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Lecture seven

Lecture Aims

e To introduce linear systems
e To introduce convolution

e To give examples of real and ideal filters




Linear Systems
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Linear Systems (continued)

e A system converts an input signal g(¢) in an output signal y(¢).
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e Assume the output for an input signal g,(¢) is y,(¥) and the output for an
input g,() is y,(¢). The system is linear if the output for input g,(?) + g,(¢) is y,(¢)
+ 1,(0).

gi®) + g2(t) >

Linear

> yi(t) +y2(t)

System

e A system is time invariant if its properties do not change with the time. That
is, if the response to g(¢) is y(¢), then the response to g(z - ¢,) is going to be y(¢ -
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Unit impulse response of a LTI system

Consider a linear time invariant (LTI) system. Assume the input signal is a
Dirac function 4(r). Call the observed output /(7).

e /(?)is called the unit impulse response function.

e With A(r), we can relate the input signal to its output signal through the
convolution formula:

WD) =hty* g0 = |~ h(o)elt - .

Physical interpretation of linear system response
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Physical interpretation of linear system response
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Physical interpretation of linear system response
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Physical interpretation of linear system response

Input Output
ad(1) \ N ah@)+bh(tt0) Linearity
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input g(ndz): output g(ndz)At h(t-ndz)

\ T g(ndz)
- { ‘ .1 m : y(o = Zg(nAT)A‘[ h(t—nAT)
I
t

y(t)=h(t)*g(t)=[", g()h(t-7)dr

Intuitive explanation of the convolution formula

e g(7) can be approximated as g(¢) = X g(nAt)Atd(t—nAv).

e In the limit as At—0 this approximation approaches
the true function g(7).

e The response j(¢) of the LTI system to the input as
X g(nAt)Atd(t—nAr) is going to be
X g(nAt)h(t—nAr)At .

e Thus, y(7) = lim,_,oX g(nAt)h(t—nAr)Ar=

|7 e(@h(- vy
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Graphical Interpretation of Convolution (1)

fO*g@W)= [ fu)g(t—u)du
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Graphical Interpretation of Convolution (2)

fO*gW)= [ fu)g(t—u)du

fﬂ(“)
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Graphical Interpretation of Convolution (3)

fO*g@W)= [ fu)g(t—u)du

g(t-u)
g(t-u) ﬂ b a<i<b
-oo<t<-a
S /
fw)
//
> u >
a0 b a0 b
‘ t-u
1 gt(>b) Depending on ¢, the convolution
o integral is the area under f(u)g(t-u).
u
— 1 | . Search “Convolution” on the Wikipedia
-a 0 b

site for an animation of convolution.

Convolution in the frequency domain

The convolution of two functions g(¢) and 4(¢), denoted by g(¢) * k(¢), is defined by the
integral

y(0)=h(0)*g(0)= [ h(x)g(t-x)dx.

If g() © G(w) and k() & H(w) then the convolution reduces to a product in the
Fourier domain

y(O)=h(1)*g(t) = Y(w) = H(0)G(w).

H(w) is called the system transfer function or the system frequency response or
the spectral response.

Notice that, for symmetry, a product in the time domain corresponds to a convolution
in frequency domain. That is

8(02:(0) -~ G, ()" Gy(®)
/A
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Bandwidth of the product of two signals

If g,(¢) and g,(¢) have bandwidths B, and B, Hz, respectively.

The bandwidth of g,(¢) g,(¢) is B, + B, Hz.

15

Ideal Low-Pass Filter

IH{w) /
! h(t)

@ |
R /

Ideal low-pass filter response

H(w)= rect(ﬁ)eﬁ%

Ideal low-pass filter impulse response

h(t)= Ksinc:[W(t—tdﬂ

T

16




ldeal High-Pass and Band-pass filters

-W W - -,

Figure 1: Ideal high-pass filter Figure 2: Ideal band-pass filter

Practical filters

e The filters in the previous examples are ideal filters.

e They are not realizable since their unit impulse responses are everlasting
(Think of the sinc function).

e Physically realizable filter impulse response 4(7) = 0 for ¢ < 0.

e Therefore, we can only obtain approximated version of the ideal low-pass,
high-pass and band-pass filters.




Example of a linear system: RC circuit

&(v) : y(1)

19

Example: RC circuit (continued)

H(w) = l/ja)-C _ .1 _ a.
R+(1/joC) 1+ joRC a+ jo
1
a=—
RC
and
a
H(w)| =——2—— = |H(0)| =1, lim|H (e)| = 0.
)= T = Ol o)
6, (w)=—tan™ %

Therefore, this circuit behaves as a low-pass filter.
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Summary
Linear time invariant systems
Unit impulse response function
Convolution formula: y(t)=h(t)*g(t) = f; h(r)g(t—r1)dr

Low-pass, high-pass and band-pass filters
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Lecture AiIms

e To introduce Energy spectral density (ESD)
e Input and Output Energy spectral densities
e To introduce Power spectral density (PSD)

e Input and Output Power spectral densities

Signal Energy, Parseval’s Theorem

Consider an energy signal g(¢), Parseval’'s Theorem states that

E=]" |g| di= i |7 |6@)f do

Proof:

E,=| ghg*®dt=|_ g(t){i | G+ (a))ej“”dco}dt

_ 1
271"
1

:E.

| G*() [ B g(t)e_j“’tdt} dw

[~ s _ L 2
| G(@)G*(@)do=— _[_OO‘G(a))‘ do




Example

Consider the signal g(¢) = e“u(¢t) (a > 0)
Its energy is . . 1
2 —2at
E = gt jo e >
We now determine E, using the signal spectrum G(w) given by

1
Jo+a

G(w) =

It follows

@ +a’ 2rwa a 2a

—00

Eg:ij:\c;(w)\zdm;ﬁ | ! dw:L{tanlﬂ} _ L

which verifies Parseval’'s theorem.

Energy Spectral Density

e Parseval’s theorem can be interpreted to mean that the energy of a signal g(¢)
is the result of energies contributed by all spectral components of a signal g(¢)

e The contribution of a spectral component of frequency w is proportional to
|G(w)

e Therefore, we can interpret |G(w)|> as the energy per unit bandwidth of the
spectral components of g(¢) centered at frequency o

e In other words, |G(w)|? is the energy spectral density of g(¢)




Energy Spectral Density (continued)

The energy spectral density (ESD) W(w) is thus defined as

¥(0) =|G(o)[
and
1 ©
E,=o- | ¥@)do

Thus, the ESD of the signal g(¢) = e“u(¢) of the previous example is

¥(0) =|G(0)| = ﬁ

Energy of modulated signals (important)

Let g(2) be a baseband energy signal with energy E..

