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Experiment	1:	Fourier	Transform	of	Rectangular	Pulse	Signal		

Introduction:	The	discrete	Fourier	transforms	(DFTs),	which	are	Fourier	
transforms	of	a	collection	of	signal	samples	(e.g.,	those	obtained	by	sampling	a	
continuous-time	signal),	is	the	powerful	tool	of	digital	signal	processing.	DFTs	
are	often	computed	by	a	technique	named	fast	Fourier	transforms	(FFTs),	
which	is	designed	to	compute	DFTs	with	reduced	execution	time.	The	
MATLAB®	software	provides	the	fft	and	ifft	functions	to	compute	the	
discrete	Fourier	transforms	and	their	inverse	(both	based	on	the	FFT	
technique),	respectively.	These	two	functions	will	be	used	in	our	experiments	
in	the	following.		

Experiment	1.1	–	Convert	signal	from	time	to	frequency	domain		

In	this	experiment,	we	generate	a	rectangular	pulse	signal	f(t)	in	time	domain	
and	then	take	the	Fourier	transform	of	it.	First,	copy	and	paste	the	following	
code	to	the	MATLAB	command	window	in	order	to	generate	and	visualize	the	
rectangular	pulse	signal	in	time	domain.	

clear;clc    % clear command history and all variables   
T = 20;    % tunable parameter for the signal width   
dt=.001;        % increment 
t=[-(10+T):dt:(10+T)];  % range of the signal  
x=sign(t+T)-sign(t-T);  % generate the rectangular pulse signal  
plot(t,x);    % visualize the signal in time domain  
title('Pulse signal');  % title of the plot 
xlabel('Time (msec)');  % label x-axis 
ylabel('Signal f(t)');  % label y-axis   
axis([-(30+T) (30+T) 0 3]); % set display range of x- and y-axis 
	

Use	the	following	MATLAB	code	to	use	the	fft function	to	perform	Fourier	
transform	on	the	generated	rectangular	pulse	signal	and	visualize	the	
magnitude	of	the	rectangular	pulse	signal	in	frequency	domain.	

y=fftshift(fft(x));   % apply Fourier transform and move zero 
frequency component to the center  

N=length(y);           % measure frequency range  
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n=-(N-1)/2:(N-1)/2;   % evenly divide frequency range around zero 
frequency 

f=sqrt(y.*conj(y));  % calculate amplitude of the frequency signal 
plot(n,f);     % visualize the signal in time domain  
title('Frequency spectrum amplitude for the rectangular pulse');  
                              % set title of the plot  
xlabel('Frequency (Hz)');   % label x-axis 
ylabel('Frequency spectrum amplitude');  % label y-axis 
axis([-50 50 0 70000]);  % set display range of x- and y-axis 
	

Observation:	Change	the	tunable	parameter	T	highlighted	in	red	given	above,	
therefore	change	the	width	of	the	time-domain	signal.	By	cut	and	paste	the	
revised	code	to	the	MATLAB	command	window,	repeat	the	experiment	and	
observe	the	changes	of	the	corresponding	FFTs	in	frequency	domain.	

Experiment	1.2	–	Convert	from	frequency	to	time	domain	with	all	frequency	
components		

We	apply	inverse	Fourier	transforms	in	frequency	domain	to	recover	the	signal	
in	time	domain.	The	following	script	using	MATLAB	function	ifft	can	achieve	
the	inversion.	

Y=ifft(y);         % take the inverse Fourier transformation  
plot (t,abs(Y));        % visualize the signal in time domain  
title('Reconstruct the pulse signal from Fourier series');   

                       % set title of the plot 
xlabel('Time(ms)');          % label x-axis 
ylabel('Recovered f(t)');    % label y-axis 
axis([-(30+T) (30+T) 0 3]);  % set display range of x- and y-axis 

 
	

Experiment	1.3	–	Convert	from	frequency	to	time	domain	with	ideal	low-pass	
filter	(i.e.,	loss	of	high-frequency	signal	components)	

Instead	of	using	all	frequency-domain	components	to	reconstruct	the	time-
domain	signal,	we	only	select	and	use	a	range	of	low-frequency	components	to	
reconstruct	the	time-domain	signal.	

