
EE1 and EIE1: Introduction to 
Signals and Communications

Professor Kin K. Leung

EEE and Computing Departments

Imperial College

kin.leung@imperial.ac.uk

Lecture seven

2

Lecture Aims

● To introduce linear systems

● To introduce convolution

● To give examples of real and ideal filters



Linear Systems 
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Linear Time Invariant System

h(t) 
g(t) y(t)

Linear Systems (continued)

● A system converts an input signal g(t) in an output signal y(t).

● Assume the output for an input signal  g1(t) is  y1(t) and the output for an 
input  g2(t) is  y2(t). The system is linear if the output for input g1(t) + g2(t) is y1(t)
+ y2(t).

● A system is time invariant if its properties do not change with the time. That 
is, if the response to  g(t) is y(t), then the response to g(t - t0) is going to be y(t -
t0)
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Linear 

System
g(t) y(t)

Linear 

System
g1(t) + g2(t) y1(t) + y2(t)

Linear 

System
g(t-t0) y(t-t0)



Unit impulse response of a LTI system

Consider a linear time invariant (LTI) system. Assume the input signal is a 
Dirac function δ(t). Call the observed output h(t). 

● h(t) is called the unit impulse response function.

● With h(t), we can relate the input signal to its output signal through the 
convolution formula: 
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y(t)  h(t) * g(t)  h( )g(t   )d .




Physical interpretation of linear system response

δ(t)

t
0
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Input Output

δ(t-to)

t
0 to t0

???

t0

h(t) : unit-impulse response



Physical interpretation of linear system response

δ(t)

t
0
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Input Output

δ(t-to)

t
0 to t0 to

δ(t-to)

t
0 to

δ(t)

t0

???

t0

h(t): unit-impulse response

h(t-to) Time invariant

Physical interpretation of linear system response

δ(t)

t
0
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Input Output

δ(t-to)

t
0 to t0 to

δ(t-to)

t
0 to
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h(t)
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to
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Physical interpretation of linear system response
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Input Output

b δ(t-to)

t
0 to

a δ(t)

t
0

a h(t)+b h(t-to)

to

Linearity

g(nΔτ)

…

Δτ

t
0 t0

???

0 n

t

…

input g(nΔτ): output  g(nΔτ)Δτ h(t-nΔτ)

g(t)

y(t) = ∑ g(nΔτ)Δτ h(t-nΔτ)



   dthgtgthty )()()(*)()(

Intuitive explanation of the convolution formula

● g(t) can be approximated as g(t) ≅ Σng(n∆τ)∆τδ(t−n∆τ).

● In the limit as ∆τ→0 this approximation approaches 
the true function g(t). 

● The response ŷ(t) of the LTI system to the input as
Σng(n∆τ)∆τδ(t−n∆τ) is going to be 
Σng(n∆τ)h(t−n∆τ)∆τ .

● Thus, y(t) = lim∆→0Σng(n∆τ)h(t−n∆τ)∆τ= 
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g()h(t  )d .






Graphical Interpretation of Convolution (1)


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Graphical Interpretation of Convolution (2)





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u

duutguftgtf )()()(*)(

u

g(-u)

0
u

g(u)

0

u

g(t-u)

0

t<0

u

g(t-u)

0

t>0

u

f(u)

0 b-a
a, b: positive
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right shift by t
left shift by t



Graphical Interpretation of Convolution (3)







u

duutguftgtf )()()(*)(

g(t-u)

-<t<-a

u

f(u)

0 b-a

g(t-u)

t>b

u

f(u)

0 b-a

g(t-u)

-a<t<b

u

f(u)

0 b-a

Depending on t, the convolution

integral is the area under f(u)g(t-u).

Search “Convolution” on the Wikipedia 

site for an animation of convolution.
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Convolution in the frequency domain

The convolution of two functions g(t) and h(t), denoted by g(t) ∗ h(t), is defined by the 
integral

If g(t) ⇔ G(ω) and h(t) ⇔ H(ω) then the convolution reduces to a product in the 
Fourier domain 

H(ω) is called the system transfer function or the system frequency response or 
the spectral response. 

Notice that, for symmetry, a product in the time domain corresponds to a convolution 
in frequency domain. That is
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Bandwidth of the product of two signals 

If g1(t) and g2(t) have bandwidths B1 and B2 Hz, respectively. 

The bandwidth of g1(t) g2(t) is B1 + B2 Hz. 
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Ideal Low-Pass Filter 

Ideal low-pass filter response

Ideal low-pass filter impulse response 
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h(t) W


sinc W t  t

d 





H ()  rect 
2W e j td



Ideal High-Pass and Band-pass filters
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Figure 1: Ideal high-pass filter Figure 2: Ideal band-pass filter

Practical filters

● The filters in the previous examples are ideal filters.

● They are not realizable since their unit impulse responses are everlasting 
(Think of the sinc function).

● Physically realizable filter impulse response h(t) = 0 for t < 0. 