The energy of the modulated signal ¢(¢) = g(f)cosw,t is half the energy of g(¢).
That is, i

E(p - EEg .
Proof:. Go from the definition of energy being the integration of the magnitude squared

of the signal over the whole time horizon. (@, is assumed to be equal to or larger than
21 times the bandwidth of g(t).)

The same applies to power signals. That is, if g(¢) is a power signal then

(You will use this result when computing the efficiency of a Full AM system).




Time Autocorrelation Function and ESD

For a real signal the autocorrelation function ¥, (7) is defined as
v, (=] g)gt+r)d

Do you remember the correlation of two signals (lecture three)? The autocorrelation
function measure the correlation between g(¢) and all its translated versions.

Notice
v (1) =y, (-7).

and

g(r)*g(-1)=y, (7).

But, most important...

29

Time Autocorrelation Function and ESD

...the Fourier transform of the autocorrelation function is the Energy Spectral Density!

That is
v, (1) & (o) =|G(w)|

Proof:
Fly (0)]= j"; e [ jz g(t)g(t+ r)dt}dr
- j: g(t) U_i g(r+ t)e_ja’rdr} dt

The Fourier transform of g(z+¢) is G(w) € . Therefore,

Fly,(0]= 6@ g0 d = G()G(-0) =[Go)

30




ESD of the Input and the Output

If g(¢) and y(¢) are the input and the corresponding output of a LTI system, then

Y(w)=H(0)G(w).
Therefore,

V()| =|H (@) |G(o) .

This shows that
2
Y (w)= ‘H(a))‘ Y, (o).

Thus, the output signal ESD is |H(w)|? times the input signal ESD.

31

Signal Power and Power Spectral Density

The power P, of a real signal g(7) is given by
.1 72
P = llm—j g’ (t)dt.
T—oo T J-T/2
All the results for energy signals can be extended to power signals.
Call S, () the Power Spectral Density (PSD) of g(¢). Thus,

|
P = Py _OOSg(a))da).

S,(w) can be found using the autocorrelation function.

32




Time autocorrelation Function of Power Signals

The (time) autocorrelation function R, (7) of a real deterministic power signal g(¢) is
defined as

i L y
R (D) =lim—[ 2(0)g(t+r)d

We have that
R,(7) & S, (w)

If g(¢) and y(¢) are the input and the corresponding output of a LTI system, then
2
S, (w)= ‘H(a))‘ S, (o).
Thus, the output signal PSD is |H(w)|? times the input signal PSD.

33

Relationships among these signals and functions

Input Output

g(0) = G(w) M LTisysem WP YO =h(1)* (1) & H(@)G(w)

R@=lin [ gwg@enar | KOS H@)| R (1) oS (0)
R (1) 5, (@)= lim L | G(@) S (@) =lim % | H(o) | G(e) P
T—o0 T— T

= H(@)[ S, ()

Output PSD is |H(w)|? times

the input signal PSD.

34




Conclusions

We learned about

e Energy and Power Spectral Densities

e Time autocorrelation functions

e Input and output energies and powers
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Lecture AiIms

e To examine modulation process
e Baseband and bandpass signals

e Double Sideband Suppressed Carrier (DSB-SC)

- Modulation
- Demodulation

e Modulators
- Nonlinear modulators
- Switching modulators
- Diode modulators

Modulation

e Modulation is a process that causes a shift in the range of frequencies in a
signal.

e Two types of communication systems
Baseband communication: communication that does not use modulation
Carrier modulation: communication that uses modulation

e The baseband is used to designate the band of frequencies of the source
signal. (e.g., audio signal 4kHz, video 4.3MHz)




Modulation (continued)

In analog modulation the basic parameter such as amplitude, frequency or phase
of a sinusoidal carrier is varied in proportion to the baseband signal m(¢). This
results in amplitude modulation (AM) or frequency modulation (FM) or phase
modulation (PM).

The baseband signal m(¢) is the modulating signal.

The sinusoid is the carrier or modulator.

Why modulation?

e To use a range of frequencies more suited to the medium

e To allow a number of signals to be transmitted simultaneously (frequency
division multiplexing)

e To reduce the size of antennas in wireless links




Amplitude Modulation

o Carrier A4 cos(w.t+06.)
Phase is constant (9 =0
C

Frequency is constant

e Modulating signal  771()

M(w)

e With amplitude spectrum

m(t) < M(w)

41

Modulated signal

e Modulated signal: m(l‘)COS(z)Cf

MONG g K. (0 cos o

m(r) cos M

(Modulated signal)

COS O, | yp —mt
(Carrier)

42




Modulated signal

e Modulated signal: m(l‘) COS (z)cf
/_- Mw)
K \ = /
\—— “2nB 2

‘A, m(f)cos 0

Modulated signal

e Baseband spectrum: B HZ

M(w)

-2rB

o M(w) is shifted to M(w+ w,) and M(w - ®,.)
2B Hz

{4 LSB .~ USB

v . i ¥ = ! 2 e e ™

i--—--41;3-—-a-*

m(t)cosw t < %[M(a) +to)+Mo-o)]




Demodulation of DSB signal

e Process modulated signal m(t) COS (()ct

— m(?)

2
m(z) cos © 2 " ® e(r) »| Low-pass filter >

cos !
(Carrier)

e Multiply modulated signal with  COS a)ct
e(t)=m(t)cos’ wt = %[m(t) + m(t) cos 2wct]
1 1
E(w)= EM(a))+Z[M(a)+2(oc)+M(a)—2(oc)]

45

Demodulation of DSB signal
e Process modulated signal m(l‘) COS a)cl‘

1
E) = ~M(w) + %{M(w +200) + M(@ ~ 20,)]

2

-2m, 0 20, ® —-

- Use a filter to select  (1/2)m(t) —

/AR /me cos 2o

0

46




Example

e Modulating signal m(#)=cos ®,,t
e Carrier cos o ¢

e Modulated signal ¢(¢) = m(¢) cos @t =cos w,,t cos .t

il J=Cos el Modulased uignal

cos

a7

Amplitude spectrum

e Baseband signal

M(w)=r[6(w-w,)+d(0+0,)]
M(o)

0

m [0 @, 1) Q.

