EE1 and EIE1: Introduction to
Signals and Communications

Professor Kin K. Leung
EEE and Computing Departments
Imperial College

kin.leung@imperial.ac.uk

Lecture one

Course Aims

To introduce:

1. How signals can be represented and interpreted in
time and frequency domains

2. Basic principles of communication systems

3. Methods for modulating and demodulating signals to
carry information from an source to a destination




Recommended text book

B.P Lathi and Z. Ding, Modern Digital and Analog
Communication Systems, Oxford University Press

e Highly recommended
e Well balanced book
e It will be useful in the future

e Slides based on this book, most of the figures are taken from this book

Handouts

e Copies of the transparencies
e Problem sheets and solutions

e Everything is on the web
http://www.commsp.ee.ic.ac.uk/~kkleung/Intro_Signals_ Comm_2018




Syllabus

e Fundamentals of Signals and Systems
- Energy and power
— Trigonometric and Exponential Fourier Series
— Fourier transform

Linear system and convolution integral

® Modulation
— Amplitude modulation: DSB, Full AM, SSB
— Angle modulation: PM, FM

® Advanced Topics: Digital communications, CDMA

! Three examples of
communication system
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Another example of Communication Systems...

From the movie 'The Blues Brothers’

Communication Systems
A source originates a message, such as a human voice, a television
picture, a teletype message.

The message is converted by an input transducer into an electrical
waveform (baseband signal).

The transmitter modifies the baseband for efficient transmission.

The channel is a medium such as a coaxial cable, an optical fiber, a
radio link.

The receiver processes the signal received to undo modifications
made at the transmitter and the channel.

The output transducer converts the signal into the original form.
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Analog and digital messages

e Message are digital or analog.

e Digital messages are constructed with a finite number of symbols.
Example: a Morse-coded telegraph message.

e Analog messages are characterized by data whose values vary over a
continuous range. For example, the temperature of a certain location.

Digital Transmission

Digital signals are more robust to noise.

An analog signal is converted to a digital signal by means of an analog-to-
digital (A/D) converter.

v(t) m(t) my(kT) m,(kT)

v
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A/D conversion

Signal sampling
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The signal m(?) is first sampled in the time domain.

The amplitude of the signal samples m(kT) is partitioned into a finite number
of intervals (quantization).
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Signal sampling
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Sampling theorem

The sampling theorem states that

If the highest frequency in the signal spectrum is B, the signal
can be reconstructed from its samples taken at a rate not less
than 2B sample per second.

What did we learn today?

The main elements of a communication systems

The importance of the Fourier transforms

Concept of signal bandwidth

Analog and digital signals
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Lecture two

Lecture Aims

e To introduce signals

e Classifications of signals

e Some particular signals
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Signals

e A signal is a set of information or data

e Examples

a telephone or television signal
monthly sales of a corporation
- the daily closing prices of a stock market

e \We deal exclusively with signals that are functions of time

How can we measure a signal?
How can we distinguish two different signals?

Classifications of Signals

Continuous-time and discrete-time signals

Analog and digital signals

Periodic and aperiodic signals

Energy and power signals

Deterministic and probabilistic signals




Continuous-time and discrete-time signals

e A signal that is specified for every value of time ¢ is a continuous-time signal

e A signal that is specified only at discrete values of ¢ is a discrete-time signals

i

(a) (b)
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Continuous-time and discrete-time signals (continued)

e A discrete-time signal can be obtained by sampling a continuous-time signal.

e In some cases, it is possible to ‘'undo’ the sampling operation. That is, it is
possible to get back the continuous-time signal from the discrete-time signal.

Sampling Theorem

The sampling theorem states that if the highest frequency in the signal spectrum
is B, the signal can be reconstructed from its samples taken at a rate not less
than 2B samples per second.
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Analog and digital signals

e A signal whose amplitude can take on any value in a continuous range is
an analog signal

e The concept of analog and digital signals is different from the concept of
continuous-time and discrete-time signals

e For example, we can have a digital and continuous-time signal, or a
analog and discrete-time signal

Analog and digital signals (continued)

e One can obtain a digital signal from an analog one using a quantizer

e The amplitude of the analog signal is partitioned into L intervals.
Each sample is approximated to the midpoint of the interval in which the
original value falls

e Quantization is a lossy operation

Notice that:
One can obtain a digital discrete-time signal by sampling and quantizing
an analog continuous-time signal




