ

)T(
x− Hθ︸︷︷︸

ŝ

)
= xTx− 2xTHθ + θTHTHθ (H is full rank)

The gradient of the cost function is then

∇θJ(θ) =
∂J(θ)

∂θ
= −2HTx + 2HTHθ = 0

1. The LSE estimator θ̂ =
(
HTH

)−1
HTx

2. The minimum LS cost (replace θ̂ into J(θ) above) is therefore

Jmin=J(θ̂)=xT
[
I−H

(
HTH

)−1
HT
]
x︸ ︷︷ ︸

θ

=xT
(
x− Hθ︸︷︷︸

ŝ︸ ︷︷ ︸
ε

)
=xTx− xTHθ

(
≤‖ x ‖22

)
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Linear least squares in a nutshell, continued
Matlab: Least Squares Order Selection Interactive.m

◦ The LS approach can be interpreted as the problem of approximating a
data vector x ∈ RN by another vector ŝ which is a linear combination of
vectors {h1, . . . ,hp} that lie in a p-dimensional subspace S ∈ Rp ⊂ RN
◦ The problem is solved by choosing ŝ so as to be an orthogonal projection

of x on the subspace spanned by hi, i = 1, . . . , p (S=range of H)
◦ The LS estimator is very sensitive to the correct deterministic model of

s, as shown in the figure below for the LS fit of x[n] = A+Bn+ q[n].
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Observations of x[n] = A + Bn + q[n] (blue dots) and LS estimates of varying order

Raw data
Order-0: error power =195.05
Order-1: error power =98.39
Order-7: error power =94.11

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
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Summary: The role of the model order p
think of the AR process order x(n) = a1x(n− 1) + · · ·+ apx(n− p) + q(n)

Follows naturally from the problem of fitting a polynomial to the data
(recall the Weierstrass theorem # any continuous differentiable function
can be approximated arbitrarily well with a high-enough order polynomial)

◦ Observe from the previous slide that Jmin is a non-increasing function
of the model order p

◦ The choice p = N is a perfect fit to the data, but this way we also fit
the noise (see the previous slide and also Slide 4)

◦ Recall the MDL and AIC in AR modelling # we choose the simplest
model order p that is adequate for the data

◦ In practice, if we have a specified Jmin, then we can gradually
increase p until we reach the required Jmin

◦ To save on computation, we can also use an order-recursive LS
algorithm to compute the model of order (p+ 1) from the model
of order p
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Weighted Least Squares (WLS)
see also Example 5 in Lecture 5, and Quadratic Forms in the Appendix here

To emphasize the contribution of those data samples that are deemed to
be more reliable, we can include an N ×N positive definite (and hence
symmetric) diagonal weighting matrix, W, so that

J(θ) =
(
x−Hθ

)T
W
(
x−Hθ

)
It is now straightforward to show that the weighted least squares solution

θ̂ =
(
HTWH

)−1
HTWx & Jmin = xT

(
W−WH

(
HTWH

)−1
HTW

)
x

Example 3: For a diagonal W with elements [W]ii = wi > 0, the LS
error of the DC level estimator becomes

J(A) =

N−1∑
n=0

wn
(
x[n]−A

)2
If x[n] = A+ q[n], where the zero-mean uncorrelated noise (not i.i.d., any
distribution) q[n] ∼ (0, σ2

n), it is reasonable to choose wn = 1/σ2
n, to give

Â =
(N−1∑
n=0

x[n]

σ2
n

)(N−1∑
n=0

1

σ2
n

)−1

Remark: If we take W = C−1, then the WLS yields the BLUE estimator.
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Opportunities in practical applications # numerous

◦ Constrained least squares. We can incorporate a set of linear
constraints in the form Aθ = c, to have a constrained LS criterion

Jc(θ) =
(
x−Hθ

)T(
x−Hθ

)
− λ

(
Aθ − c

)
using e.g. Lagrange optimisation as above (first term # LS solution θ̂).