-®

1
(DDSB—SC (t) — 5 [COS(Q)C + a)m)t + COS(CC)C o a)m )t]

DSB spectrum

of b | o o

-{m¢-|'mn) -0 c _(a)c - a)m) ,o at_ml o < @‘;“'m. 0 ~—
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Demodulation of DSB signal

e Process modulated signal m(t) COS a)ct

l m(t)

e(r) 2
s Low-pass filter }———>

COS W, I COS Wt I e(t) = cos wyt cos? wet

fgﬁfﬂ = 5 CoOs Wyt (1 + cos 2w,t)
_. 7M@) _
Suppredsed by low-pass ilte Suppressed by low-pass filer
J f t f =/4
- 200, -0, |0 o, ® — 20,
49
Modulators

e We need to implement multiplication m(¢) cos @t

e \We can use
Nonlinear modulators
Switching modulators

e Switching modulators can be implemented using diode ring modulators

50




Nonlinear modulator

e Input-output characteristics of a nonlinear element
y(¢) = ax(t) + bx’(t)

e Where x(?) is the input signal and y(¢) is the output signal

e Consider to input signals
x,(t)=cosa,t+m(t)

x,(t) = cosw.t —m(t)

51

Nonlinear modulator

e |etus implement

z(t) =y () =y, (1)
= [axl () +bx’ (1)} —[axz (t) +bx,’ (t)]

m(t)
o

xy(0) @

4 _[TBPF

4bm(r) cos Wt

oS W, x(1) y2(0)

z(t) =2am(t)+4bm(t)cos w.t

52




Switching modulator

e Consider a periodic signal of fundamental frequency o,
o(t) = i C cos(naw,t+06))
n=0
e Multiplication of modulating signal with this periodic signal gives
m(t)p(t) = i C m(t)cos(nw.t+6))
n=0
e The spectrum of the product m(#)¢(¢) is the spectrum M(w) shifted to

tw.,*20,....,tno,,...

c Cc

53

Square Pulse train as a modulator

e Consider a square pulse train
w(t)

LnnnAAARAAAT

e The Fourier series for this periodic waveform is

2 1 1
w(t) = l+—(cos a)ct——cos3a)ct+—cos5a)ct—---j
2 3 5

e The signal m(t)w(¢) is

m(t)w(t) = %M(l‘) + %{m(t) cos .t —%m(t) cos3w.t+:-

54




m(t)

Switching modulator

N e

w(t)

[

_[Innnnannanaan

m(t)w(t)
[

Bandpass
filter

e

55

Diode Switches

A cos Wt

Series-bridge diode modulator

a b
[ Sm—

m(r)

Bandpass
filter

Shunt-bridge diode modulator

l —o0+
a Bandpass
m(t) ﬁ,[,pfs km(r) cos ®.
i
o~

o+

km(r) cos ws

o —

56




Ring modulator

a D, ¢
D, ¥ Bandpass
nis) , filter
D, L
° b e . e )

/ﬂ“i vi = m(f)wo(r)

0

km(t) cos w,

o

2
e = m(t) cos w,t
-~ ~
+/ N /
L
A cos wt _ AR

57

Ring modulator

uuuuuouuuouiy —

1 1
CoS .t — gcos 3wt + gcos Swt—---

V(1) =m(t)w,(t) = %[m(t) cosm.t — % m(t)cos3m.t + % m(t)cosSa t —- }

58




Conclusions

We learned about

Baseband and Carrier transmission

Amplitude modulation (DSB-SC)

Non-linear modulator

Switching modulator

e Diode switches
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Lecture AiIms

e To examine full AM process
e AM signal and its envelope
e Sideband carrier power

e Generation of AM signals

e Demodulation of AM signals

Double Sideband Suppressed Carrier

e A receiver must generate a carrier in frequency and phase synchronism with
the carrier at the transmitter

e This calls for sophisticated receiver and could be quite costly

e An alternative is for the transmitter to transmit the carrier along with the
modulated signal

e [n this case the transmitter needs to transmit much larger power




Amplitude Modulation

Carrier A cos(w,t+6,)

Phase is constant 6’c =0
Frequency is constant.

e Modulation signal m(t)
With amplitude spectrum  m(t) < M(w)

Full AM signal is
@, () = Acos @ t+ m(t)cos ot
=[A4+m(t)|cos w1

Spectrum of full AM signal

IR %[M(a)+ @)+ M(w- a)c)]+7zA[§(a)+ @)+ o(w— a)c)]

63

Full AM Modulated signal

e DSB Modulated signal:

m(r) \ m(r) cos 1 >
(Modulating signal) ' (Modulated signal)

cOSs @ !
(Carrier)
e Full AM signal
A+m(t [A +m(1)] cos w,t
\
(Modulating signal) - (Modulated signal) :
COS @ !

(Carrier)

64




Full AM Modulated signal

e Signal

e Modulating signal

e Modulated signal:
[ A+m(t)]cos w,t

m(t)

A\

K:—.

—mD
A+ m@)>0 for all ¢

[ —

Envelope
M A + m(t)

U VYA —

”~

65

Envelope detection is not possible when

e Signal

e Modulating signal

e Modulated signal:
[ A+m(t)]cos w,t

m(t)
Ay
k f—

.—mn

A+ m@)»0 for all ¢

66




Envelope detection condition

Detection condition 4 + m(¢) >0
Let m, be the maximum negative value of m(?). This means that m(s) > -m,
When we have 4 > m,, We can use envelope detector

p

m
The parameter u =7 is called the modulation index

When 0 <u <1, we can use an envelope detector

Envelope detection example
Modulating signal m1(¢) = B cOS @, !
Modulating signal amplitude is m, = B
B
Hence 'UZZ and B=uA
Modulating and modulated signals are

m(t)=Bcosw, t=puAcosw,t

@ () =[A+m(t)|cosw,t = A[1+ pcosw,t]|cos w,t




Demodulation of DSB signal

e Consider modulation index to be Iu = 05
u =075

1+ 0.5 cos @t

Al 2
Qe —

- -

e For modulation index (/= 1

69

Sideband and Carrier power

e Consider full AM signal
@ (1) =Acosw.t+m(t)cosw,t

. v
carrier sidebands

e Power P, of the carrier 4 cos ot

A*)2

Power P, of the sideband signals
0.5 m’(t)
Power efficiency

useful power P

m2 (1)

"= totalpower  Pe+ P A2 4+ mi(r)

100%

70




Maximum power efficiency of Full AM

e When(0<u<1

When we have m(t) = uAcosw, t

Signal power is mz(t —

e \When modulation index is unity, the efficiency is

n... =33%

(0.3)°
7= ~100% = 4.3%

24(03)

When p=0.3 the efficiency is

71

Generation of AM signals

e Full AM signals can be generated using DSB-SC modulators

e But we do not need to suppress the carrier at the output of the
modulator, hence we do not need a balanced modulators

e Use a simple diode

m(1)

¢ COS w,!