In	order	to	achieve	this,	we	construct	a	filter	that	only	lets	low-frequency	signal	
components	to	pass	through,	while	blocking	high	frequency	components.	Use	
the	following	MATLAB	code	to	realize	the	low-pass	filter.	

w = 50;        % tunable parameter for filter bandwidth  
fil=sign(n+w)-sign(n-w);      % specify the low-pass filter  
plot(n,fil);        % visualize the filter response 
title('Ideal low-pass filter');  % set title of the plot 
xlabel('Frequency (Hz)');        % label x-axis 
ylabel('Amplitude');             % label y-axis 
axis([-(w+20) (w+20) 0 3]);      % set display range of x- and y-axis 
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It	can	be	seen	that	the	filter	is	a	rectangular	pulse	signal	around	zero	frequency	
in	frequency	domain.	Then	we	apply	this	filter	to	the	frequency-domain	signal	
and	perform	the	inverse	Fourier	transform	on	the	filtered	frequency-domain	
signal.	

w = 50;     % tunable filter bandwidth  
fil=sign(n+w)-sign(n-w);  % specify the low-pass filter 
f2=fil.*y;        % f2 is the filtered output of original frequency signal 
Y1=ifft(f2)/2;    % apply inverse Fourier transform to the filtered signal  
plot (t,abs(Y1)); % reconstructed filtered signal in time domain  
hold on;          % hold for another plot 
plot (t,abs(Y));  % reconstructed unfiltered signal in time domain 
legend('Reconstructed signal with loss (filtered)', 'Reconstructed signal 
without loss');   % legend of two plots 
title('Compare signal reconstructed from filtered Fourier series with the 
original signal');% set title of the plot 
xlabel('Time (msec)');                % label x-axis 
ylabel('Original or reconstructed');  % label y-axis 
axis([-(10+T) (10+T) 0 3]);           % set display range of x- and y-axis 
	

Observation	1:	Compare	the	two	reconstructed	time-domain	signals	using	all	
frequency-domain	components	and	partial	frequency-domain	components,	
respectively.	What	are	the	differences?		

Observation	2:	Vary	the	tunable	parameter	w	highlighted	in	red	in	the	code	
above,	therefore	change	the	bandwidth	width	of	the	low-pass	filter	(in	
frequency	domain).	Repeat	the	experiment	and	observe	the	changes	in	the	
corresponding	reconstructed	time-domain	signals.		

	

Experiment	2:	Fourier	Transform	of	Audio	Signals		

	

This	section	experiments	the	Fourier	transform	of	audio	signals.	Specifically,	
Experiment	2.1	converts	several	downloaded	audio	signals	in	time	domain	to	
frequency	domain,	whereas	experiment	2.2	gives	you	the	opportunity	to	
record	and	analyse	your	own	voice	signal.	

Experiment	2.1	-	Fourier	transform	of	downloaded	audio	signals	

In	this	experiment,	we	perform	Fourier	transform	of	the	following	audio	
sources:		

Male	human	voice	http://www.kozco.com/tech/LRMonoPhase4.wav		
Piano	http://www.kozco.com/tech/piano2.wav		
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Snare	drum	http://audio.routledge-
interactive.s3.amazonaws.com/9780240821535/mixing_home/gated_kick.mp
3	
Please	click	the	above	URL	links	to	download	the	audio	files.		Make	sure	that	
these	audio	files	are	downloaded	into	your	current	MATLAB	directory.	First,	
use	the	following	MATLAB	code	to	load	and	visualize	the	signal	in	time	domain.	

s = audioread('LRMonoPhase4.wav');  
s = s(:,1); % extract one sound track only 
            % load different audio source by changing the file name in ('') 
plot(s);    % visualize the signal in time domain 
	

Next,	perform	Fourier	transform	and	visualize	the	audio	signal	in	frequency	
domain.	Use	the	following	MATLAB	code.	

