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The need for Statistical Signal Processing

Q: Have you ever considered what the following tasks have in common:

• Forecasting of financial data
• Supply-demand modelling (e.g. electricity or air-ticket pricing)
• Modelling of COVID-19 spread
• Person recognition from a set of (noisy) images
• Word generation by Large Language Models such as ChatGPT

A: These are signals/images of which the signal generating mechanisms are
largely unknown or untractable. We need to make sense from such data
based on historical observations only # subject of Statistical Inference.
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The need for statistical inference: Population modelling

Example from financial modelling: Risk for a single asset and a for a
portfolio of uncorrelated assets. Risk is represented by the standard
deviation (or the width) of the distribution curves # a large portfolio
(M = 100) can be significantly less risky than a single asset (M = 1).
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Statistical Inference
From Latin inferre, which means “bring into, deduce, conclude”

Inferential statistics: Statistical Estimation and Hypothesis Testing

R In Machine Learning, the term “inference” typically indicates “prediction”

Applications:
◦ Adaptive learning algorithms (noise-cancelling headphones, forecasting)
◦ Neural Networks (e.g. classification, prediction, denoising)
◦ Communications, power systems, radar, sonar, biomedicine, ...
◦ Financial modelling, risk estimation, confidence intervals
◦ Artificial Intelligence (e.g. self-driving cars)

Inferential stats also tells us “what is possible to achieve” (sanity check)

c© D. P. Mandic Statistical Signal Processing & Inference 4



AI and Statistical Signal Processing and Inference
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Foundations of resilience: Probability vs. Statistics
For discrete RVs, E{X} =

∑I
i=1 xiPX(xi), where PX is the probability function

Probability: A data modelling view, describes how data will likely behave

for example: average = E{X} =

∫ ∞
−∞

x pX(x) dx no data here

Notice that there is no explicit mention of data here # x is a dummy
variable and pX is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave

for example: average =
1

N

N−1∑
n=0

x[n] no pdf here

Example: Consider N coarse-quantised data points, x[0], . . . , x[N − 1].
The signal has M � N possible amplitude values, V1, . . . , VM , with the
corresponding relative frequencies, N1, . . . , NM . Calculate the mean, x̄.

Solution:
x̄ =

1

N

N−1∑
n=0

x[n] =
1

N

M∑
m=1

VmNm =

M∑
m=1

Vm
Nm
N︸︷︷︸

≈ P (x=Vm)
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Aims: To introduce the fundamentals of statistical
estimation theory, to facilitate the design of signal
processing and machine learning algorithms

◦ The emphasis will be upon:

~ random signals, their properties, and statistical descriptors
~ linear stochastic models, to generate/describe random signals
~ parametric (model based) and nonparametric (data driven) modelling
~ optimal estimators for random signals, rigorous performance bounds
~ the class of least squares methods, block and sequential LS
~ adaptive estimation  suitable for nonstationary data

◦ You will gain practical experience through numerous examples on real
world signals:

~ multimedia (your own speech recorded via PC)
~ your own physiological data, some financial data (from yahoo finance)

Overall: To gain the know-how and necessary expertise in statistical
inference from random and non–stationary real world data

R This underpins in-depth understanding and interpretability statistical
signal processing and machine learning tools (performance bounds).
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The difference in this course # it gives a big picture of
statistical modelling, with rigorous performance bounds

So far, you are familiar with problems characterised by:

◦ A well defined transfer function in the form

H(z)

X(z)

Y(z)
H(z) =

unknown/known

known/unknown

known
functiontransfer

outputinput

h(k)

y(k)x(k)

Y(z)X(z)

◦ Deterministic signals (assuming a mathematically tractable model)

◦ Rigorous analysis through the notions of impulse response, step
response, frequency response, based on y(n) =

∑
m h(m)x(n−m)

◦ Operation in noise-free & statistically stationary environments

In this course we will consider more realistic situations where:

~ Signals are random, and we only known their statistical properties

~ Models/descriptors are derived from data, and operate even for
nonstationary and streaming data sources, and in the presence of noise

In a nutshell  basis for adaptive detection, estimation, prediction
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You will learn how to make sense from real-world data
where would you place a DC level in WGN, x[n] = A+ w[n], w ∼ N (0, σ2

w)

(a) Noisy oscillations, (b) Nonlinearity and noisy oscillations, (c) Random nonlinear process

(? left) Route to chaos, (? top) stochastic chaos, (? middle) mixture of sources

Determinism

Nonlinearity

Linearity

Chaos

ARMA

(a)

(b)

(c)

? ?