● Therefore, we can only obtain approximated version of the ideal low-pass, 
high-pass and band-pass filters. 
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Example of a linear system: RC circuit
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Example: RC circuit (continued)

and

Therefore, this circuit behaves as a low-pass filter. 
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Summary

● Linear time invariant systems

● Unit impulse response function

● Convolution formula:

● Low-pass, high-pass and band-pass filters 
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( ) ( )* ( ) ( ) ( )y t h t g t h g t d  



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Lecture Aims

● To introduce Energy spectral density (ESD)

● Input and Output Energy spectral densities

● To introduce Power spectral density (PSD)

● Input and Output Power spectral densities 

Signal Energy, Parseval’s Theorem

Consider an energy signal g(t), Parseval’s Theorem states that

Proof:
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Example

Consider the signal g(t) = e-atu(t) (a > 0)

Its energy is

We now determine Eg using the signal spectrum G() given by 

It follows

which verifies Parseval’s theorem.
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Energy Spectral Density

● Parseval’s theorem can be interpreted to mean that the energy of a signal g(t)
is the result of energies contributed by all spectral components of a signal g(t)

● The contribution of a spectral component of frequency is proportional to 
|G()|2

● Therefore, we can interpret |G()|2 as the energy per unit bandwidth of the 
spectral components of g(t) centered at frequency 

● In other words, |G()|2 is the energy spectral density of g(t)
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Energy Spectral Density (continued)

The energy spectral density (ESD)              is thus defined as 

and 

Thus, the ESD of the signal g(t) = e-atu(t) of the previous example is
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Energy of modulated signals (important)

Let g(t) be a baseband energy signal with energy Eg. 

The energy of the modulated signal φ(t) = g(t)cos0t is half the energy of g(t). 
That is,

Proof: Go from the definition of energy being the integration of the magnitude squared 
of the signal over the whole time horizon. (0 is assumed to be equal to or larger than 
2π times the bandwidth of g(t).)

The same applies to power signals. That is, if g(t) is a power signal then 

(You will use this result when computing the efficiency of a Full AM system). 
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Time Autocorrelation Function and ESD

For a real signal the autocorrelation function               is defined as

Do you remember the correlation of two signals (lecture three)? The autocorrelation 
function measure the correlation between g(t) and all its translated versions. 

Notice 

and

But, most important... 
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( ) ( ) ( )g g t g t dt  
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( )* ( ) ( ).gg g    

( )g 

Time Autocorrelation Function and ESD

...the Fourier transform of the autocorrelation function is the Energy Spectral Density! 
That is

Proof:

The Fourier transform of g(τ+t) is G(ω) ejωt . Therefore,
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ESD of the Input and the Output

If g(t) and y(t) are the input and the corresponding output of a LTI system, then

Therefore,

This shows that

Thus, the output signal ESD is |H(ω)|2 times the input signal ESD. 
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Y ()  H()G().

2 2 2
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2
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Signal Power and Power Spectral Density 

The power Pg of a real signal g(t) is given by

All the results for energy signals can be extended to power signals. 
Call Sg(ω) the Power Spectral Density (PSD) of g(t). Thus, 

Sg(ω) can be found using the autocorrelation function. 
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Time autocorrelation Function of Power Signals 

The (time) autocorrelation function              of a real deterministic power signal g(t) is 
defined as

We have that 

If g(t) and y(t) are the input and the corresponding output of a LTI system, then 

Thus, the output signal PSD is |H(ω)|2 times the input signal PSD.
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Relationships among these signals and functions 

Output PSD is |H(ω)|2 times

the input signal PSD.
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Conclusions

We learned about 

● Energy and Power Spectral Densities

● Time autocorrelation functions

● Input and output energies and powers
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Lecture Aims

● To examine modulation process

● Baseband and bandpass signals

● Double Sideband Suppressed Carrier (DSB-SC)
- Modulation

- Demodulation

● Modulators
- Nonlinear modulators

- Switching modulators

- Diode modulators

Modulation

● Modulation is a process that causes a shift in the range of frequencies in a 
signal.

● Two types of communication systems

- Baseband communication: communication that does not use modulation

- Carrier modulation: communication that uses modulation

● The baseband is used to designate the band of frequencies of the source 
signal. (e.g., audio signal 4kHz, video 4.3MHz)
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Modulation (continued)

In analog modulation the basic parameter such as amplitude, frequency or phase 
of a sinusoidal carrier is varied in proportion to the baseband signal m(t). This 
results in amplitude modulation (AM) or frequency modulation (FM) or phase 
modulation (PM).

The baseband signal m(t) is the modulating signal.

The sinusoid is the carrier or modulator.

39

Why modulation?