Fs = 44100;                    % sample rate of the audio signal 
N = length(s);                 % the number of samples of the audio signal  
transform = fft(s,N);          % apply Fourier transform  
magTransform = abs(transform); % magnitude of the FFT 
faxis = ((-0.5:1/N:0.5-1/N)*Fs).';  % frequency range of the signal  
plot(faxis,fftshift(magTransform)); 
xlabel('Frequency (Hz)'); 
ylabel('Spectrum magnitude'); 
xlim([-1000 1000]); 
	

Using	the	following	code,	you	can	plot	all	three	signals	in	a	single	plot	to	
compare	the	differences	of	their	frequency-domain	components	among	the	
audio	signals.		

s1 = audioread('LRMonoPhase4.wav');  
s2 = audioread('piano2.wav');  
s3 = audioread('gated_kick.mp3');  
Fs = 44100;                     
N1 = length(s1); 
N2 = length(s2); 
N3 = length(s3); 
transform1 = fft(s1,N1);   
transform2 = fft(s2,N2); 
transform3 = fft(s3,N3); 
magTransform1 = abs(transform1); 
magTransform2 = abs(transform2); 
magTransform3 = abs(transform3); 
faxis1 = ((-0.5:1/N1:0.5-1/N1)*Fs).'; 
faxis2 = ((-0.5:1/N2:0.5-1/N2)*Fs).'; 
faxis3 = ((-0.5:1/N3:0.5-1/N3)*Fs).';  
plot(faxis1,fftshift(magTransform1(:,1)),'m-+'); 
hold on 
plot(faxis2,fftshift(magTransform2(:,1)),'b-s'); 
plot(faxis3,fftshift(magTransform3),'k-p'); 
xlim([-2000 2000]); 
lgd = legend('male human voice','piano','snare drum'); 
lgd.FontSize = 10; 
set(gca,'fontsize',10) 
grid on 
xlabel('Frequency (Hz)'); 
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Experiment	2.2	-	Fourier	transforms	of	your	own	voice	signal		

In	this	experiment,	you	have	the	opportunity	to	record	and	analyse	your	own	
voice	signal.	Please	make	sure	that	the	microphone	is	turned	on	and	connected	
to	your	computer.	The	audio	recording	is	done	via	the	audiorecorder	
function	in	MATLAB.	This	function	is	used	to	create	the	audiorecorder 
object,	which	may	take	the	following	parameters:	
	

1) Fs	corresponds	to	the	sampling	frequency	(in	Hz)	that	will	be	applied	to	
your	voice	signal.	You	need	to	choose	one	of	the	standard	values:	8000,	
11025,	22050,	or	44100.	Remember	that	from	the	sampling	theorem,	
the	sampling	frequency	should	be	at	least	twice	the	maximum	frequency	
of	the	signal.	You	may	choose	44100	Hz,	if	you	want	to	work	on	a	signal	
with	a	wide	frequency	range.	

2) nbits	corresponds	to	the	number	of	bits	used	to	represent	each	
sample.	The	standard	values	are	8,	16,	24	or	32	bits	where	the	last	two	
are	only	available	on	24-bit	and	32-bit	sound	devices.	A	reasonable	
choice	is	16	bits	to	represent	each	sample,	which	will	be	used	in	this	
experiment.	

3) channels		is	the	number	of	channels	used	in	the	recording.	Possible	
values	are	1	(for	mono)	and	2	(for	stereo).	If	you	are	recording	using	only	
one	microphone,	you	just	need	1	channel;	

4) id	corresponds	to	the	DeviceID	of	the	device	that	is	being	used.	Here,	
we	can	use	the	value	found	in	audiodevinfo.	

The	following	setting	serves	as	an	example:	

Fs = 44100; 
nbits = 16; 
dev_id = getfield(getfield(audiodevinfo, 'input'), 'ID');  
                            % obtain the ID of the computer's soundcard 
arec = audiorecorder(Fs, nbits, 1, dev_id);  
                            % create the audiorecorder object 
	

After	creating	the	audiorecorder	object,	you	can	start	recording	your	
voice	by	using	a	microphone	connected	to	the	mic	input	of	a	computer.	To	
start,	pause,	resume	and	terminate	the	recording,	use	the	following	commands,	
respectively.	

record(arec) 
pause(arec) 
resume(arec) 
stop(arec) 
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Then,	use	the	following	command	to	extract	the	recorded	data.	

data = getaudiodata(arec); 
	

Finally,	use	the	recorded	voice	signal	as	input	and	repeat	the	steps	in	
Experiment	2.1,	use	the	following	code.	

