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Overview

◦ It frequently occurs that the MVU estimator, even if it exists, cannot be
found (mathematical tractability, violation of regularity conditions, ...)

◦ For instance, one typical case is that we may not know the pdf of the
data, but we do know the 1st and 2nd moment (mean, variance,
power). In such cases pdf based methods cannot be applied

◦ We therefore have to resort to suboptimal solutions # impose some
constraints on the estimator and data model

◦ If the variance of a suboptimal estimator meets our system
specifications, the use of such estimators may be justified

◦ The best linear unbiased estimator (BLUE) # restrict the estimator to
be linear in the data # finds a linear estimator that is unbiased and
has minimum variance among such unbiased estimators

◦ Alternatively, if the MVU estimator does not exist, or BLUE is not
applicable we may resort to Maximum Likelihood Estimation (MLE)

◦ We first need to look at which data samples are pertinent to the
estimation problem  the so called sufficient statistics
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Motivation for BLUE (Best Linear Unbiased Estimator)
sufficient statistics and the linearity assumption
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Heavy-Tailed Case

Gussian Case

◦ In many applications, signals
exhibit sharp spikes

◦ This results in heavy-tailed
distributions (e.g. α-stable)

◦ There may not be a general form
of pdf for such distributions

◦ If an efficient estimator does not exist, it is still of interest to be
able to find the MVU estimator (assuming of course that it exists)

◦ To achieve this, we need the concept of sufficient statistics and the
Rao–Blackwell–Lehmann–Scheffe theorem

◦ This makes it possible in many cases to determine an approximate MVU
estimator by a simple inspection of the PDF (e.g. MLE)

The BLUE assumptions are also referred to as Gauss–Markov assumptions

These have been responsible for advances in “quantitative methodologies”
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An insight into the ‘sufficiency’ of the data statistics
which data samples are pertinent to the est. problem? Q: ∃ a sufficient dataset?

Consider the two estimators of DC level in WGN that we addressed so far:

Â =
1

N

N−1∑
n=0

x[n], var(Â) =
σ2

N
& Ã = x[0], var(Ã) = σ2

# Although Ã is unbiased, its variance is much larger than that of Â.
This is is due to discarding x[1],...,x[N-1] that carry information about A.

Consider now the following datasets:

S1 = {x[0], x[1], . . . , x[N − 1]} S2 = {x[0] + x[1], x[2], . . . , x[N − 1]} S3 = {
N−1∑
n=0

x[n]}

The original dataset, S1, is always sufficient, S2 and S3 are also sufficient.

 In addition to being sufficient, statistics S3 is minimal sufficient statistics ©
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◦ Knowledge of T0 changes the
PDF to the conditional one
p(x|

∑N−1
n=0 x[n] = T0;A)

◦ If the statistics is sufficient for

estimating A, this condit. PDF

should not depend on A (right f.)
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Sufficient statistics, for x[n] = A+ w[n], w ∼ N (0, σ2)

Split the pdf into the “data-only” and “parameter & data” parts

Sufficient statistics answers the questions:
Q1: Can we find a transformation T (x) of lower dimension that contains all

information about θ (the data can be very long, e.g. x ∈ RN×1)

Q2: What is the lowest possible dimension of T (x) so as to still contain all information

about θ  minimal sufficient statistics

For example, for DC level in WGN, T (x) =
∑
x[n] (one-dimensional)

Solution: Neyman-Fisher factorisation th. which allows us to factor a pdf as
p(x; θ) = g

(
T (x), θ

)
h(x) (function h depends only on x)

Then T (x) is a sufficient statistics and the pdf can be factorised as above.

R For a DC level in WGN, p(x;A) = 1

(2πσ2)N/2
exp
{
− 1

2σ2

∑N−1
n=0 (x[n]−A)2

}
, so

p(x;A) =
1

(2πσ2)N/2
exp
{
− 1

2σ2

N−1∑
n=0

x2[n]
}

︸ ︷︷ ︸
h(x)

exp
{
− 1

2σ2

[
NA2 − 2A

( T (x)︷ ︸︸ ︷
N−1∑
n=0

x[n]
) ]}

︸ ︷︷ ︸
g(T (x),A)

Therefore, sufficient statistics T (x) =
∑N−1
n=0 x[n] (minimal & linear)
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How to find the MVU from sufficient statistics?

Raw data x = [x[0], . . . , x[N − 1]]T ∈ RN×1 # N -dim. sufficient statistics

◦ For T (x) to be sufficient statitics, we need p(x; θ) = g
(
T (x), θ

)
h(x)

How to find the MVU?

1. find any unbiased estimator
θ̄ of θ and determine

θ̂ = E[θ̄|T (x)] = g(x)

(mathematically intractable)

2. find a function θ̂ = g(T (x))

s.t. E[θ̂] = θ

3. if g(·) is unique: we have
complete statistics and MVU

4. if g(·) is not unique: there is
no MVU

How to check if g(·) is unique?

�
�

�
Rao-Blackwell-Lehmann-Scheffe

Assume that θ̄ is an unbiased
estimator of θ and T (x) is
sufficient statistics for θ.
Then the estimator E[θ̄|T (x)] is:
◦ valid (not dependent on θ)

◦ unbiased

◦ of ≤ variance than that of θ̄

◦ if the sufficient statistics is complete
then it is MVU

Complete: only one function
g(T (x)) s.t. E[g(T (x)] = θ
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Best Linear Unbiased Estimator: BLUE

Motivation: When the PDF of the data is unknown, or cannot be
assessed, the MVU estimator, even if it exists, cannot be found!

