
EE1 and EIE1: Introduction to 
Signals and Communications

Professor Kin K. Leung

EEE and Computing Departments

Imperial College

kin.leung@imperial.ac.uk

Lecture one

2

Course Aims

To introduce:
1. How signals can be represented and interpreted in 

time and frequency domains
2. Basic principles of communication systems
3. Methods for modulating and demodulating signals to 

carry information from an source to a destination



Recommended text book

B.P Lathi and Z. Ding, Modern Digital and Analog 
Communication Systems, Oxford University Press

● Highly recommended

● Well balanced book

● It will be useful in the future

● Slides based on this book, most of the figures are taken from this book
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Handouts

● Copies of the transparencies

● Problem sheets and solutions

● Everything is on the web
http://www.commsp.ee.ic.ac.uk/~kkleung/Intro_Signals_Comm_2018
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Syllabus

● Fundamentals of Signals and Systems

– Energy and power

– Trigonometric and Exponential Fourier Series

– Fourier transform

– Linear system and convolution integral

• Modulation

– Amplitude modulation: DSB, Full AM, SSB

– Angle modulation: PM, FM

• Advanced Topics: Digital communications, CDMA
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Another example of Communication Systems...
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From the movie ’The Blues Brothers’ 

Communication Systems

A source originates a message, such as a human voice, a television 
picture, a teletype message.

The message is converted by an input transducer into an electrical 
waveform (baseband signal).

The transmitter modifies the baseband for efficient transmission. 

The channel is a medium such as a coaxial cable, an optical fiber, a 
radio link.

The receiver processes the signal received to undo modifications 
made at the transmitter and the channel.

The output transducer converts the signal into the original form. 
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Communications
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Analog and digital messages 

● Message are digital or analog.

● Digital messages are constructed with a finite number of symbols. 
Example: a Morse-coded telegraph message. 

● Analog messages are characterized by data whose values vary over a 
continuous range. For example, the temperature of a certain location. 
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Digital Transmission

Digital signals are more robust to noise. 

An analog signal is converted to a digital signal by means of an analog-to-
digital (A/D) converter. 
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Filter Sampler Quantizer

v(t) m(t) ms(kT) mq(kT)



A/D conversion 

The signal m(t) is first sampled in the time domain. 

The amplitude of the signal samples ms(kT) is partitioned into a finite number 
of intervals (quantization). 
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Sampling theorem

The sampling theorem states that 

If the highest frequency in the signal spectrum is B, the signal 
can be reconstructed from its samples taken at a rate not less 
than 2B sample per second.
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What did we learn today? 

● The main elements of a communication systems

● The importance of the Fourier transforms

● Concept of signal bandwidth

● Analog and digital signals
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Lecture Aims

● To introduce signals

● Classifications of signals 

● Some particular signals



Signals

● A signal is a set of information or data

● Examples

- a telephone or television signal

- monthly sales of a corporation

- the daily closing prices of a stock market

● We deal exclusively with signals that are functions of time

How can we measure a signal? 
How can we distinguish two different signals?
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Classifications of Signals

● Continuous-time and discrete-time signals

● Analog and digital signals 

● Periodic and aperiodic signals 

● Energy and power signals

● Deterministic and probabilistic signals
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Continuous-time and discrete-time signals

● A signal that is specified for every value of time t is a continuous-time signal 

● A signal that is specified only at discrete values of t is a discrete-time signals
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Continuous-time and discrete-time signals (continued)

● A discrete-time signal can be obtained by sampling a continuous-time signal.

● In some cases, it is possible to ’undo’ the sampling operation. That is, it is 
possible to get back the continuous-time signal from the discrete-time signal.