Fs = 44100;                    % sample rate of the audio signal 
N = length(data);              % the number of audio signal samples 
transform = fft(data,N);       % apply Fourier transform  
magTransform = abs(transform); % magnitude of the FFT 
faxis = ((-0.5:1/N:0.5-1/N)*Fs).';  % frequency range of the signal  
plot(faxis,fftshift(magTransform)); 
xlabel('Frequency (Hz)'); 
ylabel('Spectrum magnitude'); 

	

	

Experiment	3:	Modulation	

You	will	experiment	signal	modulation	in	MATLAB.	Two	modulation	methods,	
namely	Amplitude	Modulation	(AM)	and	Frequency	Modulation	(FM),	will	be	
explored	here.	In	general,	any	type	of	modulation	method	typically	involves	
three	main	steps:	(1)	generate	the	modulating	signal,	(2)	generate	the	carrier	
signal,	and	(3)	modulate	the	carrier	signal	with	the	modulating	signal.	These	
steps	will	first	be	demonstrated	separately	in	the	AM	experiment	below.		

	

Experiment	3.1	-	Amplitude	modulation	(AM)	

First,	generate	and	visualize	the	modulating	signal	using	the	following	MATLAB	
code.	

Am=2;                         % set the amplitude of modulating signal 
fa=2000;                      % set the frequency of modulating signal 
Ta=1/fa;                      % set the time period of modulating signal 
t=0:Ta/999:6*Ta;              % set the total time for simulation 
ym=Am*sin(2*pi*fa*t);         % synthesize the modulating signal 
plot(t,ym);                   % visualize the modulating signal 
grid on;                      % include grid in the plot  
title ('Modulating signal'); 
xlabel ('Time'); 
ylabel ('Modulating signal m(t)'); 
ylim([-5 5]); 
	

Next,	generate	and	visualize	the	carrier	signal	using	the	following	MATLAB	
code.	

Ac=3;     % set the amplitude of carrier signal 
fc=fa*10;    % set the frequency of carrier signal 
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Tc=1/fc;    % set the time of carrier signal 
yc=Ac*sin(2*pi*fc*t);   % synthesize the carrier signal 
plot(t,yc);     % visualize the carrier signal 
grid on;      % include grid in the plot 
title ('Carrier signal'); 
xlabel ('Time (sec)'); 
ylabel ('Carrier signal fc(t)'); 
ylim([-5 5]); 

 
Finally,	modulate	the	carrier	signal	with	the	modulating	signal,	and	visualize	
the	modulated	signal	using	the	following	MATLAB	code.	

A=3;        % AM carrier offset 
y=(A+Am*sin(2*pi*fa*t)).*sin(2*pi*fc*t); % Full AM with carrier offset A  
plot(t,y); 
grid on;   
title ('Amplitude modulated signal'); 
xlabel ('Time (sec)'); 
ylabel ('Signal');		
axis([0 2*10^(-3) -7 7]);   
	

In	order	to	compare	the	modulating	signal,	the	carrier	signal,	and	the	
modulated	signal	in	time	domain,	you	can	plot	them	on	top	of	each	other	in	
the	same	figure	using	MATLAB	function	subplot. 

subplot(3,1,1);plot(t,ym);    
ylim([-6 6]); 
ylabel('Signal');xlabel('Time');title('Modulating signal'); 
subplot(3,1,2);plot(t,yc);    
ylim([-6 6]); 
ylabel('Signal');xlabel('Time');title('Carrier signal'); 
subplot(3,1,3);plot(t,y);     
ylim([-6 6]); 
ylabel('Signal');xlabel('Time');title('Full AM modulated signal'); 
	

Also,	it	is	helpful	to	visualize	the	frequency-domain	equivalents	of	the	three	
time-domain	signals	using	the	following	MATLAB	code.	