?

?

? ?
?

?

NARMA

Stochasticity

In terms of time series, we will cover linear and nonlinear stochastic models

How about observing the signal through a nonlinear sensor?
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Can we model a complicated and random real world
signal with only a few parameters?

Suppose the measured real world signal has a
bandpass power spectrum, see figure −→
We wish to uniquely describe the whole
signal with only very few parameters

ω

spectrum
bandpass

ω )X(

1. Can we model first and second statistics of real world signal by shaping
the white noise spectrum using some transfer function?

2. Does this produce the same second order properties (mean, variance,
ACF, spectrum) for any white noise input?

ω

2
)|ω| H(

x
P

w
=

A(z)

B(z)
H(z) = 

spectrum

) ωωW(

flat (white) ω

spectrum
bandpass

ω )X(

P

Can we use this linear stochastic model for prediction?
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Example 1: The autocorrelation function (ACF) # the
basis for many statistical estimators
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The figure above → Top panel: Original signals. Bottom: Their ACFs

 useful information becomes obscured in noise or DC offset
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Example 2: What can we learn from second order stats?
X-corr = matched filter # explains and interprets the operation of CNNs

Detection of Tones in Noise:
Consider tone x=A cos(ωn+ θ) in noise

y[n] = A cos(ωn+ θ) + w[n]

ACF : R(m) = E
[
y[n]y[n+m]

]
=

=Rx(m)+Rw(m)+Rxw(m)+Rwx(m)

For Rw=B2exp(−α|m|) & x ⊥ w, then

Ry(m)=
1

2
A

2
cos(ωm)+B

2
exp(−α|m|)

◦ for large m, the ACF ∝ the signal

◦ ∃ extract tiny signal from large noise
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Principle of Radar (matched filter):
The received signal (see previous slide)

y[n] = ax[n− T0] + w[n], so that

Rxy(τ) = E{x(n)y(n+ τ)}

= aRx(τ − T0) + Rxw(τ)
Since

x ⊥ w  Rxy(τ )=aRx(τ − T0)
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Design starting from first principles
A CNN interpretation through deep matched filters yields ear-electrocardiogram
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Learning from data # mathematical formalism of the
statistical estimation paradigm

Problem: Based on an N -point dataset x =
[
x[0], x[1], . . . , x[N − 1]

]T
Task: Find an unknown parameter, θ, based on the data x, in order to
define a statistical estimator (e.g. θ̂ can be the sinewave frequency)

θ̂ = g
(
x[0], x[1], . . . , x[N − 1]

)
, g is some function

This is formalised as parameter estimation from random signals

Depending on the choice of g we can talk about: ~ linear, ~ nonlinear, ~
maximum likelihood, ~ minimum variance, ~ adaptive etc. estimation
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reflected path

direct path
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direct 

Time
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reflected 1
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Example 3: Estimating spectral peaks # statistical way

Ensemble # collection of all possible realisations of a random signal

Consider 6 realisations of
the process

y = sin(x) + rand ⇔ ′det′ + ′stoch′

◦ our aim is to estimate
frequency f

◦ sinusoid# deterministic

◦ noise # stochastic

R We need to use a statistical
estimator, which will be
unbiased and will have
minimum variance
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Can we average both along one
and across all realisations?

c© D. P. Mandic Statistical Signal Processing & Inference 15



Discrete–time estimation problem

We almost always work with samples of the observed signal, x[n], that is,
signal, s[n], + noise, w[n].

For example, when estimating an unknown frequency, f , we have

x[n] + s[n; f ] + w[n] w[n] is random, e.g. w ∼ N (0, σ2)

2πσ

68%

95%

>99%

sqrt ( )
−1 2

f−σ f+σ

f−2σ f+2σ

f−3σ f+3σ

f̂p( )

f̂

f

Task: Given a dataset, x[0], x[1], . . . , x[N−
1], find estimators (functions) which map
the observed data into the estimates

f̂ = g(x[0], x[1], . . . , x[N − 1])

Our thought process: Each time we
observe x[n], it contains same s[n; f ] but a
different realisation of noise, w[n], so that
f̂ is also a random variable (it has a pdf).