◦ Nonlinear least squares. The signal model is nonlinear, i.e. s 6= Hθ
We can either linearise the problem (e.g. using Taylor series expansion)
or solve it numerically in some iterative or recursive fashion. These
methods are often prone to convergence problems if highly nonlinear.

◦ Dealing with nonlinear least squares # parameter transformation.
Example: Consider a nonlinear problem of estimating the amplitude
and phase of a sinusoid s[n] = A cos(ωn+ φ), n = 0, . . . , N − 1

 Transform the problem into A cos(ωn+ φ) = A cosφ cosωn−A sinφ sinωn

Variable swap. Let α1 = A cosφ and α2 = −A sinφ, and α = [α1, α2]T .

Now, the signal model becomes linear in α, that is, s = Hα

Use LS to obtain α̂ =
(
HTH

)−1
HTx (see Lecture 5 Example 10)

where A =
√
α2

1 + α2
2 and φ = arctan(−α2/α1)
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LS estimation in the big picture of estimators

Consider the linear model x = Hθ + w

Estimator Model Assumption Estimate

LSE x = Hθ + ε no probabilistic assumptions θ̂ls =
(
HTH

)−1
HTx

BLUE x = Hθ + q q is white with unknown pdf θ̂blue =
(
HTH

)−1
HTx

MLE x = Hθ + q need to know pdf of q θ̂mle =
(
HTH

)−1
HTx

MVUE x = Hθ + q need to know pdf of q θ̂mvu =
(
HTH

)−1
HTx

LSE and orthogonal projections:

Signal model is s = Hθ # the estimate is a projection of x onto Sp ∈ Rp ⊂ RN

ŝ = Hθ̂ = H
(
HTH

)−1
HTx = Px

where P = H
(
HTH

)−1
HT is called the projection matrix. Since the

estimated signal ŝ = Px ∈ Sp, it follows that P(Px) = Px.

Therefore, any projection matrix is idempotent, that is P2 = P, it is
symmetric and singular with rank p (many x(n) can have the same projection).
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Sequential least squares

Oftentimes data are collected sequentially (streaming data), namely one
point at a time. To process such data, we can either:

◦ wait until all the data points (samples) are collected and make an
estimate of the unknown parameters # block-based approach, or

◦ refine our estimate as each new sample arrives # sequential approach

We therefore need to obtain a sequence of LS estimators over time.

The problem:

Suppose we have a least squares estimate, θ̂N−1, which is based on
the full signal history {x[0], x[1], . . . , x[N − 1]}.
We wish to produce a new estimate, θ̂N , upon observing the new
data sample, x[N ], but without using full dataset {x[0], . . . , x[N ]}

Question: Can we update the existing solution θ̂N−1 sequentially,
based only on θ̂N−1 and x[N ], that is

θ̂N = f
(
θ̂N−1, x[N ]

)
c© D. P. Mandic Statistical Signal Processing & Inference 21



Example 4: DC level in uncorrelated zero mean noise
(new notation, Â[N ] = “estimate of A at a time instant N”)

Consider the problem of estimating the DC level in noise, for which we
have obtained the LSE

Â[N − 1] =
1

N

N−1∑
n=0

x[n]

If we now observe the new sample x[N ], then the new, enhanced, estimate

Â[N ] =
1

N + 1

N∑
n=0

x[n] =
1

N + 1

(N−1∑
n=0

x[n] + x[N ]
)

Â[N ] =
N

N + 1
Â[N − 1] +

1

N + 1
x[N ] # a recursive estimate!

R Similarly, to compute the minimum LS error recursively (see Appendix)

from Jmin[N − 1] =

N−1∑
n=0

(
x[n]− Â[N − 1]

)2
upon arrival of x[N ], re-arrange Jmin[N ] =

N∑
n=0

(
x[n]− Â[N ]

)2
(∗)
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Example 4: DC level in noise # a more convenient form
of the sequential estimator and the associated MSE

Clearly, the new estimate Â[N ] can be calculated from the old estimate
Â[N − 1], upon receiving the new observation x[N ].