Fs = 10000; 
y1=fftshift(fft(ym,length(ym)));   
N1=length(y1);          
n1=(-0.5:1/N1:0.5-1/N1)*Fs;   
f1=sqrt(y1.*conj(y1));  
y2=fftshift(fft(yc,length(ym)));   
N2=length(y2);          
n2=(-0.5:1/N2:0.5-1/N2)*Fs;   
f2=sqrt(y2.*conj(y2)); 
y3=fftshift(fft(y,length(y)));   
N3=length(y3);          
n3=(-0.5:1/N3:0.5-1/N3)*Fs;   
f3=sqrt(y3.*conj(y3)); 
subplot(3,1,1);plot(n1,f1);  xlim([-150 150]); 
ylabel('Amplitude');xlabel('Frequency');title('Modulating signal'); 
subplot(3,1,2);plot(n2,f2);  xlim([-150 150]); 
ylabel('Amplitude');xlabel('Frequency');title('Carrier signal'); 
subplot(3,1,3);plot(n3,f3);  xlim([-150 150]); 
ylabel('Amplitude');xlabel('Frequency');title('Full AM signal'); 
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Experiment	3.2	-	Frequency	modulation	(FM)	

To	experiment	with	FM	in	MATLAB,	the	three	steps	given	above	are	applicable.	
However,	instead	of	using	pre-determined	parameters,	this	time	you	will	be	
given	the	opportunity	to	set	experiment	parameters,	including	the	carrier	
frequency	and	the	modulating	signal	frequency,	by	pop-up	prompt	in	the	
command	window.	Use	the	following	MATLAB	code	to	achieve	this.	

clear;clc 
fm=input('Message Frequency = (recommended value: 25)'); 
fc=input('Carrier Frequency = (recommended value: 400)'); 
mi=input('Modulation Index = (recommended value: 10)'); 
t=0:0.0001:0.11; 
m=sin(2*pi*fm*t); 
c=sin(2*pi*fc*t); 
y=sin(2*pi*fc*t+(mi.*-cos(2*pi*fm*t))); 
                         % note that the integral of sin(x) is -cos(x);              
figure; 
subplot(3,1,1);plot(t,m); ylim([-2 2]); 
ylabel('Signal');xlabel('Time');title('Modulating signal'); 
subplot(3,1,2);plot(t,c); ylim([-2 2]);  
ylabel('Signal');xlabel('Time');title('Carrier signal'); 
subplot(3,1,3);plot(t,y); ylim([-2 2]);  
ylabel('Amplitude');xlabel('Time');title('FM signal'); 
Fs = 10000; 
y1=fftshift(fft(m,length(m)));   
N1=length(y1);          
n1=(-0.5:1/N1:0.5-1/N1)*Fs;   
f1=sqrt(y1.*conj(y1));  
y2=fftshift(fft(c,length(c)));   
N2=length(y2);          
n2=(-0.5:1/N2:0.5-1/N2)*Fs;   
f2=sqrt(y2.*conj(y2)); 
y3=fftshift(fft(y,length(y)));   
N3=length(y3);          
n3=(-0.5:1/N3:0.5-1/N3)*Fs;   
f3=sqrt(y3.*conj(y3)); 
figure; 
subplot(3,1,1);plot(n1,f1); ylim([0 600]); xlim([-1000 1000]); 
ylabel('Amplitude');xlabel('Frequency');title('Modulating signal'); 
subplot(3,1,2);plot(n2,f2); ylim([0 600]); xlim([-1000 1000]); 
ylabel('Amplitude');xlabel('Frequency');title('Carrier signal'); 
subplot(3,1,3);plot(n3,f3); ylim([0 600]); xlim([-1000 1000]); 
ylabel('Amplitude');xlabel('Frequency');title('FM signal'); 
 

Similar	to	Experiment	3.1,	the	above	code	generates	one	figure	showing	the	
modulating	signal,	the	carrier	signal	and	the	frequency	modulated	signal,	as	
well	as	a	second	figure	showing	their	frequency-domain	equivalence.	You	can	
re-run	this	experiment	with	the	modulating	and	carrier	signals	of	different	
frequencies.		
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