● To use a range of frequencies more suited to the medium

● To allow a number of signals to be transmitted simultaneously (frequency 
division multiplexing)

● To reduce the size of antennas in wireless links

40



Amplitude Modulation

● Carrier

- Phase is constant

- Frequency is constant

● Modulating signal

● With amplitude spectrum

41

 cos( )c cA t 
c  0

m(t)

Modulated signal

● Modulated signal:

42

m(t)cosct



Modulated signal

● Modulated signal:
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m(t)cosct

Modulated signal

● Baseband spectrum:

● M() is shifted to M(+ c) and M(- c)

44
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Demodulation of DSB signal

● Process modulated signal

● Multiply modulated signal with 
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Demodulation of DSB signal

● Process modulated signal
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m(t)cosct



Example

● Modulating signal m(t)=cos mt

● Carrier cos ct

● Modulated signal ϕ(t) = m(t) cos ct =cos mt cos ct

47

Amplitude spectrum

● Baseband signal
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Demodulation of DSB signal

● Process modulated signal
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m(t)cosct

Modulators

● We need to implement multiplication m(t) cos ct 

● We can use

- Nonlinear modulators

- Switching modulators

● Switching modulators can be implemented using diode ring modulators

50



Nonlinear modulator

● Input-output characteristics of a nonlinear element

● Where x(t) is the input signal and y(t) is the output signal

● Consider to input signals
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Nonlinear modulator

● Let us implement

52

1 2

2 2
1 1 2 2

( ) ( ) ( )

     ( ) ( ) ( ) ( )

z t y t y t

ax t bx t ax t bx t

 

         

( ) 2 ( ) 4 ( )cos cz t am t bm t t 



Switching modulator

● Consider a periodic signal of fundamental frequency c

● Multiplication of modulating signal with this periodic signal gives

● The spectrum of the product m(t)ϕ(t) is the spectrum M() shifted to 
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Square Pulse train as a modulator

● Consider a square pulse train

● The Fourier series for this periodic waveform is

● The signal m(t)w(t) is
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Switching modulator
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Diode Switches

56



Ring modulator

57

Ring modulator

58

0

4 1 1
( ) cos cos3 cos5

3 5c c cw t t t t  

     
 



0

4 1 1
( ) ( ) ( ) ( ) cos ( )cos3 ( )cos5

3 5i c c cv t m t w t m t t m t t m t t  

       





Conclusions

We learned about 

● Baseband and Carrier transmission

● Amplitude modulation (DSB-SC)

● Non-linear modulator

● Switching modulator 

● Diode switches
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Lecture Aims

● To examine full AM process

● AM signal and its envelope

● Sideband carrier power

● Generation of AM signals

● Demodulation of AM signals

Double Sideband Suppressed Carrier

● A receiver must generate a carrier in frequency and phase synchronism with 
the carrier at the transmitter

● This calls for sophisticated receiver and could be quite costly

● An alternative is for the transmitter to transmit the carrier along with the 
modulated signal

● In this case the transmitter needs to transmit much larger power
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Amplitude Modulation

● Carrier

- Phase is constant

- Frequency is constant.

● Modulation signal 

● With amplitude spectrum 

● Full AM signal is 

● Spectrum of full AM signal
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Full AM Modulated signal

● DSB Modulated signal:

● Full AM signal
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Full AM Modulated signal

● Signal

● Modulating signal

● Modulated signal:
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 ( ) cos cA m t t

Envelope detection is not possible when

● Signal

● Modulating signal

● Modulated signal:
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Envelope detection condition

● Detection condition A + m(t) ≥ 0

● Let mp be the maximum negative value of m(t). This means that m(t) ≥ -mp

● When we have A ≥ mp, we can use envelope detector

● The parameter                  is called the modulation index

● When 0 ≤ μ ≤ 1, we can use an envelope detector

67

pm

A
 

Envelope detection example

● Modulating signal

● Modulating signal amplitude is 

● Hence                  and

● Modulating and modulated signals are 
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( ) cos mm t B t

pm B

B

A
  B A

   
( ) cos cos

( ) ( ) cos 1 cos cos
m m

AM c m c

m t B t A t

t A m t t A t t

  
    

 

   



Demodulation of DSB signal

● Consider modulation index to be

● For modulation index 

69

  0.5

 1

Sideband and Carrier power

● Consider full AM signal

● Power Pc of the carrier A cos ct

● Power Ps of the sideband signals 

● Power efficiency
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carrier sidebands

( ) cos ( )cosAM c ct A t m t t   
 

2 2A

20.5 ( )m t

2

2 2

useful power ( )
100%

total power ( )
s

c s

P m t

P P A m t
   

 



Maximum power efficiency of Full AM

● When we have

● Signal power is 

● When 0 ≤ μ ≤ 1

● When modulation index is unity, the efficiency is

● When μ=0.3 the efficiency is
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( ) cos mm t A t 

2
2 ( )
( )

2

A
m t




max 33% 

 
 

2

2

0.3
100% 4.3%

2 0.3
  



Generation of AM signals

● Full AM signals can be generated using DSB-SC modulators

● But we do not need to suppress the carrier at the output of the 
modulator, hence we do not need a balanced modulators

● Use a simple diode

72



Simple diode modulator design

● Input signal

● Consider the case   c >> m(t)

● Switching action of the diode is controlled by

● A switching waveform

is generated. The diode open and shorts periodically with w(t)

● The signal is generated
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cos ( )cc t m t 

cos cc t

 ' ( ) cos ( ) ( )bb cv t c t m t w t 

Diode Modulator

● Diode acts as a multiplier
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 