The solution can be rewritten in a more physically insightful form, as

Â[N ] = Â[N − 1] +
1

N + 1

(
x[N ]− Â[N − 1]

)
new estimate = old estimate + gain× error︸ ︷︷ ︸

correction

The minimum LS error then becomes (show yourselves, or see Appendix)

Jmin[N ] = Jmin[N − 1] +
N

N + 1

(
x[N ]− Â[N − 1]

)2

R Notice that Jmin is “cumulative” and increases with the number of data
points, N , as we are trying to fit more points with the same number of
parameters.
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Example 5: Weighted LS for the estimation of DC level
in noise in a sequential form (see Example 9 in Lecture 4 & Slide 16)

Start from
J(A) =

N−1∑
n=0

wn
(
x[n]−A

)2
If x[n] = A+ q[n], where the zero-mean uncorrelated noise (any
distribution) q[n] ∼ (0, σ2

n), it is reasonable choose wn = 1/σ2
n, to give1

Standard LS solution : Â[N ] =

∑N
n=0

x[n]
σ2
n∑N

n=0
1
σ2
n

Its corresponding sequential form then becomes

Â[N ] = Â[N − 1] +

1
σ2
N∑N

n=0
1
σ2
n

(
x[N ]− Â[N − 1]

)
or new estimate = old estimate + gain × error

In practice, we may employ a forgetting factor λ < 1, to give J(A) =
∑N−1

n=0 λ
N−1−ne2(n)

1In standard weighted LS, with a diagonal weighting matrix W we would have [W]ii = 1
σ

2
i

.
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Some observations about weighted LS

Notice that the gain reflects relative goodness between the current
estimate and the new data, and depends on our confidence in the
new data sample, given by 1/σ2

N .

Two extreme cases:

◦ If σ2
N →∞, i.e. the new sample is extremely noisy, then we do not

correct the previous LSE

◦ If σ2
N → 0, that is, the new sample is noise–free, then Â→ x[N ], and

we discard all the previous samples

R If we assume x[n] = A+ q[n], with {q[n]} zero mean uncorrelated noise
for which the variance of each q[n] is σ2

n, n = 0, . . . , N − 1, then the
LSE is also the BLUE and

var
(
Â[N − 1]

)
=

1
N−1∑
n=0

1

σ2
n
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Weighted LS: Recursive calculation of gain and variance

◦ The gain for the N-th update can be written as (0 ≤ K[N ] ≤ 1)

K[N ] =

1
σ2
N∑N

n=0
1
σ2
n

=

1
σ2
N

1
σ2
N

+ 1

var
(
Â[N−1]

) =
var
(
Â[N − 1]

)
var
(
Â[N − 1]

)
+ σ2

N

◦ Bad estimate, good data. If var
(
Â[N − 1]

)
� σ2

N , then new data is
very useful, K[N ] ≈ 1, and the correction based on new data is large

◦ Good estimate, bad data. Conversely, is var
(
Â[N − 1]

)
� σ2

N , then
new data has little use, K[N ] ≈ 0, and the correction is small

◦ The recursive expression for the variance can be calculated as

var
(
Â[N ]

)
=
(

1−K[N ] var
(
Â[N − 1]

))
R Notice that the gain K[n] is also a random variable.
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Summary of sequential DC level estimators, both
weighted and standard

Estimator update: Â[N ] = Â[N − 1] +K[N ]
(
x[N ]− Â[N − 1]

)
where K[N ] =

var
(
Â[N − 1]

)
var
(
Â[N − 1]

)
+ σ2

N

Variance update: var
(
Â[N ]

)
=
(
1−K[N ]

)
var
(
Â[N − 1]

)
Initialisation: Â[0] = x[0], var

(
Â[0]