◦ In this case methods which rely on the pdf cannot be applied§
Remedy: Resort to a sub-optimal estimator # check its variance and
ascertain whether it meets the required specifications (and/or CRLB)

Common sense approach: Assume an estimator to be:

◦ linear in the data, that is, θ̂BLUE =
∑N−1
n=0 anx[n]

◦ among all such linear estimators, seek for an unbiased one,

◦ then minimise the variance.

 This estimator is termed the Best Linear Unbiased Estimator (BLUE)
which requires only knowledge of the first two moments of the PDF.

We will see that if the data are Gaussian, the BLUE and MVUE are equivalent
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The form and optimality of BLUE

Consider the data x =
[
x[0], x[1], . . . , x[N − 1]

]T
, for which the pdf

p(x; θ) depends on the unknown parameter θ.

The form of BLUE

The BLUE estimator is restricted
to have the form (a = {an})

θ̂ =

N−1∑
n=0

anx[n] = aTx
↑

Constants to be determined

We choose ans to give an unbiased
est., E{θ̂} = θ. Then, min(var)

# the BLUE estimator is the
one which is unbiased and has
minimum variance.

Optimality of BLUE

Note, the BLUE will be optimal
only when the actual MVU
estimator is linear!

For instance, when estimating the
DC level in WGN

θ̂ = x̄ =
1

N

N−1∑
n=0

x[n]

{
an =

1

N

}
which is clearly linear in the data,
BLUE is an optimal MVU giving
an = 1/N .
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Example 1: How useful is an estimator of DC level in
noise?

In fact, very useful. It is up to us to provide correct data representation.

Sinusoidal frequency estimation

frequency

(T−F representation of a sinewave)

time

X(f)x(t)

time−frequency spectrogram
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◦ Ramp in time # DC level in time
(via differentiation)

◦ Chirp in time # ramp in T-F

Transforming other problems

time-frequency representation

horizontal: time vertical: frequency

This is a T-F representation of a
waveform of the word “matlab”

DC-level like harmonics for “a”
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Example 2: Composite faces # people face averages

Can we estimate a “typical looking” person from a certain region, by
taking a statistical average of a large ensemble of random faces
photographed on the street?

Does such an estimated face exist in real life?

Participans in Sydney, Australia, ranging from 0.83–93 years
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Example 2: contd. # composite male and female faces

Composite faces of Sydney

Composite faces of London

Composite faces of Hong Kong

Composite faces of Argentina
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The place of BLUE amongst other estimators
(e.g. for DC level in noise)

Consider the space of all unbiased
estimators

θ

V
a
ri
a
n
c
e

BLUE

MVUE

nonlinear unbiased

estimators

estim.unbiased

linear

◦ For white Gaussian noise the
MVU is linear in the data and
is given by the sample mean x̄

◦ For the uniform noise x[n] ∼
U(0, β), the MVU is nonlinear
in the data, and is given by

θ̂ =
N + 1

2N
max{x[n]}

var(θ̂) =
β2

12N

BLUE can achieve var(θ̂) = β2

N

The difference in performance between the BLUE and MVU
estimators can be substantial, but can only be quantified through
knowledge of the data pdf.
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Example 3: Problems with BLUE
Its direct form is inappropriate for nonlinear prob. # population dynamics example

Owing to the linearity assumptions, the BLUE estimator can be totally
inappropriate for some estimation problems.�
�

�
Power of WGN estimation

The MVU estimator σ̂2 =
1

N

N−1∑
n=0

x2[n]

is nonlinear in the data. Forcing the
estimator to be linear, e.g.

σ̂2 =
1

N

N−1∑
n=0

anx[n]

yields E{σ̂2} = 0, which is
guaranteed to be biased!

A non-linear transformation of
the data, i.e. y[n] = x2[n], could
overcome this problem.

�
�

�
�Example: Rabbit population

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Rabbit pairs

R
a

b
b

it
 p

o
p

u
la

ti
o

n

Parent rabbits
Baby bunnies

The time evolution of the rabbit

population is nonlinear (exponential)

However, the number of parent pairs

is linear in time⇒ BLUE
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Example 3 cont.: Nonlinear transformation of data
Left: Original data (nonlin. sep.) Right: Linear separability after nonlinear transf.
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How to find BLUE?
Recall: BLUE is linear in data θ̂ =

∑N−1
n=0 anx[n] = aTx

Consider a scalar linear observation x[n] = θs[n] +w[n] ⇒ E{x[n]} = θs[n]

and notice that E{θ̂} = θ
∑N−1
n=0 ans[n] s[n]  scaled mean

1. Unbiased constraint

E{θ̂} =

N−1∑
n=0

anE{x[n]} = θ

⇒ aTs = 1

where the scaled data
vector (by inspection)

s = [s[0], s[1], . . . , s[N − 1]]
T .