Conversion of continuous-time analog to discrete-time digital signal
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Periodic and aperiodic signals

e A signal g(¢) is said to be periodic if for some positive constant 7y,

g(t)=g(t+ T,) forall ¢

e A signal is aperiodic if it is not periodic

Same famous periodic signals:

sin @y, cos ®,f, &/*0,

where o, =2n/T, and T, is the period of the function

(Recall that &®0" = cos m,t +j sin o)
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Periodic Signal

A periodic signal g(¢) can be generated by periodic extension of any segment
of g(¢) of duration 7,

Energy and power signal

First, define energy

e The signal energy E, of g(¢) is defined (for a real signal) as
E, = I_wgz(t)dt.
e In the case of a complex valued signal g(z), the energy is given by

E =] g*(gwdi=]_ |g@f dr

e A signal g(z) is an energy signal if £, < «




Power

A necessary condition for the energy to be finite is that the signal amplitude
goes to zero as time tends to infinity.

In case of signals with infinite energy (e.g., periodic signals), a more
meaningful measure is the signal power.

.1 pr2 2
p=tim 7] Jswfa
A signal is a power signal if
0<1imlj”2 |g(0)] dt <oo
T—o T -T/2 g

A signal cannot be an energy and a power signal at the same time

Energy signal example

Signal Energy calculation

E, = |"gwdi = [@rar+ [“aetdr = 444 = 8,

g




Power signal example

Assume g(¢) = Acos(o,t + 0), its power is given by

P =1 L A cos®(w,t +0)dt
g _Tl—r}olo? -7/2 cos” (W, )

2
= liml v A—[1+cos(2wot+29)] dt
T—oo T d-T/2 D

. A . A
= lim — dt + lim — cos(2w,t +20)dt
T—o QT J-T/2 T—o QT J-T/2

= A*/2

Power of Periodic Signals

Show that the power of a periodic signal g(¢) with period T is

1 2
Fe= FOI—TO/2‘g(t)‘ di

Another important parameter of a signal is the time average:

e
Guene = M= | e(o)d




Deterministic and probabilistic signals

e A signal whose physical description is known completely is a deterministic
signal.

e A signal known only in terms of probabilistic descriptions is a random
signal.

Summary

e Signal classification

e Power of a periodic signal of period 7,

1 ¢%/2
fog o a

e Time average
_ o L2
gavemge - }Eﬂo F -[—T/2 g(t)dt

2
e Power of a sinusoid A cos(2nfyt + 6) is A?
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Lecture three

Lecture Aims

e To introduce some useful signals

e To present analogies between vectors and signals

- Signal comparison: correlation
- Energy of the sum of orthogonal signals
- Signal representation by orthogonal signal set




Useful Signals: Unit impulse function

The unit impulse function or Dirac function is defined as

o(t)=0 t#0
[~ sde=1 Area =1

| A—0 |
Multiplication of a function by an impulse:

g(t)o(t-T)=g(T)o(t-T)
[" g)s(t-T)dt=g(T).

Useful Signals: Unit step function

Another useful signal is the unit step function u(z), defined by

0 1120 1
u =
0¢<0
Observe that t
t 1 t>20
j S(a)da=
- O I < O \( Area = 1
Therefore | A0 |
du(t)
=0(1).
7 (?)

Use intuition to understand this relationship: The derivative of a 'unit step
jump’ is an unit impulse function.




Useful Signals: Sinusoids

Consider the sinusoid
x(t) = C cos(2nfyt + 0)

fo (measured in Hertz) is the frequency of the sinusoid and 7, = 1/f, is the period.
Sometimes we use o, (radiant per second) to express 2.

Important identities

: .. Ir .. . lr ..
e =cosx+ jsinx, cosx:E[e”Jre ”],&nx:?[eﬁ“—e ”],
J

COSXCOS Y = %[cos(x +y)+cos(x—y)]

acosx+bsinx = Ccos(x+6)

with C=4/a*+b* and H:tan_l_—b

a

Signals and Vectors

e Signals and vectors are closely related. For example,

- A vector has components
- A signal has also its components

e Begin with some basic vector concepts

e Apply those concepts to signals




Inner product in vector spaces

X is a certain vector.

It is specified by its magnitude or length |x| and direction.
Consider a second vectory . X
We define the inner or scalar product of two vectors as

<y, X> = |x]||y| cos 6.

Therefore, |x|? = <x, x>.