Sampling Theorem 

The sampling theorem states that if the highest frequency in the signal spectrum 
is B, the signal can be reconstructed from its samples taken at a rate not less 
than 2B samples per second. 
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Analog and digital signals

● A signal whose amplitude can take on any value in a continuous range is 
an analog signal

● The concept of analog and digital signals is different from the concept of 
continuous-time and discrete-time signals

● For example, we can have a digital and continuous-time signal, or a 
analog and discrete-time signal
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Analog and digital signals (continued) 

● One can obtain a digital signal from an analog one using a quantizer

● The amplitude of the analog signal is partitioned into L intervals. 
Each sample is approximated to the midpoint of the interval in which the 
original value falls

● Quantization is a lossy operation

Notice that: 
One can obtain a digital discrete-time signal by sampling and quantizing 
an analog continuous-time signal
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Conversion of continuous-time analog to discrete-time digital signal

Periodic and aperiodic signals

● A signal g(t) is said to be periodic if for some positive constant T0,

g(t) = g(t + T0) for all t

● A signal is aperiodic if it is not periodic

Same famous periodic signals: 

sin ω0t,  cos ω0t,  ejω0t,

where ω0 = 2π/T0 and T0 is the period of the function

(Recall that ejω0t  = cos ω0t + j sin ω0t)
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Periodic Signal

A periodic signal g(t) can be generated by periodic extension of any segment 
of g(t) of duration T0
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Energy and power signal

First, define energy

● The signal energy Eg of g(t) is defined (for a real signal) as 

● In the case of a complex valued signal g(t), the energy is given by 

● A signal g(t) is an energy signal if Eg < ∞
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Power

A necessary condition for the energy to be finite is that the signal amplitude 
goes to zero as time tends to infinity.
In case of signals with infinite energy (e.g., periodic signals), a more 
meaningful measure is the signal power.

A signal is a power signal if 

A signal cannot be an energy and a power signal at the same time
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Energy signal example

Signal Energy calculation
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Power signal example

Assume g(t) = Acos(ω0t + θ), its power is given by 
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Power of Periodic Signals

Show that the power of a periodic signal g(t) with period T0 is

Another important parameter of a signal is the time average: 
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Deterministic and probabilistic signals

● A signal whose physical description is known completely is a deterministic 
signal.

● A signal known only in terms of probabilistic descriptions is a random 
signal.
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Summary

● Signal classification

● Power of a periodic signal of period T0

● Time average

● Power of a sinusoid A cos(2πf0t + θ) is 
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Lecture Aims

● To introduce some useful signals

● To present analogies between vectors and signals

- Signal comparison: correlation

- Energy of the sum of orthogonal signals

- Signal representation by orthogonal signal set



Useful Signals: Unit impulse function

The unit impulse function or Dirac function is defined as

Multiplication of a function by an impulse:
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Useful Signals: Unit step function

Another useful signal is the unit step function u(t), defined by

Observe that

Therefore 

Use intuition to understand this relationship: The derivative of a ’unit step 
jump’ is an unit impulse function.
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Useful Signals: Sinusoids

Consider the sinusoid

x(t) = C cos(2πf0t + θ)

f0 (measured in Hertz) is the frequency of the sinusoid and T0 = 1/f0 is the period.

Sometimes we use ω0 (radiant per second) to express 2πf0.

Important identities 

with                            and 
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Signals and Vectors

● Signals and vectors are closely related. For example, 

- A vector has components

- A signal has also its components

● Begin with some basic vector concepts

● Apply those concepts to signals
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Inner product in vector spaces 

x is a certain vector.

It is specified by its magnitude or length |x| and direction. 

Consider a second vector y .

We define the inner or scalar product of two vectors as 

<y, x> = |x||y| cos θ. 

Therefore, |x|2 = <x, x>. 

When <y, x> = 0, we say that y and x are orthogonal (geometrically, θ = π/2).
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x
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Signals as vectors 

The same notion of inner product can be applied for signals.
What is the useful part of this analogy?
We can use some geometrical interpretation of vectors to understand signals!
Consider two (energy) signals x(t) and y(t).
The inner product is defined by

For complex signals

where y*(t) denotes the complex conjugate of y(t).

Two signals are orthogonal if <x(t), y(t)> = 0.
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Energy of orthogonal signals

If vectors x and y are orthogonal, and if z = x + y

|z|2 = |x|2 + |y|2 (Pythagorean Theorem). 