R In other words, to satisfy the
unbiased constraint for the estimate
θ̂, E{x[n]} must be linear in θ, or

E{x[n]} = s[n]θ

2. Variance minimisation

θ̂ = aTx

⇒ var(θ̂) = E{aTxxTa}

BLUE optimisation task

Minimise:

var(θ̂) = aTE{xxT}a = aTCa

subject to the unbiased constraint

aTs θ = θ ⇔ aTs = 1
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Some remarks on variance calculation

A closer look at the variance yields

var(θ̂) = E

{(N−1∑
n=0

anx[n]− E
{N−1∑
n=0

anx[n]
})2

}
= E

{(
aTx− aTE{x}

)2}
With a ≡ [a0, a1, . . . , aN−1]

T, y2 = y × yT , and (aTx)T = xTa, we have

E

{
aT
(
x− E{x}

)(
x− E{x}

)T
a

}
= aTCa like var(aX) = a2var(X)

Also assume

E{x[n]} = s[n]θ, easy to show from x[n] = E{x[n]}+
[
x[n]− E{x[n]}

]
by viewing w[n] = x[n]− E{x[n]}, we have x[n] = θs[n] + w[n]

R BLUE is linear in the unknown parameter θ, which corresponds to the
amplitude estimation of known signals in noise (to generalise this, a
nonlinear transformation of the data is required).
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BLUE as a constrained optimisation paradigm
Also see Lecture 1 and Appendix here

Task: minimize the variance subject to the unbiased constraint

min
{
aTCa

}︸ ︷︷ ︸
optimisation task

subject to aTs = 1︸ ︷︷ ︸
equality constraint

Method of Lagrange multipliers

1. J = aTCa− λ(aTs− 1)

2. Calculate

∂J

∂a
= 2Ca− λs

3. Equate to zero and solve for a

a =
λ

2
C−1s

�
�

�
�Solve for the Lagrange multiplier λ

4. From the constraint equation

aTs =
λ

2
sTC−1s = 1

⇒ λ

2
=

1

sTC−1s
5. Replace into Step 3, with the
constraint satisfied for

aopt =
C−1s

sTC−1s

coefficients of BLUE!
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Summary: BLUE
Recall that θ = aTx var(θ̂) = aTCa

BLUE of an unknown parameter (our function g(x) from MVU):

θ̂ = aToptx =
sTC−1

sTC−1s
x where aopt =

C−1s

sTC−1s

BLUE variance:

var
(
θ̂
)

= aTopt C aopt =
1

sT C−1 s

To determine the BLUE we only require knowledge of

s # the scaled mean

C # the covariance matrix (C−1 pre–whitens the data prior
to averaging, see Slide 42 in Lecture 4)

That is, for BLUE we only need to know the first two moments of the PDF

Notice that we do not need to know the functional relation of PDF ©
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Example 4: Estimation of a DC level in unknown noise
Notice that the PDF is unspecified and does not need to be known

Example: Determine the DC level in White Noise of an unspecified pdf

Given

x[n] = A+ w[n], n = 0, 1, . . . , N − 1

where {w[n]} is any white noise with variance σ2 (power).

In other words, {w[n]} is not necessarily Gaussian or independent ⇒
there may be some statistical dependence between samples (although they
are uncorrelated)

Task: Estimate A.

Solution:
Since

E
{
x[n]

}
= A therefore s[n] = 1 and s = 1 = [ 1, . . . , 1︸ ︷︷ ︸

N elements

]T = 1N×1

Follows from E{x[n]} being linear in θ ⇒ E{x[n]} = s[n]θ.
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Example 4: DC level in white noise with unknown PDF,
contd. Recall that aopt = C−1s

sTC−1s
, var(θ̂) = 1

sT C−1 s
, and θ̂ = aToptx

For any i.i.d. white noise {w} with power σ2,

C =

 σ2 · · · 0
... . . . ...
0 · · · σ2

 = σ2I ⇒ C−1 =

 1
σ2 · · · 0
... . . . ...
0 · · · 1

σ2

 = 1
σ2I

The BLUE for the estimation of DC level in noise then becomes

Â =
1T 1

σ2 I

1T 1
σ2 I 1

x =
1

N

N−1∑
n=0

x[n] = x̄

and has minimum variance (CRLB for a linear estimator)

var(Â) =
1

1T 1
σ2 I 1

=
σ2

N

◦ The sample mean is the BLUE independent of the PDF of the data

◦ BLUE is the MVU estimator if the noise {w} is Gaussian

R If the noise is not Gaussian (e.g. uniform) the CRLB and MVU
estimator may not exits, but BLUE still exists!
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Some help with the expressions of the type aTAa

we shall consider the expressions 1TI 1 and 1TI x

0

1  1  1        ...        1

1xN

1  1  1        ...        1

1xN

Nx11

.

.

.

1

1

1  1  1        ...        1

1xN

NxN

1

1
1

1

.

.

.

NxN

1

1
1

1

.

.

.

1  1  1        ...        1

1xN

= = N

Nx11

.

.

.

1

1

= = Σx[n]

x[0]

x[1]

.

.

.

Nx1

x[0]

x[1]

.

.

.

Nx1
x[N−1] x[N−1]

0

0

0

It is useful to visualise any type of vector–matrix expression.

R It is now obvious that e.g. the scalar aTAa is ’quadratic’ in a.