When <y, x> = 0, we say that y and x are orthogonal (geometrically, = /2).

Signals as vectors

The same notion of inner product can be applied for signals.

What is the useful part of this analogy?

We can use some geometrical interpretation of vectors to understand signals!
Consider two (energy) signals x(¢) and y(¢).

The inner product is defined by

(x(0).90)= | x(O)p(0)t
For complex signals

(2O (0)= [ x(0)y* (e

where y*(t) denotes the complex conjugate of y(¢).

Two signals are orthogonal if <x(¢), y(¢)> = 0.




Energy of orthogonal signals

If vectors x and y are orthogonal, andifz=x+y
12> = x> + |y|* (Pythagorean Theorem).
If signals x(¢) and y(r) are orthogonal and if z(¢) = x(¢) + y(¢) then
E,=E,+E,.
Proof for real x(¢) and y(¢) :
E = (x()+y@)d

— .[_2 X>(f)dt+ .[_2 V2 (t)dt + 2j°; x()y(t)dt

=E +E, + 2f°o x(O) y(t)dt
=E +E,
since Ijo x(t)y(t)dt =0.
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Power of orthogonal signals

The same concepts of orthogonality and inner product extend to power signals.

For example, g(¢) = x(¢) + y(t) = C, cos(w,t + 0,) + C, cos(w,t + 0,) and w, # w,.

The signal x(¢) and y(¢) are orthogonal: <x(¢), y(¢)> = 0. Therefore,

2 2
Pg:Px+Py:%+%.
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Signal comparison: Correlation

If vectors x and y are given, we have the correlation measure as

(%)

X

c =cosf =

Clearly, -1 <¢,<1.

In the case of energy signals:

1

¢ = T j"; V(t)x(t)dt

again -1 <c¢,<1.

Best friends, worst enemies and complete strangers

e ¢ = 1. Best friends. This happens when g(¢) = Kx(¢) and K is positive. The

signals are aligned, maximum similarity.

e ¢, =—1. Worst Enemies. This happens when g(¢) = Kx(f) and K is
negative. The signals are again aligned, but in opposite directions. The
signals understand each others, but they do not like each others.

e ¢, =0. Complete Strangers The two signals are orthogonal. We may

view orthogonal signals as unrelated signals.




Correlation

Why do we bother poor undergraduate students with correlation?
Correlation is widely used in engineering.
For instance

e To design receivers in many communication systems
e To identify signals in radar systems

e For classifications

Correlation examples

Find the correlation coefficients between:

o x(f) = A, cos(wyt) and y(f) = A, sin(w,?).

® x(t) = A, cos(wyt) and y(r) = A, cos(w,t) and o, # ;.
® x(t) = A, cos(wyt) and y(t) = A, cos(wy?).

o x() = A, sin(wy) and y(¢) = A, sin(w,?) and o, # ;.
o x(t) = A, sin(wyt) and y(f) = A, sin(wf).

o x(1) = A, sin(wyt) and y(f) = —A, sin(wgf).




Correlation examples

Find the correlation coefficients between:

o x(f) = A, cos(wyt) and y(f) = A, sin(w,?) Cyy = 0.
® x(t) = A, cos(wyt) and y(r) = A, cos(w,f) and o, # o, Cey = 0.
® x(t) = A, cos(wyt) and y(t) = A, cos(wyt) Coy = L.
o x(f) = A, sin(wy) and y(¢) = A, sin(w,?) and o, # o, Cey = 0.
o x(1) = A, sin(wyt) and y(f) = A, sin(wf) Cey = L.
o x(t) = A, sin(wyt) and y(f) = —A, sin(wyf) Coy = -1
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Signal representation by orthogonal signal sets

e Examine a way of representing a signal as a sum of orthogonal signals

e We know that a vector can be represented as the sum of orthogonal
vectors

e The results for signals are parallel to those for vectors

e Review the case of vectors and extend to signals

50




Orthogonal vector space

Consider a three-dimensional Cartesian vector space described by three
mutually orthogonal vectors, x,, X, and Xx;.

0 Mm#n
<X X >=

> m=n

R

Any three-dimensional vector can be expressed as a linear combination of those
three vectors: g = a,X;+ a,X,+ a;X,

In this case, we say that this set of vectors is complete.

Such vectors are known as a basis vector.