)
= σ2

0

Example 6: Perform sequential DC level estimation for A = 10, σ2 = 5
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c© D. P. Mandic Statistical Signal Processing & Inference 27



Towards the vector parameter case
Consider a gain a noisy line (slides 26 & 27, Lecture 4)

The observed data: x[n] = A+Bn+ q(n) ≡ x = Hθ + q

where x = [x0, x1, . . . , xN−1]T , q = [q0, q1, . . . , qN−1]T , and θ = [A B]T

Then, for N data points

HN−1 =


1 0
1 1
... ...
1 N − 1


N×2

n

noisy line

ideal noiseless line

0

A

x[n]

While, for N + 1 data points

HN =


1 0
1 1
... ...
1 N


(N+1)×2

For N + 1 data point

HN =


1 0
1 1
... ...
1 N − 1
1 N

=

[
HN−1

1 N

]
(N+1)×2
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Sequential LSE for a vector parameter

Consider an input x[n]=
[
x[0], x[1], . . . , x[n]

]T
 H[n] =

H[n− 1]n×p

hT [n]1×p


Note that the size of the observation matrix H grows with time.

◦ Estimator update:

θ̂[n] = θ̂[n− 1] + K[n]
(
x[n]− hT [n]θ̂[n− 1]

)
where the gain factor is given by

K[n] = C[n− 1]h[n]
[
σ2
n+ hT [n]C[n− 1]h[n]

]−1

◦ Covariance matrix update:

C[n] =
(
I−K[n]hT [n]

)
C[n− 1]

◦ Initialisation: C[−1] = αI, α→ large, θ[−1] = 0

c© D. P. Mandic Statistical Signal Processing & Inference 29



Example 7: Sequential LS for the parameters of a line
zero- and first-order sequential least-squares estimator for x[n] = A+Bn+ q[n]

◦ We model x[n] = A+ Bn+ q[n], then the vector parameter θ̂[n] =
[
Â, B̂

]>
◦ Estimator update: θ̂[n] = θ̂[n− 1] + K[n]

(
x[n]− hT [n]Φ[n]θ̂[n− 1]

)
where Φ[n] =

[
1 n

0 1

]
and h[n] =

[
1

0

]
◦ Initialisation: C[−1] = αI, α > 100σ2

0, θ̂[−1] = [0, 0]T

◦ Update (Ricatti equations):

M[n] = Φ[n]C[n− 1]Φ
T
[n]

K[n] = M[n]h[n]
[
h
T
[n]M[n]h[n] + σ

2
n

]−1

C[n] =
(

I−K[n]h
T
[n]
)

M[n]

◦ The gain factor is updated as K[n] =

[
2(2n−1)
n(n+1)

6
n(n+1)

]

and the covariance matrix as C[n] =

[
2(2n−1)
n(n+1) σ

2
n 0

0 12
n(n2+1)

σ2
n

]

c© D. P. Mandic Statistical Signal Processing & Inference 30



Example 7: Continued
Matlab: Sequential LS Order Interactive Local.m
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Observations of x[n] = A + Bn + q[n] (blue dots) and sequential LS estimates

Raw data
LS Order-0: error power =195
SLS Order-0: error power =189.9
LS Order-1: error power =98.4
SLS Order-1: error power =86.7
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Case study: Adaptive Noise Canceller (ANC)
a common application of signal processing in order to reduce unwanted noise

Example 1: We may wish to remove background noise in aircraft and car
audio systems (noise cancelling headphones, road noise cancellation)

Example 2: Another common problem is the removal of 50Hz mains
artefact in biomedical instrumentation

^

n(z) = Σ
l=0

p−1

hn(l) z−l

x[n]

x
R
[n]

[n]

x[n]
Hn(z)

−

+
primary channel

reference
channel

ε
Σ

H

The configuration of a sequential noise canceller

The reference channel takes the role of the traditional input and the
primary channel is the noisy signal of interest, x[n] = s[n;θ] + q[n]
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ANC # line interference removal