This is easily proven by considering xT I x in the diagrams above.
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Example 5: DC Level in uncorrelated zero mean noise
with var(w[n]) = σ2

n (de–emphasising bad samples)

Notice that now the noise
variance depends on the
sample number!

As before, s = 1.

The covariance matrix of the noise

C =


σ2

0 0 · · · 0
0 σ2

1 · · · 0
... ... . . . ...
0 0 · · · σ2

N−1


and thus

C−1 =


σ−2

0 0 · · · 0
0 σ−2

1 · · · 0
... ... . . . ...
0 0 · · · σ−2

N−1


C−1 acts to prewhiten the data

The BLUE solution:

Â =
1T C−1

1T C−1 1
x =

N−1∑
n=0

x[n]

σ2
n

N−1∑
n=0

1

σ2
n

◦ The term
∑N−1
n=0

1

σ2
n

ensures

that the estimator is unbiased

◦ BLUE weighs samples
with smallest variances most
heavily

◦ Notice that

var(Â) =
1∑N−1

n=0 1/σ2
n
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BLUE: Extension to vector parameter
System model: θ̂i =

∑N−1
n=0 ainx[n], i = 1, . . . , p ⇒ θ̂ = Ax

Unbiased constraint:

E{θ̂i} =
∑N−1
n=0 ainE{x[n]} = θi ⇒ E{θ̂} = AE{x} = θ

Recall that for every θi ∈ θ = [θ1, . . . , θp]
T we have

θ̂i =

N−1∑
n=0

ainx[n], i = 1, 2, . . . , p and E{θ̂i} =

N∑
n=0

anE{x[n]} = θi

Recall E{x[n]} = s[n]θ ⇒ E{x} = Hθ # the constraint AH = I

where A = [ain](p×N) and H is a vector/matrix of terms {s[n]}

The vector BLUE becomes

θ̂ =
(
HTC−1H

)−1
HTC−1x

with the covariance matrix Cθ̂ =
(
HTC−1H

)−1

If the data are truly Gaussian, as in

x = Hθ + w with w ∼ N (0,C)

then the BLUE also yields the Minimum Variance Unbiased estimator.
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The Gauss – Markov Theorem

Consider the observed data in the form of a general linear model

x = H θ + w

with w having zero mean and covariance C, otherwise an arbitrary PDF.

Then, the vector BLUE of θ can be found as

θ̂ =
(
HT C−1 H

)−1
HT C−1 x

and for every θ̂i ∈ θ̂, the minimum variance of θ̂i is

var(θ̂i) =
[(
HTC−1H

)−1
]
ii

with covariance matrix of θ̂

Cθ̂ =
(
HT C−1 H

)−1
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Example 6: Sinusoidal phase estim. (DSB, PSK, QAM)
Motivation for Maximum Likelihood Estimation (MLE)
Signal model: x[n] = A cos(2πf0n+ Φ) +w[n] w ∼ N (0, σ2)

Signal to noise ratio (SNR): SNR =
Psignal
Pnoise

= A2

2σ2

Parametrised pdf: p(x; Φ) = 1
(2πσ2)N/2

e
−
∑N−1
n=0

(
x[n]−A cos(2πf0n+Φ)

)2

2σ2

Regularity condition within CRLB: ∂ ln p(x;θ)
∂θ = I(θ)

[
g(x)− θ

]
In our case: (see Example 8, slide 32)

∂ ln p(x; Φ)

∂Φ
= −A

σ2

N−1∑
n=0

(
x[n] sin(2πf0n+ Φ)− A

2
sin(4πf0n+ 2Φ)

)2
R The regularity condition is not satisfied, and an efficient estimator

for sinusoidal phase estimation does not exist

Remedy: Using MLE, we can still obtain an ≈ CRLB for freq. far from 0 and 1/2

Approximate CRLB: var(Φ) ≥ 1

N × SNR
(see Example 8)
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Maximum Likelihood Estimation: popular for practical estimators

Effectively, we treat θ as a variable, not as a parameter, θ̂ = argmaxθ p(x; θ)

Rationale: ◦ MVU estimator often
does not exist or cannot be found
◦ BLUE may not be applicable (e.g.
x 6= Hθ + w)
◦ If the pdf is known, then MLE can
always be used!

◦ The MLE = the value of θ that
maximises p(x; θ) for x fixed, thus
maximising the likelihood function ∀θ.

# Alternative to an MVU estimator

Notice that p(x = x0; θ)dx
for each given θ gives the
p(x) ∈ RN , centred about
x0 with volume dx.

The inference that θ = θ1 is

unreasonable because it is very

unlikely that the observed value of x

would equal x0.

It is more“likely” that θ = θ2, since

there is a large probability that

x = x0 is observed.

In other words, pick θ̂ML so that

p(x; θ̂ML) is largest.

This yields an estimator which is

generally a function of x.

Maximisation performed over
the allowable range of θ.
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Estimation theory # quick reminder
Principle of Maximum Likelihood Estimation (MLE)

Principle of estimation: We seek to determine from a set of data, a
set of parameters such that their values would yield the highest
probability of obtaining the observed data.

R The unknown parameters may be seen as a deterministic or a random
variable.

No a priori distribution assumed # MLE. A priori distribution assumed # Bayesian

Principle of Maximum Likelihood Estimation (MLE): Estimate an
unknown parameter such that for this value the probability of obtaining an
actually observed sample is as large as possible.