Orthogonal signal space

Same notions of completeness extend to signals.
A set of mutually orthogonal signals x,(?), x,(?), ..., x,(¢) is complete if it can
represent any signal belonging to a certain space. For example:

g(t)~ax (t)+ax,(t)+..+a,x, (1)

If the approximation error is zero for any g(¢) then the set of signals x,(?), x,(?),
..., X,(?) is complete. In general, the set is complete when N — .
Infinite dimensional space (this will be more clear in the next lecture).




Summary

Analogies between vectors and signals
Inner product and correlation
Energy and Power of orthogonal signals

Signal representation by means of orthogonal signal

53

EE1 and EIE1: Introduction to
Signals and Communications

Professor Kin K. Leung
EEE and Computing Departments
Imperial College

kin.leung@imperial.ac.uk

Lecture four




Lecture Aims

e Trigonometric Fourier series
e Fourier spectrum

e Exponential Fourier series

Trigonometric Fourier series

e Consider a signal set
{1, cos wyt, cos 2wy, ..., COS NWt, ..., SIN W, SIN 2w, ..., SIN RO, ...}

e A sinusoid of frequency nwt is called the n”* harmonic of the sinusoid,
where n is an integer.

e The sinusoid of frequency o, is called the fundamental harmonic.

e This set is orthogonal over an interval of duration 7|, = 27/w,, which is the
period of the fundamental harmonic.




Trigonometric Fourier series

The components of the set {1, cos wt, cos 2w, ..., cOS nw, ..., sin wt, sin 2wt, ..., sin
nwt, ...} are orthogonal as

0 m#n
j COS n@,t cosmaytdt =4 T
% < m=n=0
2
0 m#n
I sin nwyt sinmaytdt =3 T
T 2 m=n=0

0

JT means integral over an interval from ¢ =¢, to t = ¢, + T,, for any value of ¢,.
0
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Trigonometric Fourier series

This set is also complete in 7. That is, any signal in an interval ¢, <t<¢, + T,, can be
written as the sum of sinusoids. Or

g(t)=a,+ a,cosw,t+ a,cos2m,t+ ...+ b sinwyt + b, st + ...

o0
=aqa,+ anlan cosnm,t+b, sinnw,t

Series coefficients

0 = <g(t),cosna)ot> b - <g(t),sinna)0t>

(cosnayt,cosnat) " (sinneyt,sinnayt)
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Trigonometric Fourier Coefficients

Therefore 1+T,
j g(t)cosnw,tdt
1,
an = 1 H+T, 2
j COS” naw,tdt
4
As 4 +To 2 hWtly . 5
I cos” nwytdt =T, /2, I sin” newytdt =T, /2.
b b
We get 1 ¢o+r
? a, =— g (H)dt
T 4
0
2 ¢ u+h
a =— g(t)cosnotdt n=1,23,..
" TO Jy
2 o+l .
b = T g(t)sinnagdt n=1,2,3,...
L4 tl
0
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Compact Fourier series
Using the identity
a,cosnw,t+b simnayit=C cos(nw,t+06,)

where
C =+a +b O =tan”'(-b /a,).

The trigonometric Fourier series can be expressed in compact form as

g(t)=Cy+ Y .C cos(nwt+0,) 1, <t<t,+T,

n=1

For consistency, we have denoted q, by C,.
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Periodicity of the Trigonometric series

We have seen that an arbitrary signal g(¢) may be expressed as a trigonometric Fourier series
over any interval of 7,, seconds.

What happens to the Trigonometric Fourier series outside this interval?
Answer: The Fourier series is periodic of period 7|, (the period of the fundamental harmonic).
Proof:

#(1)=C,+ Y .C, cos(nwyt+6,)  forallt

n=1

and
pt+T)=Cy+Y.  C,cos| nw,(t+T,)+0, |
=Cy+ Y. C,cos(nayt+2nr+0,)
=Cy+ Y. C,cos(nay+0,)
=¢(1) for all ¢

61

Properties of trigonometric series

e The trigonometric Fourier series is a periodic function of period 7, = 27/w,.

e |[f the function g(¢) is periodic with period 7, then a Fourier series
representing g(¢) over an interval 7, will also represent g(¢) for all «.
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Example

g(ty=e ™2

0 m t
¢ (®)
|
| _
0 )
2n
Example

w,=2n/Ty=2rad/s.

g(t)=C, +D.C, cos(2nt +6,)

n=1

n 0 1 2 3 4
C, 0.504 0.244 0.125 0.084 0.063
0, 0 -75.96 -82.87 -85.84 -86.42

We can plot
e the amplitude C, versus w this gives us the amplitude spectrum
e the phase 6, versus o (phase spectrum).