If signals x(t) and y(t) are orthogonal and if z(t) = x(t) + y(t) then 

Ez = Ex + Ey . 

Proof for real x(t) and y(t) :

since
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Power of orthogonal signals

The same concepts of orthogonality and inner product extend to power signals.

For example, g(t) = x(t) + y(t) = C1 cos(ω1t + θ1) + C2 cos(ω2t + θ2) and ω1 ≠ ω2.

The signal x(t) and y(t) are orthogonal: <x(t), y(t)> = 0. Therefore, 
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Signal comparison: Correlation

If vectors x and y are given, we have the correlation measure as

Clearly, −1 ≤ cn ≤ 1.

In the case of energy signals: 

again −1 ≤ cn ≤ 1. 
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Best friends, worst enemies and complete strangers

● cn = 1. Best friends. This happens when g(t) = Kx(t) and K is positive. The 
signals are aligned, maximum similarity. 

● cn = −1. Worst Enemies. This happens when g(t) = Kx(t) and K is 
negative. The signals are again aligned, but in opposite directions. The 
signals understand each others, but they do not like each others. 

● cn = 0. Complete Strangers The two signals are orthogonal. We may 
view orthogonal signals as unrelated signals.
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Correlation

Why do we bother poor undergraduate students with correlation? 

Correlation is widely used in engineering. 

For instance 

● To design receivers in many communication systems

● To identify signals in radar systems

● For classifications
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Correlation examples

Find the correlation coefficients between: 

● x(t) = A0 cos(ω0t) and y(t) = A1 sin(ω1t).

● x(t) = A0 cos(ω0t) and y(t) = A1 cos(ω1t) and ω0 ≠ ω1.

● x(t) = A0 cos(ω0t) and y(t) = A1 cos(ω0t). 

● x(t) = A0 sin(ω0t) and y(t) = A1 sin(ω1t) and ω0 ≠ ω1.

● x(t) = A0 sin(ω0t) and y(t) = A1 sin(ω0t). 

● x(t) = A0 sin(ω0t) and y(t) = −A1 sin(ω0t).
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Correlation examples

Find the correlation coefficients between: 

● x(t) = A0 cos(ω0t) and y(t) = A1 sin(ω1t)                                cx,y = 0.

● x(t) = A0 cos(ω0t) and y(t) = A1 cos(ω1t) and ω0 ≠ ω1               cx,y = 0.

● x(t) = A0 cos(ω0t) and y(t) = A1 cos(ω0t)                               cx,y = 1.

● x(t) = A0 sin(ω0t) and y(t) = A1 sin(ω1t) and ω0 ≠ ω1 cx,y = 0.

● x(t) = A0 sin(ω0t) and y(t) = A1 sin(ω0t)                               cx,y = 1.

● x(t) = A0 sin(ω0t) and y(t) = −A1 sin(ω0t)                             cx,y = -1.
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Signal representation by orthogonal signal sets

● Examine a way of representing a signal as a sum of orthogonal signals

● We know that a vector can be represented as the sum of orthogonal 
vectors

● The results for signals are parallel to those for vectors

● Review the case of vectors and extend to signals

50



Orthogonal vector space

Consider a three-dimensional Cartesian vector space described by three 
mutually orthogonal vectors, x1, x2 and x3.

Any three-dimensional vector can be expressed as a linear combination of those 
three vectors: g = a1x1+ a2x2+ a3x3

where

In this case, we say that this set of vectors is complete. 

Such vectors are known as a basis vector. 
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Orthogonal signal space

Same notions of completeness extend to signals. 
A set of mutually orthogonal signals x1(t), x2(t), ..., xN(t) is complete if it can 
represent any signal belonging to a certain space. For example: 

If the approximation error is zero for any g(t) then the set of signals x1(t), x2(t), 
..., xN(t) is complete. In general, the set is complete when N → ∞. 
Infinite dimensional space (this will be more clear in the next lecture). 
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Summary

● Analogies between vectors and signals

● Inner product and correlation

● Energy and Power of orthogonal signals

● Signal representation by means of orthogonal signal
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Lecture Aims

● Trigonometric Fourier series

● Fourier spectrum

● Exponential Fourier series

Trigonometric Fourier series

● Consider a signal set

{1, cos ω0t, cos 2ω0t, ..., cos nω0t, ..., sin ω0t, sin 2ω0t, ..., sin nω0t, ...}

● A sinusoid of frequency nω0t is called the nth harmonic of the sinusoid, 
where n is an integer.