Bandpass
filter
W

vo(1)

72




Simple diode modulator design

a b C

® |nput S|gna| C COS C()ct + m(t) m(r) t Bandpass
:E filter vo()
e Consider the case ¢ >> m(t) cosar ()] "
e Switching action of the diode is controlled by I =%
ccos .t w(?)
e A switching waveform _ﬂ.[l.n.l].l].[l.ﬂ.ﬂ.ﬂ.ﬂ.[]ﬂ.ﬂ__
P
is generated. The diode open and shorts periodically with w(?)

e The signal is generated

v, ()= [c COS .t + m(t)] w(t)

73

Diode Modulator

e Diode acts as a multiplier

Vo () = [c cosw.t + m(z‘)] w(t)

1 2 1 1
=[ccosw,t+m(t)] 5+— COSa)ct—ECOS?)a)Ct+§COSSCOCZ—---
T

c 2
=—cos w,t +—m(t)cos @t +other terms
2 T —
h ~ d suppressed by
AM bandpass filter
¢
———0
+
m(r) Bandpass
filter vo(1)
o8
€ COS w, !
===0

74




Demodulation of AM signals

e Rectifier detector

0] (4 + m(1)]

[a + m(t)] cos w,t

F,n,-ﬁ ]\N\

—l,;[A + m(1)]
—[4 + m()]

N
i

v

Low-pass

[A + m(1)] cos wt C) filter

75

Demodulation of AM signals

e Half-wave rectified signal v, is given by

L, = {[A +m(t)]cos a)ct} w(?)

w(t)

[ —>

v =[A+m(t)]cos @, 1,2 cosa)ct—lcos3a)ct+lc055wct—---
2 3 5

= l[A +m(t)]+ other terms of higher frequencies
m

76




Demodulation of AM signals using an
envelope detector

e Simple detector Large

> s RC> 1w

- c % ‘

e Detector operation

But smaller than

1/2n B

velt)

JD

"R

\wVc(t) = A+m(t)

S
il
;-.:E;JH. i

7

Envelope detector example

e For the single tone =05

1 4+ 0.5 cos @t

e Design envelope detector
Capacitor voltage

(RC discharge) —t/RC
E(1 — 1/ RC) vc = Ee /

Envelope t
o™ ~Efl — —
n_ ( RC)

| —>

78




Conclusions

Examined full AM
Sideband and carrier powers
AM modulators

AM demodulators
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Lecture AiIms

e To examine Single Sideband Modulation (SSB)

Time domain representation
Tone modulation
Generation of SSB signals

Demodulation of SSB signals

Modulation of Baseband Signals
Modulated Signal

/‘J'{M

—2=#B 0 2=B

—
Upper Lower
sideband Lower sideband Upper
sideband ! :
; sideband DSB
. I > -
0 ®, )
e
AN USB
0 W g
ae 2 M LSB
Y v i AN




Modulation of Baseband Signals

Splitting the baseband spectrum into USB and LSB

A

m(t) « M(w) /\

-21B A 2nB o

m () < M_(w)/

83

Single Sideband Generation

84




Time-Domain Representation of SSB signals

e Let m,(r) and m_(¢) be the inverse Fourier transforms of M (w) and M_(w).

e Because the amplitude spectra M ()| and |M_(w)| are not even functions of
o, the signals m_(r) and m_(f) cannot be real. They are complex.

e |t can be proven that m (¢) and m_(¢) are conjugates. Moreover, m_(t) + m_(¢)
= m(f). Hence,

m, (1) = %[ma) + jm,(1)]

m. (1) =§[m<r>—jmh<t)]

Time-Domain Representation of SSB signals

To determine m,(¢) note that
M. (0) = M(@)u(w)

= %M(a)) [1+sgn(w)]

1 |
= EM(a)) + EM(CU) sgn(w)

1 .
Since m, (1) = E[m(t) + jm, (1], it follows jm, (1) < M (w)sgn(w) . Hence
M, (®) =— M (w)sgn(w) . But 1/7t < —jsgn(w) . Therefore

m, (1) = m(t)*1/ 7t = L m@y,
T >*t—

The right-hand side of this last equation defines the Hilbert transform of m(z).




Hilbert Transform

The Hilbert Transform m, () is generated by passing m(¢) through a filter A(7) with the

following transfer function:

—j=e’? ©>0

H(w)=—-jsgn(w) = ,
(@) =~ sgn(o) {,-:ewz o

That is, |H(a))|:1 and 0, (w)=-x/2 ,for ©®>0

| H(w)] 0p(w)

|
r3
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Time-Domain Representation of SSB Signals

We can now express the SSB signal in terms of m(¢) and m,(?).
q)USB(a)) :M+(a)_a)c)+M—(a)+a)c)
Inverse transform gives

Byss (1) = m_ (D)™ +m_(t)e™

Using

m, (t) =§[m(r)+jmh<r)]

(1) =~ [m(t)— jm, ()]
2

@5 (1) =m(t)cos .t —m,(t)sin @t
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Time-Domain Representation of SSB Signals

In a similar way we can show that
@, () =m(t)cosw t+m,(t)sinw.t.

Hence a general SSB signal ¢, (#) can be expressed as

Posp(t) =m(t)cosw t+m,(t)sinw.t,

where the minus sign applies to USB and the plus sign applies to LSB.
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Generation of SSB Signals

Phase-Shift Method: ¢, () =m(¢)cos @ t + m, (t)sin @ ¢

| - DSB-SC | m(t) cos wu
l modulator -
cOS w,! o—»——*
o) x + L. SSB signal

. -
‘L {'sin w.!

DSB-SC | Malt) sin wt
modulator .

my(t)
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SSB Tone Modulation Example

Consider single tone modulating signalm(t) = cos o, t.

Hilbert transform requires phase shift by 7[/2.

Delay in phase by 7/2 vyields m, () = cos(®,t —7/2) =sin .

Using @, (#) =m(t)cosa,t+m, (t)sinwt , we get

Pz (t) =cosw tcosw t Fsinw, tsinw.t = cos(w, Tw, )t

SSB Tone Modulation Example

e Baseband spectrum

M(w)
T 0 -, w—
e USB spectrum
T USB spectrum
(w, + w,)
e LSB spectrum
LSB spectrum

T

~w, = w,,) 0 (w, = w,,) @




Generation of SSB Signals

Selective-filtering method:

93

Coherent demodulation of SSB-SC signals

The SSB demodulator is identical to the synchronous demodulator used for DSB-SC.