This two plots together are the frequency spectra of g(¢).




Amplitude and phase spectra

w
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Exponential Fourier Series

Consider a set of exponentials
e p=0,£1,12,...
The components of this set are orthogonal.

A signal g(¢) can be expressed as an exponential series over an interval 7,
g(t)= i De"™ D = i_[ g(t)e "™ dt
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Trigonometric and exponential Fourier series

Trigonometric and exponential Fourier series are related. In fact, a sinusoid

in the trigonometric series can be expressed as a sum of two exponentials

using Euler’s formula.

Cr . B
C, cos(nw,t+6,)= 7n [ ol i) L, ](na)ot+9n):|

— ( (;n ejﬁn jejna)ot + (% e—jH,, j e—jna)ot

_ Jnayt — jnayt
=De™ +D e

D, = 1 Cneja" D = 1 Cne_j o
2 2
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Amplitude and phase spectra. Exponential case

LD
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Parseval’s Theorem

Trigonometric Fourier series representation g(¢)=C, + Zw_lCn cos(nw,t+0,).
The power is given by

1 0

2
P =Ci+-).C.

2 n=1
Exponential Fourier series representation g(¢) = Zw_ D e ™",
Power for the exponential representation

e¢]

F=2.1P,

n=—0oo

2

Conclusions

e Trigonometric Fourier series

e Exponential Fourier series

Amplitude and phase spectra

Parseval’s theorem
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Lecture five

Lecture Aims

e To introduce Fourier integral, Fourier transformation
e To present transforms of some useful functions

e To discuss some properties of the Fourier transform
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Introduction

e We electrical engineers think of signals in terms of their spectral content.

e \We have studied the spectral representation of periodic signals.

e \We now extend this spectral representation to the case of aperiodic
signals.

Aperiodic signal representation

We have an aperiodic signal g(¢) and we consider a periodic version g(f) of such
signal obtained by repeating g(¢) every T, seconds.

gt

g (V)

0

(81
9=
-




The periodic signal g7,(?)

The periodic signal g7,(¢) can be expressed in terms of g(¢) as follows:

g, ()= g(t—nTy)

n=—0o0

Notice that, if we let 7, — «, we have

lim g, (1) = g(0).
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The Fourier representation of g7,(?)

The signal g7(¢) is periodic, so it can be represented in terms of its Fourier series.
The basic intuition here is that the Fourier series of g7(¢) will also represent g(7) in the
limit for 7;, — <°.

The exponential Fourier series of gz(?) is

gTo (ZL) — Z Dnejna)ot,

n=—ao0

where
T,/2

1 — 'na)ot
D .3 | g (D e

and 21
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The Fourier representation of g7,(?)

Integrating gr,(¢) over (—7,/2, T,/2) is the same as integrating g(¢) over ( —«, «). So we
can write

1 cw .
D =— He "' dt.
=T [ e

If we define a function

G(w) = j“; g(t)e /™ dt

then we can write the Fourier coefficients D, as follows:

1
Dn = FG(I’Z(OO)

0
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Computing the lim ,, ... g7(?)

Thus g7,(¢) can be expressed as:

) . 0 . 2
fog (1)= Z Dnejnwot = Z Mef’m’ot where o, = _ﬂ-
' n=—oo n=—o TE) ]—(Y)

: 1 A . .
Assuming _:2_“) (i.e., replace notation @, by Aw), we get
T
0

S G(MAO)A® o op0:
gTO(f)ZZ (27[) e/,

n=—0o0

In the limit for 7, — =, Aw — 0 and gr(?) — g(?).
We thus get:

g®)=lm, g (H)=lm, Zw G(”éw)Aa’ej(nAwy
0 0 n=—00 T

1 (o .
=— | G(w)e'”do.
27 '[“” (@)
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Fourier Transform and Inverse Fourier Transform

What we have just learned is that, from the spectral representation G() of g(¢), that is, from
G(o)=] e dr,
we can obtain g(¢) back by computing

1 ¢ .
=—/| G(w)e'"dw.
s)=—[ G(o)

Fourier transform of g(¢):

G(o)=|_ gt)e’™™at.
Inverse Fourier transform:
1 o .
g(t)=— j G(w)e’" dw.
27
Fourier transform relationship:

g(t) = G(w).
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Example

Find the Fourier transform of g(¢) = e “u(¢).