 

n

suppressed by
AM bandpass filter

( ) cos ( ) ( )

1 2 1 1
         cos ( ) cos cos3 cos5

2 3 5

2
         cos ( )cos other terms

2

bb c

c c c c

c c

v t c t m t w t

c t m t t t t

c
t m t t



   


 


 

           

  








Demodulation of AM signals

● Rectifier detector
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Demodulation of AM signals

● Half-wave rectified signal         is given by

where w(t)
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R

  ( ) cos ( )R cA m t t w t  

 

 

1 2 1 1
( ) cos cos cos3 cos5

2 3 5

1
    ( ) other terms of higher frequencies

R c c c cv A m t t t t t

A m t

   




           

  





Demodulation of AM signals using an 
envelope detector

77

● Simple detector

● Detector operation

Envelope detector example

● For the single tone

● Design envelope detector
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Conclusions

● Examined full AM

● Sideband and carrier powers

● AM modulators

● AM demodulators
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Lecture Aims

● To examine Single Sideband Modulation (SSB)

- Time domain representation 

- Tone modulation 

- Generation of SSB signals 

- Demodulation of SSB signals

Modulation of Baseband Signals

Modulated Signal

82



Modulation of Baseband Signals

Splitting the baseband spectrum into USB and LSB

83

Single Sideband Generation

84



Time-Domain Representation of SSB signals

● Let m+(t) and m−(t) be the inverse Fourier transforms of M+(ω) and M−(ω).

● Because the amplitude spectra |M+(ω)| and |M−(ω)| are not even functions of 
ω, the signals m+(t) and m−(t) cannot be real. They are complex.

● It can be proven that m+(t) and m−(t) are conjugates. Moreover, m+(t) + m−(t)
= m(t). Hence,
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 

 

1
( ) ( ) ( )

2
1

( ) ( ) ( )
2

h

h

m t m t jm t

m t m t jm t





 

 

Time-Domain Representation of SSB signals

To determine mh(t) note that

Since                                         , it follows                                        . Hence

. But                              . Therefore

The right-hand side of this last equation defines the Hilbert transform of m(t). 
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 

 

 
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( ) ( ) 1 .h

m
m t m t t d

t

 
 




  
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Hilbert Transform

The Hilbert Transform mh(t) is generated by passing m(t) through a filter h(t) with the 
following transfer function: 

That is,                    and                           , for
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2

2

     0
( ) sgn( )

       0

j

j

j e
H j

j e






 



     
 

( ) 1H   ( ) 2h      0

Time-Domain Representation of SSB Signals

We can now express the SSB signal in terms of m(t) and mh(t). 

Inverse transform gives 

Using
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( ) ( ) ( )USB c cM M         

( ) ( ) ( )c cj t j t
USB t m t e m t e  

  

 

 

1
( ) ( ) ( )

2
1

( ) ( ) ( )
2

h

h

m t m t jm t

m t m t jm t





 

 

( ) ( ) cos ( )sinUSB c h ct m t t m t t   



Time-Domain Representation of SSB Signals

In a similar way we can show that 

Hence a general SSB signal              can be expressed as 

where the minus sign applies to USB and the plus sign applies to LSB.
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( ) ( ) cos ( )sin .LSB c h ct m t t m t t   

( ) ( ) cos ( )sin ,SSB c h ct m t t m t t   

SSB (t)

Generation of SSB Signals

Phase-Shift Method:
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( ) ( ) cos ( )sinSSB c h ct m t t m t t   



SSB Tone Modulation Example

● Consider single tone modulating signal:

● Hilbert transform requires phase shift by

● Delay in phase by          yields

● Using                                                                , we get
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( ) cos .mm t t

 2.

 2 ( ) cos( 2) sin .h m mm t t t    

( ) ( ) cos ( )sinSSB c h ct m t t m t t   

( ) cos cos sin sin cos( ) .SSB m c m c c mt t t t t t        

SSB Tone Modulation Example

● Baseband spectrum

● USB spectrum

● LSB spectrum

92



Generation of SSB Signals 

Selective-filtering method:

93

Coherent demodulation of SSB-SC signals

The SSB demodulator is identical to the synchronous demodulator used for DSB-SC.

Hence

Thus, the product                                yields the baseband signal and another SSB 
signal with carrier 2ωc. A low-pass filter will suppress the unwanted SSB terms. 
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( ) ( ) cos ( )sinSSB c h ct m t t m t t   

 

 

1
( )cos( ) ( ) 1 cos 2 ( )sin 2

2
1 1

                        ( ) ( ) cos 2 ( )sin 2
2 2

SSB c c h c
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t t m t t m t t

m t m t t m t t

   

 

 

 





( ) cos( )SSB ct  



Conclusions

● Hilbert Transform

● Single Side Band (SSB) signals 

● Modulation and demodulation of SSB signals
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Lecture Aims

● Angle Modulation

- Phase and Frequency modulation

- Concept of instantaneous frequency 

- Examples of phase and frequency modulation 

- Power of angle-modulated signals

Angle modulation

Consider a modulating signal m(t) and a carrier vc(t) = A cos(ωct + θc). 