◦ Primary channel: ’signal’ + ’noise to be cancelled’ (for example, the
50 Hz mains interference in an acquired ECG signal)

◦ Reference channel: noise source which is related to the noise in the
primary channel (nonzero correlation)

◦ Filter coefficients are updated sequentially to make x̂[n] as close to x[n]
as possible, in the LS sense

◦ We therefore desire to minimise the power of the residual, ε[n], that is

J [n] =

n∑
k=0

ε2[k] =

n∑
k=0

(
x[k]− x̂[k]

)2
=

n∑
k=0

(
x[k]−

p−1∑
l=0

hn(l)xR[k − l]
)2

◦ Filter coefficients (weights) can then be determined as a solution of the
sequential LS problem
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ANC # some practical considerations

The signal and noise are typically statistically nonstationary, and to deal
with that we introduce a weighting or “forgetting factor” λ, for which
the range 0 < λ < 1, so that the cost function becomes

J [n] =

n∑
k=0

λn−k
(
x[k]−

p−1∑
l=0

hn(l)xR[k − l]
)2

or

J
′
[n] = J [n]λ−n =

n∑
k=0

1

λk

(
x[k]−

p−1∑
l=0

hn(l)xR[k − l]
)2

R This is also the form of the standard weighted LS problem.

The sequential LS vector estimator of the filter coefficients is denoted by

θ̂[n] =
[
ĥn(0), ĥn(1), . . . , ĥn(p− 1)

]T
c© D. P. Mandic Statistical Signal Processing & Inference 34



ANC summary. Notice that here h[n] from Slides 26–27 (data in measure-

ment model) is replaced by xR[n], to avoid confusion with impulse response, hn

Input reference vector: xR[n] =
[
xR[n], xR[n− 1], . . . , xR[n− p+ 1]

]T
Weights: σ2

n = λn weighting coefficients w R forgetting factor λ

Error:
e[n] = x[n]−

∑p−1
l=0 ĥn−1(l)xR[n− l] = x[n]− xTR[n]θ̂[n− 1] = en|n−1

error at time [n] based on parameters at time [n-1] ↑

Estimator update: θ̂[n] = θ̂[n− 1] + K[n]e[n]

where: e[n] = x[n]−
p−1∑
l=0

ĥn−1(l)xR[n− l]

K[n] =
C[n− 1]xR[n]

λn + xTR[n]C[n− 1]xR[n]

C[n] =
(
I−K[n]xT [n]

)
C[n− 1], typically 0.9 < λ < 1

In LS methods we do not know the probability densities or σ2
n for every sample x[n].

R we replace them with a forgetting factor λn. This favours most recent samples U
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Example 8: ANC for line noise removal (0.1Hz sinus. interfer.)

reference xR is correlated with interference but has different amplitude and phase

Consider interference estimation only, that is,
s[n;θ] = 0 and q[n] = 10 cos(2π(0.1)n+π/4.

⇒ Primary ch.: x[n] = 10 cos(2π(0.1)n+π/4)

◦ Reference channel: xR[n] = cos(2π(0.1)n)

◦ Initialisation: θ̂[−1] = 0, C[−1] = 105I,
and λ = 0.99

◦ We need two filter coefficients to model the
amplitude and phase of the interference, that
is H[exp(2π(0.1))] = 10exp(π/4)

 the noise canceller must increase the gain
of the reference by 10 and phase by π/4 to
match the interference.

Upon solving, (ANC performance on the right)

h[0] + h[1]exp(−2π(0.1)) = 10exp(π/4)

which results in h[0] = 16.8 and h[1] = −12.
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Applications: Adaptive noise cancellation with reference
(such as in noise-canceling headphones on an airplane)

In the adaptive noise cancellation configuration (below right), the variables in the

adaptive filter have the following roles.