● The sinusoid of frequency ω0 is called the fundamental harmonic.

● This set is orthogonal over an interval of duration T0 = 2π/ω0, which is the 
period of the fundamental harmonic.
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Trigonometric Fourier series

The components of the set  {1, cos ω0t, cos 2ω0t, ..., cos nω0t, ..., sin ω0t, sin 2ω0t, ..., sin 
nω0t, ...} are orthogonal as

for all m and n

means integral over an interval from t = t1 to t = t1 + T0 for any value of t1.
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Trigonometric Fourier series

This set is also complete in T0. That is, any signal in an interval t1 ≤ t ≤ t1 + T0 can be 
written as the sum of sinusoids. Or

Series coefficients
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Trigonometric Fourier Coe cients

Therefore

As

We get
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Compact Fourier series

Using the identity

where

The trigonometric Fourier series can be expressed in compact form as 

For consistency, we have denoted a0 by C0.
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Periodicity of the Trigonometric series

We have seen that an arbitrary signal g(t) may be expressed as a trigonometric Fourier series 
over any interval of T0 seconds. 

What happens to the Trigonometric Fourier series outside this interval? 

Answer: The Fourier series is periodic of period T0 (the period of the fundamental harmonic). 

Proof:

for all t

and

for all t
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Properties of trigonometric series

● The trigonometric Fourier series is a periodic function of period T0 = 2π/ω0.

● If the function g(t) is periodic with period T0, then a Fourier series 
representing g(t) over an interval T0 will also represent g(t) for all t.
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Example
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Example

ω0 = 2π / T0 = 2 rad / s.

We can plot

● the amplitude Cn versus ω this gives us the amplitude spectrum

● the phase θn versus ω (phase spectrum). 

This two plots together are the frequency spectra of g(t). 
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n 0 1 2 3 4

Cn 0.504 0.244 0.125 0.084 0.063

θn 0 -75.96 -82.87 -85.84 -86.42

g(t)  C0  Cn cos(2nt n )
n1







Amplitude and phase spectra
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Exponential Fourier Series

Consider a set of exponentials 

The components of this set are orthogonal.

A signal g(t) can be expressed as an exponential series over an interval T0: 
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Trigonometric and exponential Fourier series

Trigonometric and exponential Fourier series are related. In fact, a sinusoid 
in the trigonometric series can be expressed as a sum of two exponentials 
using Euler’s formula.
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Amplitude and phase spectra. Exponential case
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Parseval’s Theorem

Trigonometric Fourier series representation

The power is given by

Exponential Fourier series representation

Power for the exponential representation
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

 .
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Conclusions

● Trigonometric Fourier series

● Exponential Fourier series

● Amplitude and phase spectra

● Parseval’s theorem
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Lecture Aims

● To introduce Fourier integral, Fourier transformation

● To present transforms of some useful functions

● To discuss some properties of the Fourier transform



Introduction

● We electrical engineers think of signals in terms of their spectral content. 

● We have studied the spectral representation of periodic signals.

● We now extend this spectral representation to the case of aperiodic 
signals. 
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Aperiodic signal representation

We have an aperiodic signal g(t) and we consider a periodic version gT0(t) of such 
signal obtained by repeating g(t) every T0 seconds.
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The periodic signal gT0(t)

The periodic signal gT0(t) can be expressed in terms of g(t) as follows: 

Notice that, if we let T0 → ∞, we have
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

The Fourier representation of gT0(t)

The signal gT0(t) is periodic, so it can be represented in terms of its Fourier series. 
The basic intuition here is that the Fourier series of gT0(t) will also represent g(t) in the 
limit for T0 → ∞. 
The exponential Fourier series of gT0(t) is 

where

and
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The Fourier representation of gT0(t)

Integrating gT0(t) over ( −T0/2, T0/2) is the same as integrating g(t) over ( −∞, ∞). So we 
can write

If we define a function

then we can write the Fourier coefficients Dn as follows: 
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Computing the lim T0→∞ gT0(t)

Thus gT0(t) can be expressed as: 

Assuming                   (i.e., replace notation        by ∆ω),  we get

In the limit for T0 → ∞, ∆ω → 0 and gT0(t) → g(t). 