◦ In other words: having got the observation, we look back and
compute the probability that the given sample will be
observed, as if the experiment is to be done again.

R MLE is a turn-the-crank method which is optimal for large enough data.
It can be computationally complex and may require numerical methods.

R Makes the data you did observe the most likely data you have observed!
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Maximum likelihood principle in a nutshell

Assumptions: The joint pdf of m sample random variables evaluated at
each the sample point x1, x2, . . . , xm is given as

l(θ, x1, x2, . . . , xm) = l(θ,x) =

m∏
i=1

px(xi|θ)

The above is known as the likelihood of the sampled observation.

Assum. 1 A random variable x has a probability distribution dependent on a
parameter θ. The parameter θ lies in a space of all possible parameters θ

Assum. 2 Let px(x|θ) be the probability density function of x. Assume the the
mathematical form of px is known but not θ

The likelihood function is a therefore function of the unknown
parameter θ for a fixed set of observations.

R The Maximum Likelihood Principle requires us to select that value of
θ which maximises the likelihood function.
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Example 7: MLE of a DC level in noise

D.C. level in WGN, w[n] ∼ N (0, σ2)

x [n] = A + w [n] n=0,1,...,N -1

↑
A to be estimated

Step 1: Start from the PDF

p(x;A) = 1(
2πσ2

)N/2 exp
[
− 1

2σ2

N−1∑
n=0

(x[n]−A)2
]

Step 2: Take the derivative of the log-likelihood function

∂ ln p(x;A)

∂A
=

1

σ2

N−1∑
n=0

(x[n]−A)

Step 3: Set the result to zero to yield the MLE (in general, no optimality)

Â =
1

N

N−1∑
n=0

x[n]

R Clearly this is an MVU estimator which yields the CRLB (efficient)
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MLE: Observations so far

◦ If an efficient estimator exists, the maximum likelihood procedure will
produce it (see Example 7)

◦ When an efficient estimator does not exist, the MLE has the desirable
feature that it yields “an asymptotically efficient” estimator (shown in
Example 8). For sufficiently large datasets, such an estimator is

– unbiased
– achieves the CRLB
– has a Gaussian PDF, θ̂asy ∼ N (θ, I−1(θ))

◦ Provided the PDF p(x; θ) satisfies the regularity conditions:

– the derivatives of the log-likelihood function exist
– and the Fisher information is non-zero

In other words, if θ is the parameter to be estimated and x is the
observation, then the MLE estimator θ̂mle is found as

θ̂mle = arg max p(x; θ) for fixed (given) x

that is, θ̂mle is the argument of p(x; θ) that maximises its value.
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Example 8: MLE sinusoidal phase estimator (cf. Ex. 6)
Recall the Neyman-Fisher factorisation: p(x; θ) = g

(
T (x), θ

)
h(x)

MLE of sinusoidal phase. No single sufficient statistics exists for this
case. The sufficients statistics are (see also Slide 5):

T1(x) =
∑N−1
n=0 x[n] cos(2πf0n) T2(x) =

∑N−1
n=0 x[n] sin(2πf0n)

The observed data:
x[n] = A cos(2πf0n+ Φ) + w[n] n = 0, 1, ..., N − 1 w[n] ∼ N (0, σ2)

Task: Find the MLE estimator of Φ by maximising

p(x; Φ) =
1

(2πσ2)N/2
exp

[
− 1

2σ2

N−1∑
n=0

(
x[n]−A cos(2πf0n+ Φ)

)2]
or, equivalently, minimise

J(Φ) =

N−1∑
n=0

(
x[n]−A cos(2πf0n+ Φ)

)2
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Example 8: MLE sinusoidal phase estimator (cf. Ex. 6)
Recall the Neyman-Fisher factorisation: p(x; θ) = g

(
T (x), θ

)
h(x)

To find the minimum, differentiate wrt the unknown parameter Φ to yield

∂J(Φ)

∂Φ
= −2

N−1∑
n=0

(
x[n]−A cos(2πf0n+ Φ)

)
A sin(2πf0n+ Φ)

and set the result to zero, to give

(SP1)

N−1∑
n=0

x[n] sin(2πf0n+Φ̂) = A

N−1∑
n=0

sin(2πf0n+ Φ̂) cos(2πf0n+ Φ̂)︸ ︷︷ ︸
inner product of sine and cosine

Notice, however (use sin(2a) = 2sin(a)cos(a), see also Example 9 in Lecture 4)

(SP2)
1

N

N−1∑
n=0

sin(2πf0n+Φ̂) cos(2πf0n+Φ̂) =
1

2N

N−1∑
n=0

sin(4πf0n+2Φ̂) ≈ 0

provided f0 is not near 0 or 1
2, and for a large enough N .
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Example 8: MLE sinusoidal phase estimator (cf. Ex. 6)
Recall the Neyman-Fisher factorisation: p(x; θ) = g

(
T (x), θ

)
h(x)

Thus the LHS of (SP1) when divided by N and set equal to zero will yield
an approximation of MLE

MLE of the phase Φ !
N−1∑
n=0

x[n] sin(2πf0n+ Φ̂) = 0

Upon expanding sin(2πf0n+ Φ̂), this yields

N−1∑
n=0

x[n] sin(2πf0n) cos Φ̂ = −
N−1∑
n=0

x[n] cos(2πf0n) sin Φ̂

so that the MLE Φ̂ = − arctan

N−1∑
n=0

x[n] sin(2πf0n)