Course goal: Find optimal estimators, with E{f̂} = f , and σ2
f̂

small.
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Example 4: Use of estimation in system identification
(statistical rather than transfer function based analysis) ALE Handel

Σ

−

+system
unknown

error

e[n]

y[n]

d[n]

{ h(n) }

x[n]

Task: Find the set of coefficients, {h(n)}, such that the output of our
assumed system model, y[n], is as similar as possible to the output of the
original system, d[n]. This similarity is measured in some statistical or
probabilistic sense, for example through error power, E{e2}.
This error is then used to update the estimates of the coefficients, {h(n)}.

Measure of ”goodness” is the distribution of the error {e[n]}.
Ideally, the error should be zero mean, white, and uncorrelated with

the output signal
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Course aims: More specifically

◦ To introduce fundamentals of the analysis of real-world discrete-time
random signals, their properties and representations

◦ To introduce linear stochastic models for time series analysis

◦ To provide a grounding in linear estimation theory, to facilitate the
design and analysis of statistical statistical signal processing and
machine learning algorithms

◦ Based upon these concepts, we will:
~ Explain the notion of signal modelling, its applications, and its

relations to parametric spectral estimation
~ Describe the need for statistical and adaptive learning theories

◦ To illuminate the application of statistical estimation theory (inference)
in prediction, equalisation, echo and noise cancellation, biomedical eng.

◦ To introduce and verify theoretical and practical bounds on the
performance of any statistical estimation and learning algorithm, from
linear regression to nonlinear DNNs
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Course structure

The course is divided roughly into four parts:

1. Introduction to Statistical Estimation Theory

discrete random signals, moments, bias-variance dilemma, curse of
dimensionality, sufficient statistics

2. Statistical Modelling, Estimation Theory and Performance Bounds

linear stochastic models, ARMA model, properties of estimators, Cramer
Rao performance bound, minimum variance unbiased (MVU) estimator

3. Practical Statistical Estimators and Inference

best linear unbiased estimator (BLUE), maximum likelihood (ML)
estimation, multivariate estimators, Bayesian estimation (optional)

4. Mean Square Error (MSE) based Estimation (block and adaptive)

orthogonality principle, block and sequential forms of Least Squares,
Wiener filter, adaptive filtering, concept of an artificial neuron
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Lecture 1: Background on random signals
(for illustration, consider the noisy sinewave from Slide 13)
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Example 5: Sunspot number estimation
The power of x(n) = a1x(n− 1) + a2x(n− 2) + · · ·+ apx(n− 1) + w(n)
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a1 = [0.9295] a2 = [1.4740,−0.5857]
a3 = [1.5492,−0.7750, 0.1284]
a4 = [1.5167,−0.5788,−0.2638, 0.2532]
a5 = [1.4773,−0.5377,−0.1739, 0.0174, 0.1555]
a6 = [1.4373,−0.5422,−0.1291, 0.1558,−0.2248, 0.2574]

# The sunspots model is x[n] = 1.474x[n− 1]− 0.5857x[n− 2] +w[n]
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Lecture 2: Time series analysis  linear stoch. models
Is it possible to represent a very long random signal with only a few parameters?
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Example 6: Dealing with nonstationary signals
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Lecture 3: Introduction to estimation theory specgramdemo
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Often we can resort to (approximately) Gaussian distrib.

Top panel. Share prices, pn, of Apple (AAPL), General Electric (GE) and
Boeing (BA) and their histogram (right). Bottom panel. Logarithmic
returns for these assets, ln(pn/pn−1), that is, the log of price differences at
consecutive days (left) and the histogram of log returns (right).

Clearly, by a suitable data transformation, we may arrive at symmetric
distributions which are more amenable to analysis (bottom right).
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Importance of establishing optimum performance bounds

A typical artefact in teleconferencing,
where an algorithm which provides
artificial background cannot cope with
movement

You will learn how to establish
the optimal theoretic performance
bounds in both block-based and real-
time adaptive data analysis.

These will serve to:

• Indicate the quality of your
algorithm/strategy against the
best achievable performance for
that class of estimators

• Help identify an error in your
algorithm, if its performance
appears better than the optimal
performance bound.
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Lecture 4: Bias-variance dilemma  Minimum Variance
Unbiased estimation, rigorous performance bounds
R variance of the estimated parameters is sensitive to data length

Consider a sinusoid x[n] = A cos(2πf0n+ Φ) + w[n], w[n] ∼ N (0, σ2)

Task: Find the parameters A, f0, Φ, from the noisy measurements x[n]

We will show that the optimal estimators obey (where η = A2

2σ2 is SNR):

var(Â) ≥ 2σ2

N
var(f̂0) ≥ 12

(2π)2ηN(N2 − 1)
var(Φ̂) ≥ 2(2N − 1)

ηN(N + 1)
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Sufficient statistics, goodness of an estimator

Example 7a: The drawing of a bean (top)

and the histogram of eye dwellings (bottom) Example 7b: Read the words below ... now

read letter by letter ... are you still sure?