Headphones

Reference
microphone, N1

Speech or music
plus additive noise
          s+N0

ANC

BABET.FI?as*..B.oqaBBBBBB
§

z%Ég•!¥÷¥¥¥③B•z@
go

Σ

(n)
s(n) (n)o+N

N1

_

Reference input

Adaptive

Filter

Primary input

+

d(n)

x(n)

e(n)

y(n)

Input to the filter, is the Reference Noise signal, that is, x(n) = N1(n). The only

requirement is that N1 is correlated with the measurement noise, N0, but not with the

signal of interest, s(n). The filter aims to estimate N0 from N1, that is, y = N̂0.

Teaching signal, d(n), is the noise-polluted signal of interest, s(n) +N0(n), which

serves as the Primary Input to the filter. Since s ⊥ N1, the filter can only yield y = N̂0.

Filter output, y = N̂0, provides the best MSE estimate of the measurement noise, N0,

from the reference noise, N1. The more correlated N1 and N0 the faster the convergence.

Output error, e = s+N0 − N̂0, serves as a “system output”, whereby the adaptive

filter aims to achieve e ≈ s. In other words, the standard e serves as an output, e = ŝ.

c© D. P. Mandic Statistical Signal Processing & Inference 37



Example 9: Noise cancelling headphones and acoustic
feedback cancellation (λ = 0.99) Denoising SLS GUI.m

More in the Adaptive Signal Processing and Machine Intelligence course
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Example 9: Adaptive noise cancellation: Role of the
forgetting factor Denoising SLS GUI.m

Top panels: Forgetting factor λ = 0.9

Bottom panels: Forgetting factor λ = 0.995
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Lecture summary

◦ The method of least squares is extremely important for practical
applications. Least Squares does not mean fitting line to the data!

◦ Do not need: Any assumption on the PDF or any other statistics.

◦ Do need: The assumed signal model (which is deterministic). If the
signal model is inaccurate, the LS estimator will be biased.

◦ Estimation error is orthogonal to the signal model space.

◦ Method of LS is easy to implement and straightforward to interpret.

◦ Sequential solutions to the LS problem are very practical.

◦ Weighted least squares allow to assign “confidence” to samples, that is
to de–emphasise unrealiable samples.

◦ We can also use a forgetting factor to deal with time-varying statistics

◦ A number of applications of LS theory: Adaptive noise cancellation,
digital filter design, Prony type spectral estimation, and many more ...
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Appendix: Choosing the correct model order (see Slide 5)

Sample index, n
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Observations of x[n] = A + Bn + w[n] (blue dots)
and LS estimates of varying order

Raw data
Order-0: error power =177.09
Order-1: error power =130.7
Order-7: error power =122.94
Order-15: error power =106

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
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New observations of x[n] = A + Bn + w[n] (orange dots)
and old LS estimates of varying order

Raw data
Order-0: error power =165.95
Order-1: error power =100.1
Order-7: error power =115.13
Order-15: error power =120.65

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn

R The LS cost J =
∑
i e

2
i is monotonically non–increasing with an increase in

p. In our example: J0 = 177.09, J1 = 130.7, J7 = 122.94, J15 = 106, . . .

Reason: Model order p = N defines a polynomial a0 + a1x+ · · ·+ aNx
N

which will perfectly fit N data points. Warning: Do not fit the noise!

R Indeed, when these models are applied to unseen data (inference), the LS
costs are J0 = 165.95, J1 = 100.1, J7 = 115.13, J15 = 120.65, . . .