N−1∑
n=0

x[n] cos(2πf0n)

R The MLE Φ̂ is clearly a function of the sufficient statistics, which are

T1(x) =
∑N−1
n=0 x[n] cos(2πf0n) T2(x) =

∑N−1
n=0 x[n] sin(2πf0n)
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Example 8: Sinusoidal phase # numerical results

The expected asymptotic PDF of the phase estimator: Φ̂asy ∼ N (Φ, I−1(Φ))

# so that the asymptotic variance var(Φ̂) =
1

NA2

2σ2

=
1

ηN

where η =
Psignal
Pnoise

= A2/2
σ2 (SNR) is the “signal-to-noise-ratio”

◦ Below: Simulation results with A=1, f0 = 0.08, Φ = π/4 and σ2 = 0.05

Data record length Mean, E(Φ̂) Nx× variance, N var(Φ̂)
10 0.732 0.0978
40 0.746 0.108
60 0.774 0.110
80 0.789 0.0990

Theoretical asymptotic values Φ=0.785 1
η = 0.1

R For shorter data records the MLE estimate is considerably biased. Part of
this bias is due to the assumption (SP2)
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Example 8: MLE of sinusoidal phase phase # asymptotic
mean and variance (performance vs. SNR for a fixed N)

◦ For a fixed data length at N = 80, SNR was varied from -15 to +10 dB

◦ The asymptotic variance (or CRLB) then becomes

10 log10 var(Φ̂) = 10 log10

1

Nη
= −10 log10N − 10 log10 η

◦ Mean and variance are also functions of SNR

◦ Asymptotic mean attained for SNRs > -10dB
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Observe that the minimum data length to attain CRLB also depends on SNR
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Asymptotic properties od MLE

We can now formalise the asymptotic properties of θ̂asyML (see the previous slide).

Theorem (asymptotic properties of MLE): If p(x; θ) satisfies some “regularity”
conditions, then the MLE is asymptotically distributed as

θ̂asy ∼ N
(
θ, I−1(θ)

)
where “regularity” refers to the existence of the derivative of the
log–likelihood function (as well as Fisher information being non–zero), and
I is the Fisher Information evaluated at the true value of the unknown
parameter θ.

R The Maximum Likelihood Estimator is therefore asymptotically:

◦ unbiased

◦ efficient (that is, achieves the CRLB)

R For a small N , there is no guarantee how the MLE behaves

We use Monte Carlo simulations to answer “how large an N do we
need ?” (see Appendix for more detail)
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MLE: Extension to vector parameter

R A distinct advantage of the MLE is that we can always find it for a
given dataset numerically, as the MLE is a maximum of a known function.

◦ For instance, a grid search of p(x;θ) can be performed over a finite
interval [a, b].

◦ If the grid search cannot be performed (e.g. infinite range of θ) then we
may resort to iterative maximisation, such as the Newton-Raphson
method, the scoring approach, and the expectation-maximisation (EM)
approach. Good MLE for good initial guess.

◦ Since the likelihood function to be maximised is not known a priori and
it changes for each dataset, we effectively maximise a random function.

R Extension to a vector parameter is straightforward: The MLE for a
vector parameter θ is the value that maximises the likelihood function
p(x;θ) over the allowable domain of θ.

Asymptotic properties: If
∂ ln p(x;θ)

∂θ
= 0 then θ̂

asy
∼ N

(
θ,I−1(θ)

)
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Example 9: MLE of a DC level in WGN. Both the DC
level A and the noise variance (power) σ2 are unknown

Consider the data x[n] = A+ w[n], n = 0, 1, . . . , N − 1, w[n] is zero–mean

The vector parameter θ = [A, σ2]T is to be estimated (var(w) is unknown too)

Solution: (our p(x;θ) = p(x;A, σ2) has the usual form)

∂ ln p(x;θ)

∂A
=

1

σ2

N−1∑
n=0

(x[n]−A)

∂ ln p(x;θ)

∂σ2
= − N

2σ2
+

1

2σ4

N−1∑
n=0

(x[n]−A)
2

From first equation solve for A, from second equation solve for σ2 to obtain

θ̂ =

[
x̄

1
N

∑N−1
n=0 (x[n]− x̄)

2

]
N→∞−→

[
A
σ2

]
asymptotic CRLB

where x̄ = 1
N

∑N−1
n=0 x[n].