The carrier has three parameters that could be modulated: the amplitude A (AM) the 
frequency ωc (FM) and the phase θc (PM). 

The latter two methods are closely related since both modulate the argument of the 
cosine. 

98



Instantaneous Frequency

● By definition a sinusoidal signal has a constant frequency and phase:

● Consider a generalized sinusoid with phase θ(t):

● We define the instantaneous frequency  ωi as: 

● Hence, the phase is

99

Acos(ct  c )

(t)  Acos(t)

( )i

d
t

dt

 

( ) ( ) .
t

it d   


 

Phase modulation

We can transmit the information of m(t) by varying the angle θ of the carrier. In 
phase modulation (PM) the angle θ(t) is varied linearly with m(t) : 

where kp is a constant and ωc is the carrier frequency. Therefore, the resulting 
PM wave is

The instantaneous frequency in this case is given by
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( ) ( )c pt t k m t  

( ) cos ( )PM c pt A t k m t    

( ) ( )i c p

d
t k m t

dt

    



Frequency modulation 

In PM the instantaneous frequency ωi varies linearly with the derivative of 
m(t). In frequency modulation (FM), ωi is varied linearly with m(t). Thus

where kf is a constant. The angle θ(t) is now

The resulting FM wave is
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( ) ( ).i c ft k m t  

( ) ( ) ( ) .
t t

c f c ft k m d t k m d      
 
      

( ) cos ( )
t

FM c ft A t k m d   


    

Example

Sketch FM and PM signals if the modulating signal is the one above (on the left). 
The constants kf and kp are 2π×105 and 10π, respectively, and the carrier frequency fc

=100MHz. 
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FM example

● Instantaneous angular frequency

● Instantaneous frequency 
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( )i c fk m t  
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f
i c
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 
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i

i
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PM example

● Instantaneous frequency
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Power of an Angle-Modulated wave

● General angle modulated waveform

● Instantaneous phase and frequency vary with the time, but amplitude A
remains constant. 

● Thus, the power of angle–modulated waves is always        .
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( ) cos ( )t A t 

2

2

A

Conclusions

Examined 

● Instantaneous frequency

● PM and FM modulations 

● Examples of PM and FM signals
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Lecture Aims

● To Study the bandwidth of angle modulated waves

- Narrow-Band Angle Modulation

- Carson’s rule



Bandwidth of Angle Modulated waves

In order to study bandwidth of FM waves, define

and

The frequency modulated signal is
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( ) ( )
t

a t m d 


 

( ) ( )ˆ ( ) c f f c
j t k a t jk a t j t

FM t Ae Ae e
     

 ˆ( ) Re ( )FM FMt t 

Bandwidth of Angle Modulated waves

Expanding the exponential                 in power series yields

and 
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Narrow-Band Angle Modulation

The signal a(t) is the integral of m(t). It can be shown that if M(ω) is band limited to B, 
A(ω) is also band limited to B.

If |kf a(t)| ≪ 1 then all but the first term are negligible and 

This case is called narrow-band FM. 

Similarly, the narrow-band PM is given by
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( ) ~ cos ( )sinFM c f ct A t k a t t    


PM

(t) ~ A cos
c
t  k

p
m(t)sin

c
t 

Narrow-Band Angle Modulation

Comparison of narrow band FM with Full AM.

Narrow band FM

Full AM

Narrow band FM and full AM require a transmission bandwidth equal to 2B Hz. 
Moreover, the above equations suggest a way to generate narrowband FM or PM 
signals by using DSB-SC modulator
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( ) ~ cos ( )sinFM c f ct A t k a t t    

 ( ) cos cos ( )cosc c cA m t t A t m t t    



Wide-Band FM

● Assume that |kf a(t)| ≪ 1 is not satisfied.

● Cannot ignore higher order terms, but power series expansion analysis 
becomes complicated.

● The precise characterization of the FM bandwidth is mathematically 
intractable.

● Use an empirical rule (Carson’s rule) which applies to most signals of 
interests. 
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Bandwidth equation 

● Take the angular frequency deviation as ∆ω = kf mp where                        
and frequency deviation as 

● The transmission bandwidth of an FM signal is, with good approximation, 
given by
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Carson’s rule

● The formula

goes under the name of Carson’s rule.

● If we define frequency deviation ratio as

● Bandwidth equation becomes
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 2 1FMB B  

f

B
 
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k m
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
 

     
 

Wide-Band PM 

● All results derived for FM can be applied to PM. 