In practice, increase order only if Jmin(p)− Jmin(p− 1) > ε (user threshold)
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Appendix: Derivation of the MMSE and variance for the
sequential estimator of a DC level in noise

Jmin[N ] =

N∑
n=0

(
x[n]− Â[N ]

)2
Jmin[N − 1] =

N−1∑
n=0

(
x[n]− Â[N − 1]

)2

=

N−1∑
n=0

[
x[n]− Â[N − 1]−

1

N + 1

(
x[N ]− Â[N − 1]

)]2
+
(
x[N ]− Â[N ]

)2

= Jmin[N − 1]−
2

N + 1

N−1∑
n=0

(
x[n]− Â[N − 1]

)(
x[N ]− Â[N − 1])

+
N(

N + 1
)2(x[N ]− Â[N − 1]

)2
+
(
x[N ]− Â[N ]

)2
Jmin[N ] = Jmin[N − 1] +

N

N + 1

(
x[N ]− Â[N − 1]

)2
var
(
Â[N ]

)
=

1∑N
n=0

1
σ2
n

=
1∑N−1

n=0
1
σ2
n

+ 1
σ2
N

=
1

1
var(Â[N−1])

+ 1
σ2
N

=
var(Â[N − 1]) σ2

N

var(Â[N − 1]) + σ2
N

=
(

1−
var(Â[N − 1])

var(Â[N − 1]) + σ2
N

)
var(Â[N − 1])

=
(
1−K[N ]

)
var(Â[N − 1])
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Appendix: Probability vs. Statistics
For discrete RVs, E{X} =

∑I
i=1 xiPX(xi), where PX is the probability function

Probability: A data modelling view, describes how data will likely behave

for example: average = E{X} =

∫ ∞
−∞

x pX(x) dx no data here

Notice that there is no explicit mention of data here # x is a dummy
variable and pX is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave

for example: average =
1

N

N−1∑
n=0

x[n] no pdf here

Example: Consider N coarse-quantised data points, x[0], . . . , x[N − 1].
The signal has M � N possible amplitude values, V1, . . . , VM , with the
corresponding relative frequencies, N1, . . . , NM . Calculate the mean, x̄.

Solution:
x̄ =

1

N

N−1∑
n=0

x[n] =
1

N

M∑
m=1

VmNm =

M∑
m=1

Vm
Nm
N︸︷︷︸

≈ P (x=Vm)
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Appendix: Probability vs. Statistics
(for discrete RVs, E{X} =

∑I
i=1 xiPX(xi), where PX is the probability function)

Probability: A data modelling view, describes how data will likely behave

for example: average = E{X} =

∫ ∞
−∞

x pX(x) dx no data here

Notice that there is no explicit mention of data here # x is a dummy
variable and pX is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave

for example: average =
1

N

N−1∑
n=0

x[n] no pdf here

Vagaries of probability: P (x0 < X < x0 + ∆x) =
∫ x0+∆x

x0
pX(x)dx

)

o xo ∆x

x1P(X= )=0

x1

xo xo

p
X

x

(x)

+

but P( < X < + ∆x

x

Notice that

P (X = x1) = 0

This appears odd, but otherwise

the probabilities sum up to ∞
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Appendix: Statistics vs. Probability
Statistical inference # based on the observed data and supported by prob. theory

Vagaries of statistics: Consider N coarse-quantised data points,
x[0], . . . , x[N − 1]. The quantised signal has M � N possible amplitude
values, V1, . . . , VM , for which the corresponding relative frequencies are,
N1 = #V1, . . . , NM = #VM . Calculate the mean, x̄.

x[n]
= #V ii

VM

V2

V1

n

N

Solution:

x̄ =
1

N

N−1∑
n=0

x[n] =
1

N

M∑
m=1

VmNm =

M∑
m=1

Vm
Nm
N︸︷︷︸

≈ P (x=Vm)

R Clearly, the factor 1/N does not imply “uniform distribution”
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Appendix: Statistical inference

Probability: Assumes perfect knowledge about the “population” of
random data (through the pdf).

Typical question: There are 100 books on a bookshelf, 40 with red cover,
30 with blue cover, and 20 with green cover. What is the probability to
randomly draw a blue book from the shelf?