R Amazing, as we only knew the type the PDF, but not the variance!
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Example 10: Sinusoidal parameter estimation with three
unknown parameters # A, f0, and Φ

Now, θ = [A, f0,Φ]T , and

p(x;θ) =
1

(2πσ2)N/2
exp

[
− 1

2σ2

N−1∑
n=0

(
x[n]−A cos(2πf0n+ Φ)

)2︸ ︷︷ ︸
we need this as (x−Hθ)T (x−Hθ)

]
For A > 0, 0 < f0 <

1
2, the MLE of θ = [A, f0,Φ]T is found by minimising

J(A, f0,Φ) =

N−1∑
n=0

(
x[n]−A cos(2πf0n+ Φ)

)2
=

N−1∑
n=0

(x[n]−A cos Φ︸ ︷︷ ︸
α1

cos 2πf0n+A sin Φ︸ ︷︷ ︸
−α2

sin 2πf0n)2

R The function J(A, f0,Φ) is non–quadratic in A and Φ, and thus hard to
minimise. To this end, we can transform the multiplicative terms involving
A and Φ to new “linear terms” α1 = A cos Φ, α2 = A sin Φ

with the inverse mapping A =
√
α2

1 + α2
2 & Φ = tan−1(−α2

α1
)
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Example 10: Sinusoidal parameter estimation of three
unknown parameters, cont. (see Linear Models in Lecture 4)

For convenience of notation, we shall now introduce the vectors of sampled
cos and sin (containing the unknown frequency f0) in the form

c =
[
1, cos 2πf0, . . . , cos 2πf0(N − 1)

]T
s =

[
0, sin 2πf0, . . . , sin 2πf0(N − 1)

]T
to yield the function J ′(α1, α2, f0) which is quadratic in α = [α1, α2]T

J ′(α1, α2, f0) =
(
x− α1c− α2s

)T(
x− α1c− α2s

)
=
(
x−Hα

)T(
x−Hα

)
(∗)

R We arrive at a linear estimator of the vector parameter α = [α1, α2]T ,
where H = [c | s] (see Example 9 in Lecture 4)

This function can be minimised over α, exactly as in the linear model
(with C = I), to yield (Slide 33, Lecture 4 )

θ̂ = α̂ =
(
HTH

)−1
HTx → insert into (∗)

to yield J ′(α1, α2, f0) = (x−Hα̂)T (x−Hα̂) = xT
(
I−H(HTH)−1HT

)
x
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Example 10: Sinusoidal parameter estimation of three
unknown parameters, cont. cont.

Hence, to find f̂0 we need to minimise J ′ over f̂0 or, equivalently

maximise xTH(HTH)−1HTx

R Using the definition of H, the MLE for frequency f̂0 is the value that
maximises the power spectrum estimate (see your P&A sets)[

cTx
sTx

]T [
cTc cTs
sTc sTs

]−1 [
cTx
sTx

]
=

1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−2πf0n

∣∣∣∣∣
2

← periodogram

↖ xTH ↖ (HTH)−1 ↖ HTx

Use this expression to find f̂0, and proceed to find α̂ (Example 9, Lect. 4)

α̂=

[
α̂1

α̂2

]
≈ 2

N

[
cTx
sTx

]
=

 2
N
∑
x[n] cos 2πf̂0n

2
N
∑
x[n] sin 2πf̂0n

 Φ̂=− arctan

N−1∑
n=0

x[n] sin(2πf̂0n)

N−1∑
n=0

x[n] cos(2πf̂0n)

and Â =
√
α̂2

1 + α̂2
2 = 2

N

∣∣∣∑N−1
n=0 x[n] exp(−j2πf̂0n)

∣∣∣
c© D. P. Mandic Statistical Signal Processing & Inference 41



MLE for transformed parameters (invariance property)
This invariance property of MLE is another big advantage of MLE

Following the above example, we can now state the invariance property
of MLE (also valid for the scalar case).

Theorem (invariance property of MLE): The MLE of a vector parameter
α = f(θ), where the pdf p(x;θ) is parametrised by θ, is given by

α̂ = f(θ̂)

where θ̂ is the MLE of θ.

R Since MLE of θ̂ is obtained by maximising p(x;θ) , if f is a one-to-one
function this is obvious, and the MLE of the transformed parameter is
found by substituting the MLE of the original parameter into the
transformation.

For example, if x[n] = A+ w[n], w ∈ N (0, σ2), but we wish to find the
MLE of α = exp(A). The resulting log–likelihood is still parametrised by
A, and by using ln α = A as a transform, the resulting MLE is obtained as

α̂ = exp(Â) see also your P & A sets
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Theorem: Optimality of MLE for a linear model

Theorem: Assume that the observed data can be described by the general
linear model

x = Hθ + w

where H is a known N × p matrix with N > p and of rank p (tall matrix),
θ is a p× 1 parameter vector to be estimated, and w is a noise vector with
PDF N (0,C). Then, the MLE of θ takes the form

θ̂ =
(
HTC−1H

)−1
HTC−1x

In addition, θ̂ is also an efficient estimator in that it attains the CRLB. It
is hence the MVU estimator and the PDF of θ̂ is given by

θ̂ ∼ N
(
θ, (HTC−1H)−1

)
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Summary: BLUE and MLE NB: the optimal MVU estimator and

CRLB do not always exist or are impossible to find

Best Linear Unbiased Estimator

◦ It operates even when the pdf of
data is unknown

◦ Restricts the estimates to be
linear in the data (e.g. DC level
in noise)

◦ Produces unbiased etimates

◦ Minimises the variance of such
unbiased estimates

◦ Requires knowledge of only the
mean and variance of the data,
and not the full pdf

◦ BLUE may be used more
generally if the data model is
linearised

Maximum Likelihood Estimator

◦ Can always be applied if the pdf
is known, and does not restrict
the data model (cf. BLUE)

◦ It is asymptotically optimal (for
large data size)

◦ Can be computationally complex
(numerical methods)

◦ The basic idea: in the pdf
p(x; θ), θ is regarded as a
variable and not as a parameter!