Doz (t) =m(t)cosw t +m, (¢)sin @t
Hence

P (1) COS(@,1) = %m(z‘) [1+cos2a,t]|F m,(1)sin 2wt

= %m(t) + % [m(t)cos 2w,t F m, (t)sin 2e,¢]

Thus, the product @, (w)cos(@,t) vyields the baseband signal and another SSB
signal with carrier 2w_. A low-pass filter will suppress the unwanted SSB terms.
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Conclusions

e Hilbert Transform
e Single Side Band (SSB) signals

e Modulation and demodulation of SSB signals
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Lecture AiIms

e Angle Modulation

- Phase and Frequency modulation
- Concept of instantaneous frequency
- Examples of phase and frequency modulation

- Power of angle-modulated signals

Angle modulation

Consider a modulating signal m(#) and a carrier v () = A cos(w_t + 6.).

The carrier has three parameters that could be modulated: the amplitude 4 (AM) the
frequency . (FM) and the phase 6. (PM).

The latter two methods are closely related since both modulate the argument of the
cosine.




Instantaneous Frequency

By definition a sinusoidal signal has a constant frequency and phase:
Acos(w,t+0.)

Consider a generalized sinusoid with phase 6(¢): ¢(t) = A cos &(t)

We define the instantaneous frequency w; as:

do

a)i(t)_;

Hence, the phase is

0(t) = J:O o (a)da.

Phase modulation

We can transmit the information of m(¢) by varying the angle 6 of the carrier. In
phase modulation (PM) the angle 6(¢) is varied linearly with m(¢) :

O0(t) = .t + k m(t)

where k, is a constant and o, is the carrier frequency. Therefore, the resulting
PM wave is

Bory (8) = Acos| ot +k,m(?) |
The instantaneous frequency in this case is given by

do :
(1) = = =, +k,m(?)




Frequency modulation

In PM the instantaneous frequency w, varies linearly with the derivative of
m(t). In frequency modulation (FM), w, is varied linearly with m(t). Thus

w,(t) = @, +k, m(?).
where k,is a constant. The angle 6(¢) is now
00 =] [o+kma)]da=at+k| ma)da.

The resulting FM wave is

Py, (1) = Acos [a)ct +k, J'_too m(a)da}

101

Example

. 20000 i

-1 m(t) ~20000 \—

Sketch FM and PM signals if the modulating signal is the one above (on the left).
The constants kfand k,are 2n X 10° and 10z, respectively, and the carrier frequency f,
=100MH,,
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FM example

e Instantaneous angular frequency o, =®, +k m(?)

k
e Instantaneous frequency f; = f. +2—fm(t) =10° +10°m(¢)
T

(fpin =10° +10° [m(2)] _ =99.9MH:z
(/s =10° +10° [m(t)]  =100.1MHz

-1 m 1 [\ i
Se®
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PM example

e Instantaneous frequency s _ r +k_Pm(;) =10° + 5rin(¢)
l c 27[

(ftl')min = 108 + 5|:m(t):|m = 108 - 105 =99.9MH=z
() =10° +5[n‘¢(t)] =10* +10° =100.1MHz

max

o an I |

ol
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Power of an Angle-Modulated wave

e General angle modulated waveform
@(t) = Acos (1)

e Instantaneous phase and frequency vary with the time, but amplitude 4
remains constant.

2

e Thus, the power of angle—-modulated waves is always A?.

Conclusions

Examined
e Instantaneous frequency
e PM and FM modulations

e Examples of PM and FM signals
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Lecture Aims

e To Study the bandwidth of angle modulated waves

- Narrow-Band Angle Modulation

- Carson’s rule
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Bandwidth of Angle Modulated waves
In order to study bandwidth of FM waves, define
t
a(t) = j m(a)da

and
¢ZFM (1) = Aej[wcprkfa(t)} = Aejkf"’(t)efwct

The frequency modulated signal is

Py (1) =Re {¢?FM (t)}

109

Bandwidth of Angle Modulated waves

Jkya(t)

Expanding the exponential e in power series yields

n k2 k" |
Gy () = A| 1+ jk ,a(t) ——La’ )+ + j"~La" () +--- |/
M f 2' n'

and

¢FM (1)=Re {&FM (t)}

2 3
B : ky ky o5 .
=A cosa)ct—kfa(t)sma)ct—;a (t)cosa)ct+?a (t)sinw,t+---
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Narrow-Band Angle Modulation

The signal a(?) is the integral of m(¢). It can be shown that if M(w) is band limited to B,
A(w) is also band limited to B.

If |k, a(#)] < 1 then all but the first term are negligible and
@ryy (1) ~ A [cos w,t—k a(t)sin a)ct]

This case is called narrow-band FM.

Similarly, the narrow-band PM is given by

@, (1)~ ALcos .1~k m(t)sin a)ctj

Narrow-Band Angle Modulation

Comparison of narrow band FM with Full AM.
Narrow band FM

Py (1) ~ A [cos w,t—ka(t)sin a)ct]
Full AM

[A + m(t)] cosw.t = Acosw.t+m(t)cosw.t

Narrow band FM and full AM require a transmission bandwidth equal to 2B Hz.
Moreover, the above equations suggest a way to generate narrowband FM or PM
signals by using DSB-SC modulator




Wide-Band FM

e Assume that |k a(?)] < 1 is not satisfied.

e Cannot ignore higher order terms, but power series expansion analysis
becomes complicated.

e The precise characterization of the FM bandwidth is mathematically
intractable.

e Use an empirical rule (Carson’s rule) which applies to most signals of
interests.

Bandwidth equation

e Take the angular frequency deviation as Aw = k,m, where m, = max_ |m(t) |
and frequency deviation as A k m,

27z'

e The transmission bandwidth of an FM signal is, with good approximation,
given by

k,m
B., =2(Af+B)=2| —~+B
2r




Carson’s rule

e The formula

k,m
B,, =2(Af +B)=2| —2+B
27

goes under the name of Carson’s rule.