● Angular frequency deviation                    and frequency deviation 

where we assume 

● The bandwidth for the PM signal will be
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Conclusions

Examined 

● Narrowband FM

● Wideband FM and PM 

● Carson’s rule 
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Lecture Aims

● To verify bandwidth calculations for FM using single tone 
modulating signals 

Verification of FM bandwidth 

● To verify Carson’s rule 

● Consider a single tone modulating sinusoid 

● We can express the FM signal as
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Verification of FM bandwidth

● The angular frequency deviation is

● Since the bandwidth of m(t) is                  , the frequency deviation ratio (or 
modulation index) is

● Hence the FM signal become
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f

m m m

kf

f


 

 
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 ( sin ) sinˆ ( ) c m c mj t j t j t j t
FM t Ae Ae e       

f p fk m k   

B  fmHz

Verification of FM bandwidth

The exponential term                  is a periodic signal with period 2π/ωm and can be 
expanded by the exponential Fourier series:

where
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Bessel functions

By changing variables ωmt = x, we get

This integral is denoted as the Bessel function Jn(β) of the first kind and order n. It 
cannot be evaluated in closed form but it has been tabulated. 

Hence the FM waveform can be expressed as 

and
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FM n

n

t A J e   






 

( ) ( ) cos( )FM n c m
n

t A J n t   




 

( sin )1

2
j x jnx

nC e dx
 





 

Bessel functions of the first kind
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Bandwidth calculation for FM

The FM signal for single tone modulation is

The modulated signal has ‘theoretically’ an infinite bandwidth made of one carrier at 
frequency ωc and an infinite number of sidebands at frequencies ωc ± ωm, ωc ± 2ωm, 
..., ωc ± nωm, ... However 

● for a fixed β, the amplitude of the Bessel function Jn(β) decreases as n increases. This means 
that for any fixed β there is only a finite number of significant sidebands.

● As n > β + 1 the amplitude of the Bessel function becomes negligible. Hence, the number of 
significant sidebands is β + 1.

This means that with good approximation the bandwidth of the FM signal is
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( ) ( ) cos( ) .FM n c m
n

t A J n t   




 

   2 2 1 2 .FM m mB nf f f B     

Example 

Estimate the bandwidth of the FM signal when the modulating signal is the one shown 
in Fig. 1 with period T = 2 × 10−4 sec, the carrier frequency is fc = 100MHz and kf = 2π ×
105. 

Repeat the problem when the amplitude of m(t) is doubled. 
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Example

● Peak amplitude of m(t) is mp = 1.

● Signal period is T = 2 × 10−4, hence fundamental frequency is f0 = 5kHz.

● We assume that the essential bandwidth of m(t) is the third harmonic. Hence the 
modulating signal bandwidth is B = 15kHz. 

● The frequency deviation is: 

● Bandwidth of the FM signal: 
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  51 1
2 10 1 100 .

2 2f pf k m kHz
 

    

 2 230 .FMB f B kHz   

Example

● Doubling amplitude means that mp = 2.

● The modulating signal bandwidth remains the same, i.e.,  B = 15kHz.

● The new frequency deviation is :

● The new bandwidth of the FM signal is :
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  51 1
2 10 2 200 .

2 2f pf k m kHz
 

    

 2 430 .FMB f B kHz   



Example

Now estimate the bandwidth of the FM signal if the modulating signal is time expanded 
by a factor 2.

● The time expansion by a factor 2 reduces the signal bandwidth by a factor 2. Hence 
the fundamental frequency is now f0 = 2.5kHz and B = 7.5kHz.

● The peak value stays the same, i.e., mp = 1 and

● The new bandwidth of the FM signal is:
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  51 1
2 10 1 100 .

2 2f pf k m kHz
 

    

   2 2 100 7.5 215 .FMB f B kHz     

Second Example

An angle modulated signal with carrier frequency ωc = 2π× 105 rad/s is given by: 

● Find the power of the modulated signal 

● Find the frequency deviation ∆f

● Find the deviation ration

● Estimate the bandwidth of the FM signal
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 ( ) 10cos 5sin 3000 10sin 2000 .FM ct t t t    

 
f

B



Second Example

● The carrier amplitude is 10 therefore the power is P = 102 / 2 = 50. 

● The signal bandwidth is B = 2000π / 2π = 1000Hz.

● To find the frequency deviation we find the instantaneous frequency: 

The angle deviation is the maximum of 15,000 cos 3000t + 20,000π cos 2000πt. The 
maximum is: ∆ω = 15,000 + 20,000πrad/s. Hence, the frequency deviation is 

● The modulation index is

● The bandwidth of the FM signal is:
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( ) 15,000cos3000 20,000 cos 2000 .i c

d
t t t

dt
       

12,387.32 .
2

f Hz




  

12.387.
f

B
 
 

 2 26,774.65 .FMB f B Hz   

Conclusions

● Verified bandwidth calculation for FM using single tone modulating signal

● Examined Bessel functions and their properties

● Examined two examples and calculated FM bandwidths
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Lecture Aims

● To identify how resilient FM is to non-linear distortion

● To outline FM modulators and demodulators



Angle Modulation and non-linearities

● FM signals are constant envelope signals, therefore they are less 
susceptible to non-linearities

● Example: a non-linear device whose input x(t) and output y(t) are related by

● if

● Then
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2
1 2( ) ( ) ( )y t a x t a x t 

   

   