0

o0 _ i o0 —(a+io 1 oo
G(CO)=I e “u(t)e”’ fdt:J‘ PR p———
- 0 a+ jw

Since ‘e_’“’t‘ =1, we have that lim, _ e “e™’®. Therefore:

G(@)=——., |G| ==

. .
tjo Va' + o’

0,(w)=—tan™ (2).
a
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Some useful functions

The Unit Gate Function:

1 rect(x)

The unit gate function rect(x) is defined as:

Some useful functions

The function sin(x)/x ‘sine over argument’ function is denoted by sinc(x):

’ \ sncix)

e sinc(x) is an even function of x.

® sinc(x) = 0 when sin(x) = 0 and x # 0.

Using L’Hospital’s rule, we find that sinc(0) = 1

sinc(x) is the product of an oscillating signal sin(x) and a monotonically decreasing

function 1/x.




Example

Find the Fourier transform of g(¢) = rect( /7).

_ * i —jwr _ 7/2 —jwr
G(w) —jmrect(rje dt —J-_T/ze dt
_ _L(e_jm/z _ el = 2sin(w7/2)
Jjo 0]
=7 s1z1(a)/72/ )2) = rsinc(wz/2).
T

Therefore

rect(t/t) < tsinc(wr/2)

Example

Find the Fourier transform of the unit impulse J(¢):

j“’ S(t)e " dt = e

Therefore

o) & 1

Find the inverse Fourier transform of 6(w):

1
27
Therefore

1 o 278(w)

t=0

=1.

" S(w) e de=——.
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Example

Find the inverse Fourier transform of o(w — ,):

i _25(0)— w,) e "dw = iemt.
Therefore
e o 278(w- w,)
and
e/ o 2mo(w+w,)

Example

Find the Fourier transform of the everlasting sinusoid cos(w?).

Since 1
COS((()OZ‘) - E(ejw()t n e—ja)ot)

and using the fact that '’ < 276 (w—w,) and e’ < 275 (w+ ),

we discover that

cos(wyt) < 7| 5(w+m,)+5(w-a,)].




Summary

Fourier transform of g(¢): o ‘
G(w) = j g(t)e '™ dt,

Inverse Fourier transform: |
() =— j G(w)e’ dw.
279

Fourier transform relationship:

2(t) < G(w).
Important Fourier transforms:

rect(t/t) < tsinc(wz/2)
o) < 1

cos(wyt) < 7| S(w+a,)+5(w-,)].
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Lecture Aims

e To present some properties of the Fourier transform

Topics Covered

e Fourier transform table

e Symmetry of Fourier transformation

e Time and Frequency shifting property

e Convolution

e Time differentiation and time integration

e Please read Lathi & Ding




Some properties of Fourier transform

né(w) + —
Jw

g(t) G(w)
—~at 1
1 e "u(t) e a>0
2 e u(~t) : - a>0
a-—jw
3 e~ ¥l e a>0
a* 4+ w*
-at 1
4 te™ " u(t) @t o) a>0
n,-a ' n!
3 t’ e ’H(f) m;-f a>0
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Some properties of Fourier transform
6 3() 1
7 1 291 8(en)
8 gl ot 28 (w — wy)
9 , cos wyt 8w — ap) + 8(w + wp))
10 sin wot Jjrld{w + wy) — §(w — wp)]
11 u(t) 1
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12

13

14

15

16

17

18

Some properties of Fourier transform

2
sgn ¢t -
jw
cos ant u(r) +[5(w — wp) + 8(w + w0)] + 1
.- UJO == w"
_ T
sin oot u(l) 2180 — w) = (@ + an)] + ——
J g =
—al _s Wy
e~ sin wyt u(t)
(a + jw)? + wj et
e~ cos wot u(?) g a>0

(@ + jw)? + w}
t T
rect (;—) t sinc (—2—-)

- ine G40 st (57)
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Some properties of Fourier transform

" A( ) ! oc? ()

20 -“—/ sinc? (_HE) A( ¢ )

o 2 2W
o (= ¢}
21 D 8t —nT) wo D 8(w— naw)
ne=—0Q n=—00 -

22 e=1’/29? o2me=0 12
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Fourier transform pair

3( f )p_jm ‘dI’

g(®) G(w)