We thus get: 
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Fourier Transform and Inverse Fourier Transform

What we have just learned is that, from the spectral representation G(ω) of g(t), that is, from

we can obtain g(t) back by computing

Fourier transform of g(t):

Inverse Fourier transform: 

Fourier transform relationship: 
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Example

Find the Fourier transform of g(t) = e-atu(t). 

Since                 , we have that                                 Therefore:
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Some useful functions

The Unit Gate Function:

The unit gate function rect(x) is defined as:
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rect(x) 
0          x 1 2

1           x 1 2







Some useful functions

The function sin(x)/x ‘sine over argument’ function is denoted by sinc(x):

● sinc(x) is an even function of x.

● sinc(x) = 0 when sin(x) = 0 and x ≠ 0. 

● Using L’Hospital’s rule, we find that sinc(0) = 1 

● sinc(x) is the product of  an oscillating signal sin(x) and a monotonically decreasing 
function 1/x. 
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Example

Find the Fourier transform of g(t) = rect( t/τ ). 

Therefore
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Example

Find the Fourier transform of the unit impulse δ(t):

Therefore

Find the inverse Fourier transform of δ(ω): 

Therefore
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Example

Find the inverse Fourier transform of δ( – 0): 

Therefore

and
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Example

Find the Fourier transform of the everlasting sinusoid cos(ω0t).

Since

and using the fact that                                       and 

we discover that
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Summary

Fourier transform of g(t): 

Inverse Fourier transform: 

Fourier transform relationship:

Important Fourier transforms: 
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Lecture Aims

● To present some properties of the Fourier transform

90

Topics Covered

● Fourier transform table

● Symmetry of Fourier transformation

● Time and Frequency shifting property

● Convolution

● Time differentiation and time integration

● Please read Lathi & Ding



Some properties of Fourier transform
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Some properties of Fourier transform
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Some properties of Fourier transform
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Some properties of Fourier transform
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Fourier transform pair
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Symmetry Property

● Consider the Fourier transform pair

● Then

● Example
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g(t) G()

G(t)  2g()



Scaling Property

● Consider the Fourier transform pair

● Then

● Example
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g(t) G()
1

( ) ( )g at G
a a




Time-Shifting Property

● Consider the Fourier transform pair

● Time shifting introduces phase shift

● Example
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Frequency-Shifting Property

● Consider the Fourier transform pair

● Exponential multiplication introduces frequency shift

● Cosine multiplication leads to 
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Frequency-Shifting Property

100



Frequency-Shifting Property
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Fourier transform of periodic functions

● Find the Fourier transform of a general periodic signal g(t) of period T0

● A periodic signal g(t) can be expressed as an exponential Fourier series as
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Fourier transform of periodic functions

● Consider a periodic waveform given by

● where
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Fourier transform of periodic functions

● Find the Fourier transform of a unit impulse train δ(t) of period T0
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Convolution

The convolution of two functions g(t) and w(t),

● Consider two waveforms

● Convolution in time domain

● Convolution in the frequency domain
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Time Differentiation and Time Integration

● Consider the Fourier transform relationship

● The following relationship exists for integration

● The following relationship exists differentiation
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Important Fourier Transform Operations
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An Example of Fourier Transform Properties
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Conclusions

● Examined some properties of Fourier transforms

- Scaling property

- Time shifting property

- Frequency shifting property

● Examined Fourier Transform of periodic functions

- General case

- Unit Impulse function

● Examined Convolution

● Examined Fourier transforms for

- Integration

- Differentiation
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