2
1 2

2 2
1

( ) cos ( ) cos ( )

      cos ( ) cos 2 2 ( )
2 2

c c

c c

y t a t t a t t

a a
a t t t t

   

   

   

    

 ( ) cos ( )cx t t t  

Angle Modulation and non-linearities

● For FM wave

● The output waveform is

● Unwanted signals can be removed by means of a bandpass filter
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2 2
1( ) cos ( ) cos 2 2 ( )

2 2c f c f

a a
y t a t k m d t k m d                

( ) ( )ft k m d   



Higher order non-linearities

● Consider higher order non-linearities

● If the input signal is an FM wave, y(t) will have the form

● The deviations are ∆f, 2∆f, …, n∆f
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0 1 2( ) cos ( ) cos 2 2 ( )

          cos ( )

c f c f

n c f

y t c c t k m d c t k m d

c n t nk m d

     

  

          
    

 


2
0 1 2( ) ( ) ( ) ( )n

ny t a a x t a x t a x t    

● Narrowband signal is generated using

● NBFM signal is then converted to WBFM using
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NBFM Frequency 

multiplier

WBFMm(t)



Armstrong indirect FM transmitter
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Direct Method of FM Generation

● The modulating signal m(t) can control a voltage controlled oscillator to 
produce instantaneous frequency

● A voltage controlled oscillator can be implemented using an LC parallel 
resonant circuit with centre frequency

● If the capacitance is varied by m(t)
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( ) ( )i c ft k m t  

0

1

LC
 

0 ( )C C km t 



Direct Method of FM Generation

● The oscillator frequency is given by

● If              ≪ 1, the binomial series expansion gives

● This gives the instantaneous frequency as a function of the modulating 
signal.
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  
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CLC


 
 

 

0

( )km t

C

Demodulation of FM signals

● The FM demodulator is given by a differentiator followed by an envelope 
detector

● Output of the ideal differentiator

● The above signal is both amplitude and frequency modulated. Hence, an 
envelope detector with input   yields an output proportional to 
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
FM

(t)  d

dt
Acos 

c
t  k

f
m()d



t



 

           A 
c
 k

f
m(t) sin 

c
t  k

f
m()d



t





( )c fA k m t  

( )FM t



● As Δ = kfmp < c and c + kfm(t) > 0 for all t. The modulating signal m(t) can 
be obtained using and envelope detector
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● To improve noise immunity of FM signals we use a pre-emphasis circuit ant 
transmitter

144



● Receiver de-emphasis circuit
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● Transmitter

146



● Receiver
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Conclusions

● FM modulators: direct and indirect methods

● FM demodulator

● Pre-emphasis and de-emphasis circuits to improve noise immunity of 
signals

● FM stereo transmitter and receiver
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Lecture Aims

● Outline digital communication systems



Why digital modulation

● More resilient to noise

● Viability of regenerative repeaters

● Digital hardware more flexible

● It is easier to multiplex digital signals

151

Digital Transmission System
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Analogue waveform
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● Analogue waveform and its spectrum
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 1
( ) 1 2cos 2cos 2 2cos3

sT s s s
s

t t t t
T

       

 

( ) ( ) ( )

1
      ( ) 2 ( ) cos 2 ( )cos 2 2 ( )cos3
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s s s
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T



  



    
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T
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Sampled signal spectrum
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Sampling frequency

Sampling time

Sampled signal spectrum

Sampling frequency must satisfy

Also have

fs 1 Ts Hz

Ts 1 fs

G () 
1

Ts

G(  ns)
n





fs  2B

Ts 
1

2B

Signal construction using better filter
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Sampled Waveform
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Quantized waveform
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Uniform quantizer
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Minimum and maximum voltage
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Voltage range values
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 

 
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

Quantization and binary representation

● Assume the amplitude of the analog signal m(t) lie in the range  (-mp, mp).

● with quantization, this interval is partitioned into L sub-intervals, each of 
magnitude δu = 2mp / L.

● Each sample amplitude is approximated by the midpoint value of the 
subinterval in which the sample falls. 

● Thus, each sample of the original signal can take on only one of the L
different values. 

● Such a signal is known as an L-ary digital signals

● In practice, it is better to have binary signals
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Alternatively 
we can use A 
sequence of 
four binary 
pulses to get 
16 distinct 
patterns

Examples

1.  Audio Signal (Low Fidelity, used in telephone lines).

● Audio signal frequency from 0 to 15 kHz.  Subjective tests show signal 
articulation (intelligibility) is not affected by components above 3.4 kHz.  So, 
assume bandwidth B = 4 kHz.

● Sampling frequency fs = 2B = 8 kHz that means 8,000 samples per second. 

● Each sample is quantized with L = 256 levels, that is a group of 8 bits to 
encode each sample 28 = 256

● Thus a telephone line requires 8 x 8,000 = 64,000 bits per second (64 kbps).

2.  Audio Signal (High Fidelity, used in CD) 

● Bandwidth 20 kHz, we assume a bandwidth of B = 22.05kHz.

● Sampling frequency fs = 2B = 44.1 kHz, this means 44,100 samples per 
seconds.