◦ ML estimate: the value of
θ that maximises the likelihood
funct. lnp(x; θ) # found by
different. wrt θ and setting to 0
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Motivation and Pro’s and Con’s of BLUE

Motivation for BLUE: Except for the Linear Model (Lecture 4), the
optimal MVU estimator might:

◦ Not even exist,

◦ Be difficult or even impossible to find.

R BLUE is one such sub–optimal estimator.

Idea behind BLUE:

◦ Restrict the estimate to be linear in data x,

◦ Restrict the estimate to be unbiased,

◦ Find the best among such estimates, that is, the one with minimum
variance

Advantages of BLUE: It needs only the 1st and 2nd moments of PDF
(mean and variance)

Disadvantages of BLUE: 1) In general it is sub–optimal, and 2) It may
be totally inappropriate for some problems (see the next slide).
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Appendix: Some observations about BLUE

◦ BLUE is applicable to amplitude estimation of known signals in noise,
where to satisfy the unbiased constraint, E{x[n]} must be linear in the
unknown parameter θ, or in other words, E{x[n]} = s[n]θ

◦ Counter-example: if E{x[n]} = cos θ, which is not linear in θ, then

from the unbiased assumption we have
∑N−1
n=0 an cos θ = θ. Clearly,

there are no {an} that satisfy this condition

◦ For the vector parameter BLUE, the unbiased constraint generalises
from the scalar case as

E{x[n]} = s[n]θ → aTs = 1 ⇒ E{x} = Hθ → AH = I

Since the unbiased constraint yields:

E{θ̂i} =

N−1∑
n=0

ainE{x[n]} = θi ⇒ E{θ̂} = AE{x} = θ

this is equivalent to aTi hj = δij (=0 for i6=j, = 1 for i=j)
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Appendix: Monte Carlo simulations
Use computer simulations to evaluate performance of any estimation method

The MC simulations are illustrated here for a determin. sig. s[n, θ] in AWGN

1. Data collection
◦ Select a true parameter value, θtrue (usually performed over a range of
values of θ
◦ Generate signal having θtrue as a parameter
◦ Generate WGN with unit variance and form measurement x = s+ w
◦ Choose σ to obtain the desired SNR value and perform one MC
simulation for one SNR value (usually you run many simulations over a
range of SNR values)

2. Statistical evaluation
◦ Compute bias, B = 1

M

∑M
m=1(θ̂m − θtrue)

◦ Compute error RMS, RMS =
√

1
M

∑M
m=1(θ̂m − θtrue)2

◦ Compute error variance, var = 1
M

∑M
m=1(θ̂m −

(
1
M

∑M
m=1 θ̂M)

)2

◦ Plot histogram or scatter plot (if needed)

3. Explore (via plots)
How bias, RMS, variance vary with the value of θ, SNR, number of data
points, N , etc. Q: Is bias =0, is RMS = CRLB1/2, etc.
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Lecture supplement: Constrained optimisation using
Lagrange multipliers

Consider a two-dimensional problem:

maximize f(x, y)︸ ︷︷ ︸
function to max/min

subject to g(x, y) = c︸ ︷︷ ︸
constraint

# we look for point(s) where curves f & g touch (but do not cross).

In those points, the tangent lines for f and g are parallel ⇒ so too are the
gradients ∇x,yf ‖ λ∇x,yg, where λ is a scaling constant.

Although the two gradient vectors are parallel they can have different magnitudes!

Therefore, we are looking for max or min points (x, y) of f(x, y) for which

∇x,yf(x, y) = −λ∇x,yg(x, y) where∇x,yf =
(∂f
∂x
,
∂f

∂y

)
and∇x,yg =

(∂g
∂x
,
∂g

∂y

)
We can now combine these conditions into one equation as:

F (x, y, λ) = f(x, y)− λ
(
g(x, y)− c

)
and solve ∇x,y,λF (x, y, λ) = 0

Obviously, ∇λF (x, y, λ) = 0 ⇔ g(x, y) = c
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The method of Lagrange multipliers in a nutshell
max/min of a function f(x, y, z) where x, y, z are coupled

Since x, y, z are not independent there exists a constraint g(x, y, z) = c

Solution: Form a new function
F (x, y, z, λ) = f(x, y, z)− λ

(
g(x, y, z)− c

)
and calculate F ′x, F

′
y, F

′
z, F

′
λ

Set F ′x, F
′
y, F

′
z, F

′
λ = 0 and solve for the unknown x, y, z, λ.

Example 10: Economics
Two factories, A and B make TVs, at a cost

f(x, y) = 6x2 + 12y2 where x = #TV in A & y = #TV in B

Task: Minimise the cost of producing 90 TVs, by finding optimal numbers
of TVs, x and y, produced respectively at factories A and B.

Solution: The constraint g(x, y) is given by (x+y=90), so that

F (x, y, λ)=6x2+12y2−λ(x+ y − 90)

Then: F ′x = 12x− λ, F ′y = 24y − λ, F ′λ = −x− y + 90, and we need
to set ∇F = 0 in order to find min /max.

R Upon setting [F ′x, F
′
y, F

′
λ] = 0 we find x = 60, y = 30, λ = 720
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Notes:

◦
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Notes:

◦
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Notes:

◦
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