A

e |f we define frequency deviation ratioas [ = )

e Bandwidth equation becomes

B, =2B(pB+1)

Wide-Band PM

e All results derived for FM can be applied to PM.
K 7
e Angular frequency deviation A = kpmp and frequency deviation Af = 5"y

. . 2
where we assume 7it = maxt | m(t) |

e The bandwidth for the PM signal will be

27

k 1in
BPM=2£M+BJ=2(Af+B)




Conclusions

Examined
e Narrowband FM
e \Wideband FM and PM

e Carson’s rule
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Lecture AiIms

e To verify bandwidth calculations for FM using single tone
modulating signals

Verification of FM bandwidth

e To verify Carson’s rule

k,m
B., =2(Af+B)=2| —X+B
2
e Consider a single tone modulating sinusoid

‘ a .
m(t)=acosa,t a(t) = I m(t)dt =—sinw,t
0 0]

m

e \We can express the FM signal as

. kfa .
Jj(@t+——sinw,t)

Py (1) = Ae Om




Verification of FM bandwidth

e The angular frequency deviationis Aw=k,m, =ak,

e Since the bandwidth of m(¢) is B= f, Hz , the frequency deviation ratio (or
modulation index) is

A Ao ak,

f=

e Hence the FM signal become

@FM (t) = Ae(jwct+jﬂSinwn1t) — Aeja)ct (ej,Bsina)mt)

Verification of FM bandwidth

The exponential term e””*"“" is a periodic signal with period 27/, and can be

expanded by the exponential Fourier series:

]/)’sma) t 2 : ]na)mt

where

w Tlo, . a
C :_mJ‘ e],Bsma) t _—jnow, tdt
" 2x Y -nfe,




Bessel functions

By changing variables w, t = x, we get

1 e7 o .
C — _I e(]ﬂsmx—Jnx)dx
" 2xden

This integral is denoted as the Bessel function J (f) of the first kind and order n. It
cannot be evaluated in closed form but it has been tabulated.

Hence the FM waveform can be expressed as

Gy ()= A T (B

n=—00

and

0y (=AY T, (B)cos(, +na, )

n=—00
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Bessel functions of the first kind

08 =1

p=2
0.6 -

3

& 5 &
0.4
J (B)

0.2
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Bandwidth calculation for FM

The FM signal for single tone modulation is

@ry (1) =4 i J, (B)cos(w, +nw, ).

n=—0o0

The modulated signal has ‘theoretically’ an infinite bandwidth made of one carrier at
frequency @, and an infinite number of sidebands at frequencies v, * w,,, ®, £ 2w,,
ey W, £ now,,, ... However

o for a fixed f, the amplitude of the Bessel function J, (/) decreases as n increases. This means
that for any fixed S there is only a finite number of significant sidebands.

e Asn>f+ 1 the amplitude of the Bessel function becomes negligible. Hence, the number of
significant sidebands is § + 1.

This means that with good approximation the bandwidth of the FM signal is
B, =2nf, =2(fS+1) f, =2(Af +B).

125

Example

Estimate the bandwidth of the FM signal when the modulating signal is the one shown
in Fig. 1 with period T=2 X 107 sec, the carrier frequency is f. = 100MHz and k.= 2 X
10°.

Figure 1. The modulating signal m(t)

Repeat the problem when the amplitude of m(¢) is doubled.
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Example

e Peak amplitude of m(z) is m, = 1.
e Signal period is T=2 x 1074, hence fundamental frequency is f, = S5kHz.

e \We assume that the essential bandwidth of m(z) is the third harmonic. Hence the
modulating signal bandwidth is B = 15kHz.

e The frequency deviation is:

1 1
Af = —k;m, = E(Zﬂ'xlOS)(l) =100k/1z.

e Bandwidth of the FM signal:

By, =2(Af + B) = 230kH:.

FM —

Example

Doubling amplitude means that m, = 2.

The modulating signal bandwidth remains the same, i.e., B = 15kHz.

The new frequency deviation is :

1 1
Af =k, = E(z;moS)(z) = 200kHz.

The new bandwidth of the FM signal is :

B

M

=2(Af + B) = 430kHz.




Example

Now estimate the bandwidth of the FM signal if the modulating signal is time expanded
by a factor 2.

e The time expansion by a factor 2 reduces the signal bandwidth by a factor 2. Hence
the fundamental frequency is now f, = 2.5kHz and B = 7.5kHz.

e The peak value stays the same, i.e., m, =1 and

1 1
Af = —k,m, :E(zleoS)(l) = 100kHz.

e The new bandwidth of the FM signal is:

B, =2(Af +B)=2(100+7.5) = 215kHz.

Second Example

An angle modulated signal with carrier frequency w,. =2z X 10°rad/s is given by:

Py (1) =10cos (@,¢ +55in 3000z +10sin 200077 ).

Find the power of the modulated signal

Find the frequency deviation Af
Af

Find the deviation rations = o

Estimate the bandwidth of the FM signal




Second Example

e The carrier amplitude is 10 therefore the power is P =10?/2 = 50.
e The signal bandwidth is B =2000z / 2z = 1000Hz.

e To find the frequency deviation we find the instantaneous frequency:

@, = %«90) = . +15,000c0s 30007+ 20,0007 cos 20007¢.

The angle deviation is the maximum of 15,000 cos 3000z + 20,0007z cos 2000zz. The
maximum is: Aw = 15,000 + 20,000zrad/s. Hence, the frequency deviation is

Af =29 12387320,
27
e The modulation index is A
B= ?f =12.387.

e The bandwidth of the FM signal is: B =2(Af + B)=26,774.65Hz.

FM

Conclusions

e Verified bandwidth calculation for FM using single tone modulating signal
e Examined Bessel functions and their properties

e Examined two examples and calculated FM bandwidths
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Lecture Aims

e To identify how resilient FM is to non-linear distortion

e To outline FM modulators and demodulators
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Angle Modulation and non-linearities

e FM signals are constant envelope signals, therefore they are less
susceptible to non-linearities

e Example: a non-linear device whose input x(¢) and output y(¢) are related by
y(t) = a,x(t) + a,x*(t)

o if x(¢)=cos [a)ct + w(t)]

e Then

y(t) = a,cos|w,t +y(1)]+a, cos’[wt+y (1]

= % +a, cos[w.t+y(1)]+ %COS [20.t+2y/(1)]

Angle Modulation and non-linearities

e For FM wave

w(t)=k, j m(a)da

e The output waveform is
y(t) = % +a, cos [a)ct + kffm(a)da} + %cos [2a)ct + 2ka‘m(a)da}

e Unwanted signals can be removed by means of a bandpass filter




Higher order non-linearities

e Consider higher order non-linearities

y(t)=a,+ax(t)+ a2x2 &) +--+ax"(2)

e If the input signal is an FM wave, y(¢) will have the form

y()=c,+c¢ cos[a)ct + kfjm(a)da} +c, cos[2a)ct + 2kfjm(a)da}

+-+c, cos[na)ct + nkfjm(a)da}

e The deviations are Af, 2Af, ..., nAf
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e Narrowband signal

is generated using

—Akga(1) sin w,t

m(1)

a(t) DSB-SC NBFM
f > —>—{ 3 }>—
modulator

A—A sin wt A

w2

é A cos w

e NBFM signal is then converted to WBFM using

m(t)