● Each sample is quantized with L = 65,536 levels, 16 bits per sample.

● Thus, a Hi-Fi audio signal requires 16 x 44,100 ≃706 kbps.
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Transmission or Line Coding

Polar return-to-zero

On-off return-to-zero

Bi-polar return-to-zero

Polar  non-return-to-zero

On-off non-return-to-zero

Desirable Properties of Line Coding

● Transmission bandwidth as small as possible

● Power efficiency

● Error detection and correction capability

● Favorable power spectral density (e.g., avoid dc component for use of ac 
coupling and transformers)

● Adequate timing content

● Transparency (independent of info bits, to avoid timing problem)
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Digital Modulation

● The process of modulating a digital signal is called keying

● As for the analogue case, we can choose one of the three parameters of a 
sine wave to modulate

1. Amplitude modulation, called Amplitude Shift Keying (ASK)

2. Phase modulation, Phase Shift Keying (PSK)

3. Frequency modulation Frequency Shift Keying (FSK)

● In some cases, the data can be sent by simultaneously modulating phase 
and amplitude, this is called Quadrature Amplitude Phase Shift Keying
(QASK)

167

Amplitude Shift Keying (ASK)

Amplitude  shift  keying  (ASK) = on-off  keying  (OOK)

s0(t)   =   0 

s1(t)   = A cos(2 fct) 

or             s(t) = A(t) cos(2  fct),       A(t) {0, A} 

On-off non-return-to-zero



How  to  recover  ASK transmitted  symbol?

● Coherent  (synchronous)  detection

- Use  a  BPF  to  reject  out-of-band  noise

- Multiply the incoming waveform with a cosine of the carrier frequency

- Use  a  LPF

- Requires carrier regeneration (both frequency and phase 
synchronization by using a phase-lock loop)

● Noncoherent detection (envelope detection etc.) 

- Makes no explicit efforts to estimate the phase

Coherent  Detection of ASK

Assume an ideal band-pass filter with unit gain on [fc −W, fc +W ]. For a 
practical band-pass filter, 2W should be interpreted as the equivalent bandwidth.



Phase and Frequency Shift Keying (PSK, FSK)

m(t):  Polar  non-return-to-zero


PSK

 m(t)cos(
c
t)

])(cos[  dttmkt fcFSK 
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FSK Non-coherent and Coherent Detection

Non-coherent Detection

Coherent Detection

])(cos[  dttmkt fcFSK 
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PSK Coherent Detection


PSK

 m(t)cos(
c
t)

Envelop detection is not applicable to PSK

Signal Bandwidth, Channel Bandwidth & 
Channel Capacity (Maximum Data Rate)

● Signal bandwidth: the range of frequencies present in the signal

● Channel bandwidth: the range of signal bandwidths allowed (or carried) by 
a communication channel without significant loss of energy or distortion

● Channel capacity (maximum data rate): the maximum rate (in bits/second) 
at which data can be transmitted over a given communication channel
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Two Views of Nyquist Rate

● Nyquist rate: 2 times of the bandwidth

● Sampling rate: For a given signal of bandwidth B Hz, the sampling rate 
must be at least 2B Hz to enable full signal recovery (i.e., avoid aliasing)

● Signaling rate: A noiseless communication channel with bandwidth B Hz 
can support the maximum rate of 2B symbols (signals, pulses or 
codewords) per second – so called the “baud rate”
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Channel Capacity (Maximum Data Rate)
with Channel Bandwidth B Hz

● Noiseless channel

- Each symbol represents a signal of M levels (where M=2 and 4 for 
binary symbol and QPSK, respectively)

- Channel capacity (maximum data rate): bits/second
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MBC 2log2

● Noisy channel

- Shannon’s channel capacity (maximum data rate): bits/second

)/(log2 NSBC 

where S and N denote the signal and noise power, respectively



Introduction to CDMA (Code Division Multiple Access)

● Each user data (bit) is represented by a number of “chips” – pseudo 
random code – forming a spread-spectrum technique

● Pseudo random codes 
- Appear random but can be generated easily
- Have close to zero auto-correlation with non-zero time offset (lag)
- Have very low cross-correlation (almost orthogonal) for simultaneous 

use by multiple users – thus the name, CDMA
177

User data

Pseudo random code

XOR of above

Courtesy by Marcos Vicente on Wikipedia

Use of Orthogonal Codes for Multiple Access

● Transmission: Spread each information bit using a code

● Detection: Correlate the received signal with the correspond code

● Orthogonal spreading codes ensure low mutual interference among 
concurrent transmissions

● Use codes to support multiple concurrent transmissions – Code-
division multiple access (CDMA), besides time-division multiple 
access (TDMA) and frequency-diversion multiplex (FDMA)

● FDMA – 1G, TDMA – 2G, CDMA – 3G, 4G… cellular networks
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Conclusions

● Highlighted digital communication systems

● Importance of digital communication

● Sampling and quantization

● Modulation of digital signals

● Channel bandwidth and capacity

● Introduction to CDMA
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