Example 7c: Is the drawing on the left still a penguin?

So, what is the sufficient information to ’estimate’ an object?
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Lecture 5: BLUE and Maximum Likelihood Estimation
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Lecture 6: The method of Least Squares (LS)
Least Squares Order Selection Ineractive, Animation Sequential LS

◦ The LS approach can be interpreted as the problem of approximating a
data vector x ∈ RN by another vector ŝ which is a linear combination of
vectors {h1, . . . ,hp} that lie in a p-dimensional subspace S ∈ Rp ⊂ RN
◦ The problem is solved by choosing ŝ so as to be an orthogonal

projection of x on the subspace spanned by hi, i = 1, . . . , p
◦ The LS estimator is very sensitive to the correct deterministic model of
s, as shown in the figure below for the LS fit of x[n] = A+Bn+ q[n].
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Raw data
Order-0: error power =195.05
Order-1: error power =98.39
Order-7: error power =94.11

single-parameter model, s[n]=A

two-parameter model, s[n]=A+Bn
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Example 8: Least squares and sequential LS in action

Maternal ECG signal Foetal heartbeat
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Lecture 7: Adaptive systems
Linear and neural adaptive filters

Biological neuron

Φ
(n)

M

1

w

w

+1

(n)0w

y(n)

x(n−M)

x(n−1)

net(n)

(n)

Σ

Somatic Part

unity bias input

inputs

delayed

Synaptic Part

Model of an artificial neuron

◦ delayed inputs x

◦ bias input with unity value

◦ sumer and multipliers

◦ output nonlinearity
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Example 9: Acoustic noise cancellation (e.g. on airplane)
Denoising Reference Drum
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Coursework: Your own speech and biosignal recordings

• Our own custom-made portable signal acquisition device – the iAMP –
is designed to record any biopotentials (e.g. ECG, EEG, and EMG)
from up to eight channels

• It consists of an analogue-to-digital converter (ADC), a microprocessor
and a secure digital (SD) card slot to store the data
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Coursework: Recording your own ECG

Switch  
On 

Press Start 

Breathe normally 

Tap the Electrodes Press Start 

Instruction Manual  

ECG Recording 
Example 

Artefacts 
introduced by 

Tapping 

Trial 1 Trial 2 Trial 3 

Tap the Electrodes 

100 20 30 40 250 260 270 280 500 510 520 530 750 760 770
Time (s)

…  …  … 

25 breaths per minute 7.5 breaths per minute 
Switch  

Off 

Left: Electric heart potentials on human body. Right: Experiment protocol
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Coursework: Gain experience with real–world data

Example relevant for eHealth: Estimate your own ECG from your wrists.
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Course format

Lecture notes with problem/answer sets and coursework.

◦ Coursework involves the implementation of the algorithms we discuss in
the class

◦ We will regularly discuss coursework and Matlab implementation

Prerequisites:

~ There are no prerequisites, although DSP and basic probability would
be useful

~ The course is aimed to be self-contained
~ Due to algorithm implementation, knowledge of Matlab is important

Assessment:

100% Coursework assignments. There are 5 Assignments (from
random signals to audio denoising) # Matlab based

Feedback: # after completing Assignment 1
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Reference material

Course notes and problem sets: Prof D. Mandic

2 There is no single textbook that covers all the material in the course

2 We will use S. Kay’s book for the first part of the course (an excellent
text, covers most of the estimation theory, well worked-out examples,
highly recommended, has many editions)

2 For parametric modelling we will use the Box & Jenkins book (a ‘bible’
for time series analysis, easy to read, excellent examples, used by people
in engineering, physics, finance, has many editions)

2 For the least squares part, we will use M. Hayes’ book (wider scope than
Kay’s book, less detailed derivations, a must have for practitioners)

2 For more background and further reading, the book by S. Haykin
(Adaptive Filters) and D. Mandic & J. Chambers (Recurrent Neural
Networks)

The course is self-contained: most of the material is already in course notes
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Textbooks: Recommended

S. Kay (Estimation Theory,

several editions)

a comprehensive account of
estimation theory

G. Box and G. Jenkins (Time

Series Analysis, several editions)

linear stochastic models
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Textbooks: Additional reading (optional)

M. Hayes (Statistical Signal

Processing and Modeling,

several editions)

stochastic and adaptive models

D. Mandic and J. Chambers

(Recurrent Neural Networks,

Wiley 2001.)