—

NBFM Frequency WBFM

multiplier
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Armstrong indirect FM transmitter

[=M0kH [, =128MHz [ =19MHz [ =912MH;
Af, =25 Hz Af;= 1.6kHz Af=16kHz  Af,=768kHz

alr) _ l I
' F
m(t) ( DSB-SC ™\ 1 i s l Frequency l requencyl ¢ | Power

| multiplier > multiplier

—>— > % .
modulator X 64 converter % 48 amplifier
—A sin w, }
—n/2 A A
Acoswi }
Crystal 5 Crystal
oscillator f>— oscillator
200 kHz 109 MHz
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Direct Method of FM Generation

e The modulating signal m(¢) can control a voltage controlled oscillator to
produce instantaneous frequency

w,(t) = o, +k, m(t)

e A voltage controlled oscillator can be implemented using an LC parallel
resonant circuit with centre frequency

Wy, =—F—

JLc

e |f the capacitance is varied by m(¢)

C=C,—km(t)
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Direct Method of FM Generation

e The oscillator frequency is given by

a)i(t): : — :

e [f ——= « 1, the binomial series expansion gives
0

a)i(t) ~

1 14 km(t)
JLC, 2C,
e This gives the instantaneous frequency as a function of the modulating
signal.

Demodulation of FM signals

e The FM demodulator is given by a differentiator followed by an envelope
detector

e Output of the ideal differentiator
d ‘
@y ()= 7 {A cos[a)ct + kf I_wm(a) da}}
= A[a)c + kfm(t)]sin[a)ct + kf I_;m(a) da}

e The above signal is both amplitude and frequency modulated. Hence, an
envelope detector with input ¢,,,(¢) yields an output proportional to

A [a)c + kfm(t)]




o As Aw=km,< o, and o, + km(f) >0 for all 2. The modulating signal m(¢) can
be obtained using and envelope detector

’ + k,m(t)]
il “ o
dt . detector
L
- | - —
L
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e To improve noise immunity of FM signals we use a pre-emphasis circuit ant
transmitter

m(t) Frequency

Hp(w) ' modulator '

s o 20 log | H (@) !}
1 .
Hy(w) = KI———1
Jw + wr _/_—
—AAA— ‘:'l '-:".: @ —
- ' I( ' -
m(t) m'(t)

144




e Receiver de-emphasis circuit

F e km(r)
requency Hd(w) 5
demodulator
o—— WV > o)
rd -|- +
m'(1) T km(r)
bl o
20 log | H Aw) 1}
g
\*
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e Transmitter
(L + RY
Preemphasizer f—»
Frequency FM
doubler modulator
Y
. - DSB-SC
Preemphasizer p—> msdnkares
(L= RY
Composite i
baseband | g (& + R
spectrum

(L= R) cos wa
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e Receiver

(L+ R)
> LPF > Deemphasizer
0-15 kHz
Limiter- | NBF - Frequency
discriminator 19 kHz [pjjoe| doubler L
3
= BPF __ISynchronous :
" [23-53 kHz rT demodulator| Deemphasizer
(L — R)’ cos w.t (L= RY (L= R)
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Conclusions

e FM modulators: direct and indirect methods

e FM demodulator

e Pre-emphasis and de-emphasis circuits to improve noise immunity of
signals

e FM stereo transmitter and receiver
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Lecture Aims

e Outline digital communication systems
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Why digital modulation

More resilient to noise

Viability of regenerative repeaters

Digital hardware more flexible

It is easier to multiplex digital signals
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Digital Transmission System

V(f) mt) mkT)) mkT) M;.(t)
-l

Interpolation

. -
Filter

7;?‘,,“!([)

Channel Filter

w (1) m,, (KT,)

out
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Analogue waveform

e Analogue waveform and its spectrum

[40)

8,()
i_ l I I ' j ! J Sampling waveform
. g (e

[ 0

d ' I t _ Sampled waveform
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8 r,(' )

ENRRRRRN RN

o (1) =i[1+2008a)st+20032a)st+20053(ost+---]

g(t)=g(t)or (1)

B Ti[g(t) +2g(t)cos ,t +2g(t)cos 2wt +2g(¢) cos 3wt +- -]




Sampled signal spectrum

Sampling frequency Sampled signal spectrum
— ]
f,=V/T,Hz G(@)=—- 2.Gl@=nw)
§ n=—w
Sampling time Sampling frequency must satisfy
T.=1/f, f.>2B
1
Also have T <—
2B
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Signal construction using better filter

h(t) = sinc (27 Bf) g(t) =Y g(kT)A(t — kTy)

= Z: g(kTy) sinc [27 B(t — k1))
K

= ) _g(kT;) sinc 2 Bt — krr)
k

Q) —e

156




Sampled Waveform

157

|\\
A\
\
Quantized waveform
”‘P -':’
- m(r) P Quantized samples of m(r)
. — ../.1,
ﬁ R -
5 P B F °._..
.‘E :’ —— ..‘! ..‘..
.9 s . -'°.
s 1 I
g /"" . "'.
- L 1 l [
- &~
g Y [ ‘.". .-".
a_l. i
% i 2J)lp * Y "._.-'
— ..".l
\q_ 8 Tded, -
i
"l'"p -
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Uniform quantizer

d mkr)

-m, m (kT )

m

159

Minimum and maximum voltage

max(m(t)) =m,

min (m(t))=-m,

n = number of bits

L =2" =number of levels
m, = voltage boundaries
i=0,1,2---L

m, =—m m, =m

p p
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Voltage range values

max (m(t))—min (m(t))
L

A = step size =
my = min (m(t)) = —m,

m, = min(m(t)) +iA

m, =max (m(t))=m,
A = mp _(_mp) — 2mp
L L

m, > m(kﬂ) >m,

m; +m;_,
2

(KT, =

Quantization and binary representation

e Assume the amplitude of the analog signal m(z) lie in the range (-m,, m,).

e with quantization, this interval is partitioned into L sub-intervals, each of
magnitude ou =2m,/ L.

e Each sample amplitude is approximated by the midpoint value of the
subinterval in which the sample falls.

e Thus, each sample of the original signal can take on only one of the L
different values.

e Such a signal is known as an L-ary digital signals

e In practice, it is better to have binary signals




Digit | Binary equivalent | Pulse code waveform

0 0000 HEEE

1 0001 Rk B B
Alternatively ’ o alalil
we can use A . out o
sequence of ! Ao e
four binary 5 0101 e
pulses to get 6 0110 g
16 distinct 7 0111 ginn
patterns 8 1000 e

9 1001 .