1 - H
= I G(w) ’®'do
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Symmetry Property

e Consider the Fourier transform pair

g(t) < G(o)
e Then G(t) = 2rg(—w)
e Example | e

(a)

®)
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Scaling Property

e Consider the Fourier transform pair

g(t) = G(w)
1
e Then g(at)@—G(g
q| " a
e Example o
1
i 0 I -
2 2
g(t)
1
-1 0 i T
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Time-Shifting Property

e Consider the Fourier transform pair
g(t) & G(o)

e Time shifting introduces phase shift
g(t—1,) & G(w)e ™

e Example

o)
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Frequency-Shifting Property

e Consider the Fourier transform pair
g(t) < G(o)
e Exponential multiplication introduces frequency shift
g(1)e’”" < G(w-w,) g(t)e’" < G(o+ w,)

e Cosine multiplication leads to

g(f)cos w,t = %[ g(e™™ + g(t)e '™ |

g(t)cosw,t < %[G(a)— @,)+G(w+ a)o)]
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Frequency-Shifting Property

|G(m}
l‘li!m}r

£ W
SO LY
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Frequency-Shifting Property

80

1

el i)

N
f

fa)

g(r) cos w4t
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Fourier transform of periodic functions

e Find the Fourier transform of a general periodic signal g(¢) of period T},

e A periodic signal g(f) can be expressed as an exponential Fourier series as

e)=Y D @ =
g(t) = i F|De" |

g(t) o 2x i D,5(w—naw,)

n=—00
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Fourier transform of periodic functions

e Consider a periodic waveform given by

g(1) = Z Wt —nT,)) w(r>={

non-zero 7T,/2< ‘t‘

0 otherwise
e where
g(t)= Z D e w(t) & W(w)
gy G(w)=2rx Zn: D 6(w-naw,) D = TLO '[To g(t)e " dt =@
— ‘@ 0
Dy D4 1Dy Dy D] AT

Dy Dyl D5l Dy

t 1t 4 t t ot .

4w, -3, 2w, -y 0 o)
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Fourier transform of periodic functions

e Find the Fourier transform of a unit impulse train J(¢) of period 7,

w(t)=0(t) & W(w)=F((t)=1

| .o
g\)

ity e

3Ty ~To (I) 2Ty 4To g(t)<:>2T—7T Z o(0—naw,)

{——>
0 n=-—o

oo
= wo ) 8~ nw)

-
3 S - -

—2 oo o 2 oo
-
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Convolution

The convolution of two functions g(7) and w(z),

g)*w(t)= [ gr)wt—r)dr

e Consider two waveforms

g()=G(ow) g0 <G, (0)

e Convolution in time domain
g1(t) *gz(t) N Gl(a))Gz (w)

e Convolution in the frequency domain

80,0 = 5= (0)*Gy(®)
/A

Time Differentiation and Time Integration

e Consider the Fourier transform relationship

g(t) < G(o)

e The following relationship exists for integration

[ gdr = D) | 26(0)5(w)

jaw

e The following relationship exists differentiation

ag) joG(w) d8) < (jo)'G(o)

dt dt"




Important Fourier Transform Operations

Fourier Transform Operations

Operation g(1) G(w)
Addisina 3 (N L 2:¢ n () 4 Galm)
Scalar multiplication kg(r) kG(w)
Symmetry G(@1) 2rg(~w)
Scali (at) 1 (2)
caling g il @
Time shift gt —1to) G(w)e ™™
Frequency shift g(r)el™’ G(w — wy)
Time convolution 81(t) * g2(1) Gl‘ (@)G2(w)
i —G
Frequency convolution ,f;n(r)gz (6 = 1 (@) * G2 (w)
Time differentiation drf (j)"G(w)
J " Gw)
Time integration f g(x) dx o +nG(0)8(w)
-0
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An Example of Fourier Transform Properties

Given the Fourier Transform pair of g(t) and G(w),

find the Fourier Transform F(w) of == dg (t) .

o0

F(w)= [%LDe-og

dt

= | e /""dg (1)

— o0

e g ()7, — [ g(tyde I

=0+ jo [ g(t)e 'dl

= jo G(o)
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Conclusions

Examined some properties of Fourier transforms

Scaling property
Time shifting property
Frequency shifting property

Examined Fourier Transform of periodic functions

General case
Unit Impulse function

Examined Convolution

Examined Fourier transforms for

Integration

Differentiation