(what can I say) - neural models
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Course plan

2 Lect: Week 2: Course introduction and motivation, background

3 Lect: Week 2-3: Discrete time random signals, linear stochastic (ARMA)
models

4 Lect: Week 3-5: Minimum variance unbiased estimation, Cramer-Rao bound

4 Lect: Week 6-7: Constrained estimators, BLUE, Maximum likelihood

6 Lect: Week 8-9: Block, sequential and adaptive estimators

1 Lect: Week 10: Consolidation and research directions

Course web page: www.commsp.ee.ic.ac.uk/∼mandic/Teaching

Lectures, additional reading, homework, problem sets, and other
material will be put on course webpage
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Statistical Sig Proc & Inference # A stealth technology

◦ There will always be signals ◦ They always need processing
◦ There will always be new mathematics for processing them
 Guaranteed job security
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Appendix: Probability vs. Statistics
For discrete RVs, E{X} =

∑I
i=1 xiPX(xi), where PX is the probability function

Probability: A data modelling view, describes how data will likely behave

for example: average = E{X} =

∫ ∞
−∞

x pX(x) dx no data here

Notice that there is no explicit mention of data here # x is a dummy
variable and pX is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave

for example: average =
1

N

N−1∑
n=0

x[n] no pdf here

Example: Consider N coarse-quantised data points, x[0], . . . , x[N − 1].
The signal has M � N possible amplitude values, V1, . . . , VM , with the
corresponding relative frequencies, N1, . . . , NM . Calculate the mean, x̄.

Solution:
x̄ =

1

N

N−1∑
n=0

x[n] =
1

N

M∑
m=1

VmNm =

M∑
m=1

Vm
Nm
N︸︷︷︸

≈ P (x=Vm)
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Appendix: Probability vs. Statistics
(for discrete RVs, E{X} =

∑I
i=1 xiPX(xi), where PX is the probability function)

Probability: A data modelling view, describes how data will likely behave

for example: average = E{X} =

∫ ∞
−∞

x pX(x) dx no data here

Notice that there is no explicit mention of data here # x is a dummy
variable and pX is the pdf of a random variable X.

Statistics: A data analysis view, determines how data did behave

for example: average =
1

N

N−1∑
n=0

x[n] no pdf here

Vagaries of probability: P (x0 < X < x0 + ∆x) =
∫ x0+∆x

x0
pX(x)dx

)

o xo ∆x

x1P(X= )=0

x1

xo xo

p
X

x

(x)

+

but P( < X < + ∆x

x

Notice that

P (X = x1) = 0

This appears odd, but otherwise

the probabilities sum up to ∞
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Appendix: Statistics vs. Probability
Statistical inference # based on the observed data and supported by prob. theory

Vagaries of statistics: Consider N coarse-quantised data points,
x[0], . . . , x[N − 1]. The quantised signal has M � N possible amplitude
values, V1, . . . , VM , for which the corresponding relative frequencies are,
N1 = #V1, . . . , NM = #VM . Calculate the mean, x̄.

x[n]
= #V ii

VM

V2

V1

n

N

Solution:

x̄ =
1

N

N−1∑
n=0

x[n] =
1

N

M∑
m=1

VmNm =

M∑
m=1

Vm
Nm
N︸︷︷︸

≈ P (x=Vm)

R Clearly, the factor 1/N does not imply “uniform distribution”
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Statistical inference

Probability: Assumes perfect knowledge about the “population” of
random data (through the pdf).

Typical question: There are 100 books on a bookshelf, 40 with red cover,
30 with blue cover, and 20 with green cover. What is the probability to
randomly draw a blue book from the shelf?

Statistics: No knowledge about the types of books on the shelf, we need
to infer properties about the “population” based on random samples of
“objects” on the shelf # statistical inference.

Typical question: A random sampling of 20 books from the bookshelf
produced X red books, Y blue books and Z green books. What is the
total proportion of red, blue, and green books on the shelf?

Statistical inference is applied in many different contexts under the names
of: data analysis, data mining, machine learning, classification, pattern
recognition, clustering, regression, classification
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Notes:

◦
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Notes:

◦
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Notes:

◦
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