Statistics: No knowledge about the types of books on the shelf, we need
to infer properties about the “population” based on random samples of
“objects” on the shelf # statistical inference.

Typical question: A random sampling of 20 books from the bookshelf
produced X red books, Y blue books and Z green books. What is the
total proportion of red, blue, and green books on the shelf?

Statistical inference is applied in many different contexts under the names
of: data analysis, data mining, machine learning, classification, pattern
recognition, clustering, regression, classification
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Appendix: Range of a matrix, span of a set of vectors
(a wide matrix transforms a vector space into another lower-dimensional one)

Consider a general 2× 3 matrix H and a 3× 1 vector u

H =

[
h11 h12 h13

h21 h22 h23

]
= [h1 |h2 |h3] where hi =

[
h1i

h2i

]
i = 1, 2, 3

Then,

v = H u = [h1 |h2 |h3]

 u1

u2

u3

 = u1h1 + u2h2 + u3h3 ∈ R2×1

1  −2   0

v
=

 H
u

T

p = Pu

x

y

z

u= [3, 2, 4]
T

(projection)

H=
0  −1   1

=
 [
−

1
, 
2
]

Example: H ∈ R2×3, u ∈ R3×1

◦ Clearly, v is a linear combination of the

columns of the matrix H, hi ∈ R2×1

◦ Vector v = [−1, 2]T therefore lies in

the span of the columns of H, i.e. in R2

R This dimensionality reduction

is not a projection p = Pu, where

P = H(HTH)−1HT
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Quadratic forms and positive–(semi)definite matrices

Quadratic forms appear often in data analysis, and are expressed as

xTHx x ∈ RN×1, H ∈ RN×N

For simplicity, consider a 2nd order case, where

x =

[
x1

x2

]
H =

[
h11 h12

h21 h22

]
↑ variable vector ↑ fixed matrix

The quadratic form QH(x) = QH(x1, x2) of a matrix H is a scalar given by

QH(x1, x2) = xT H x =

2∑
i=1

2∑
j=1

hijxixj = h11x
2
1 + h22x

2
2 + (h12 + h21)x1x2

(1 x 1)

N x 1

x
T

N x N

H

x

1 x N

=

scalar

◦ If QH(x) ≥ 0, for any x 6= 0
then the matrix H is called
positive semidefinite

◦ The matrix H is positive
definite if QH(x) > 0,∀x 6= 0
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Appendix: Order Recursive Least Squares (ORLS)
(If hi are NOT ⊥ ORLS is harder but possible)

For orthonormal columns of H,

θ̂ = HTx

Denote by θi the projections on the
individual columns of H (coordinates
in S). Then, we can find projections
on each of those 1D subspaces
separately, and add them to give

θ̂i = hTi x → ŝ = Hθ̂ =

p∑
i=1

θ̂ihi =

p∑
i=1

(hTi x︸︷︷︸
θi

)hi

R We can then use p-order model to compute the (p+ 1)-order model!

Indeed, denote by H1 = h1, H2 =
[
h1 |h2

]
· · · Hp+1 =

[
Hp |hp+1

]
For p = 1 → ŝ1 = (hT1 x)h1 For p = 2 → ŝ2 = (hT1 x)h1 + (hT2 x)h2 = ŝ1 + (hT2 x)h2

Order Recursive Least Squares: ŝp+1 = ŝp + (hTp+1x)hp+1
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Appendix: What is that a matrix does to a vector?

matrix−vector   products

θ

R x A x

E x

P x

x

Ampli-twist: a matrix A which
multiplies a vector x
(i) stretches or shortents the vector
(ii) rotates the vector

A  any general matrix

R a rotation matrix (RT = R−1

and det R = 1)

Ex = λx  eigenanalysis

P  projection matrix

An example of a rotation matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
What can we say about the
properties of the matrix A, matrix
E and the projection matrix P
(rank, invertibility, ...)?

Is the projection matrix invertible?
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Notes:

◦
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Notes:

◦
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