10 1010 i R B

1 1011 B R

12 1100 -l-.—--r

13 1101 AN _a

14 1110 anm,

15 1 REER
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Examples

N

1. Audio Signal (Low Fidelity, used in telephone lines

e Audio signal frequency from 0 to 15 kHz. Subjective tests show signal
articulation (intelligibility) is not affected by components above 3.4 kHz. So,
assume bandwidth B = 4 kHz.

e Sampling frequency f, = 2B = 8 kHz that means 8,000 samples per second.

e Each sample is quantized with L = 256 levels, that is a group of 8 bits to
encode each sample 28 = 256

e Thus a telephone line requires 8 x 8,000 = 64,000 bits per second (64 kbps).

2. Audio Signal (High Fidelity, used in CD)

e Bandwidth 20 kHz, we assume a bandwidth of B = 22.05kHz.

e Sampling frequency f, = 2B = 44.1 kHz, this means 44,100 samples per
seconds.
e Each sample is quantized with L = 65,536 levels, 16 bits per sample.

e Thus, a Hi-Fi audio signal requires 16 x 44,100 ~706 kbps.

164




Transmission or Line Coding

1 1 1 0 0 1 1 1 0o o0 0
_I_l_ — —L H I_‘ —— On-off return-to-zero
(a)
(1] 1 [111
' Polar return-to-zero
OO0 O 000
[1 ] i Bi
P—— -polar return-to-zero
I_I LI £ —
(c)
I—I : I ——t On-off non-return-to-zero

[ —

CY

——t Polar non-return-to-zero

(e
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Desirable Properties of Line Coding

Transmission bandwidth as small as possible
Power efficiency
Error detection and correction capability

Favorable power spectral density (e.g., avoid dc component for use of ac
coupling and transformers)

Adequate timing content

Transparency (independent of info bits, to avoid timing problem)

166




Digital Modulation

e The process of modulating a digital signal is called keying

e As for the analogue case, we can choose one of the three parameters of a
sine wave to modulate

1. Amplitude modulation, called Amplitude Shift Keying (ASK)
2. Phase modulation, Phase Shift Keying (PSK)
3. Frequency modulation Frequency Shift Keying (FSK)

e In some cases, the data can be sent by simultaneously modulating phase
and amplitude, this is called Quadrature Amplitude Phase Shift Keying
(QASK)
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Amplitude Shift Keying (ASK)
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(a)

I On-off non-return-to-zero

(b) =

Amplitude shift keying (ASK) =on-off keying (OOK)
so) = 0
s{(t) = AcosQxf.)

or s(t)=A(t) cos(2 zfr),  A(r) € {0, A}




How to recover ASK transmitted symbol?

e Coherent (synchronous) detection

Use a BPF to reject out-of-band noise
Multiply the incoming waveform with a cosine of the carrier frequency
Use a LPF

Requires carrier regeneration (both frequency and phase
synchronization by using a phase-lock loop)

e Noncoherent detection (envelope detection etc.)

Makes no explicit efforts to estimate the phase

P—— H(w) -(? > L";'Iigfss .

Coherent Detection of ASK

2cos wyt
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Assume an ideal band-pass filter with unit gain on [f, —W, f, +W ]. For a
practical band-pass filter, 27 should be interpreted as the equivalent bandwidth.




Phase and Frequency Shift Keying (PSK, FSK)

! _— m(t): Polar non-return-to-zero
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FSK Non-coherent and Coherent Detection
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PSK Coherent Detection

=m(t)cos(a t)

+ A cos (.1
—>®—> LPF

2008 0, ! Decision

¢PSK

Envelop detection is not applicable to PSK
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Signal Bandwidth, Channel Bandwidth &
Channel Capacity (Maximum Data Rate)

Signal bandwidth: the range of frequencies present in the signal

Channel bandwidth: the range of signal bandwidths allowed (or carried) by
a communication channel without significant loss of energy or distortion

Channel capacity (maximum data rate): the maximum rate (in bits/second)
at which data can be transmitted over a given communication channel
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Two Views of Nyquist Rate

- B0

e Nyquist rate: 2 times of the bandwidth

e Sampling rate: For a given signal of bandwidth B Hz, the sampling rate
must be at least 2B Hz to enable full signal recovery (i.e., avoid aliasing)

e Signaling rate: A noiseless communication channel with bandwidth B Hz
can support the maximum rate of 2B symbols (signals, pulses or
codewords) per second — so called the “baud rate”
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Channel Capacity (Maximum Data Rate)
with Channel Bandwidth B Hz

e Noiseless channel

Each symbol represents a signal of M levels (where M=2 and 4 for
binary symbol and QPSK, respectively)

Channel capacity (maximum data rate): bits/second

C =2Blog,M

e Noisy channel
Shannon’s channel capacity (maximum data rate): bits/second

C=DBlog,(S/N)

where S and N denote the signal and noise power, respectively
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Introduction to CDMA (Code Division Multiple Access)

‘ User data

l Pseudo random code

XOR of above

Courtesy by Marcos Vicente on Wikipedia

e Each user data (bit) is represented by a number of “chips” — pseudo

random code — forming a spread-spectrum technique

e Pseudo random codes

Appear random but can be generated easily

Have close to zero auto-correlation with non-zero time offset (lag)
Have very low cross-correlation (almost orthogonal) for simultaneous
use by multiple users — thus the name, CDMA
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Use of Orthogonal Codes for Multiple Access
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Transmission: Spread each information bit using a code
Detection: Correlate the received signal with the correspond code

Orthogonal spreading codes ensure low mutual interference among
concurrent transmissions

Use codes to support multiple concurrent transmissions — Code-
division multiple access (CDMA), besides time-division multiple
access (TDMA) and frequency-diversion multiplex (FDMA)

FDMA - 1G, TDMA - 2G, CDMA - 3G, 4G... cellular networks
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Conclusions

Highlighted digital communication systems

Importance of digital communication

Sampling and quantization

Modulation of digital signals

Channel bandwidth and capacity

Introduction to CDMA




