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ABSTRACT

The theory of sampling signals with finite rate of innovation
(FRI) has shown that it is possible to perfectly recover classes
of non-bandlimited signals such as streams of Diracs from
uniform samples. Most of previous papers, however, have to
some extent only focused on the sampling of periodic or finite
duration signals.

In this paper we propose a novel method that is able to re-
construct infinite streams of Diracs, even in high noise scenar-
ios. We sequentially process the discrete samples and output
locations and amplitudes of the Diracs in real-time. We first
establish conditions for perfect reconstruction in the noiseless
case and then present the sequential algorithm for the noisy
scenario. We also show that we can achieve a high recon-
struction accuracy of1000 Diracs for SNRs as low as 5dB.

Index Terms— Analog-to-digital conversion, finite rate
of innovation, sampling theory, annihilating filter.

1. INTRODUCTION

Streams of Diracs are the canonical example of signals with
finite rate of innovation (FRI) in that they are completely
specified by a finite number of parameters per unit of time.
Periodic streams of Diracs are sampled and perfectly recon-
structed in [1] using the sinc kernel. Authors in [2, 3] instead
propose the use of kernels that reproduce polynomials or ex-
ponentials and also propose a sequential algorithm to sample
and perfectly reconstruct infinite streams of Diracs. The se-
quential algorithm, however, was designed to deal only with
noiseless samples. The family of sum of sincs (SoS) kernels
was introduced in [4] for the sampling of periodic stream
of pulses such as Diracs, authors also consider the case of
infinite streams of Diracs. However, their method requires
that the stream of Diracs be ‘bursty’. Specifically, a group of
K Diracs must be followed by a long period of absence of
Diracs in order for the method to work. They also assume
that the reconstruction algorithm is synchronised with the
sampling process in order to be automatically in phase with
the time window containing the burst of Diracs.
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Fig. 1: Acquisition device.

In this paper we propose a novel approach to reconstruct
infinite streams of Diracs, in high noise scenarios, with no
clear separation between bursts. We sequentially process the
discrete samples and output locations and amplitudes of the
Diracs in real-time. We first establish conditions for perfect
reconstruction in the noiseless case and then present the se-
quential algorithm for the noisy scenario. We show through
simulations that the algorithm is able to process10000 sam-
ples in about100 seconds and that it can retrieve with high
accuracy1000 Diracs even in very low SNR regimes.

The paper is organised as follows. In Section 2 we review
the case of sampling and reconstructing a finite stream ofK

Diracs as presented in [3]. In Section 3 we explain our se-
quential algorithm in detail. We treat the noiseless and noisy
scenario separately, the former to establish conditions for per-
fect reconstruction, the latter for application in more realistic
situations. To end, we validate our algorithm with simulations
in Section 4 and conclude in Section 5.

2. SAMPLING FRI SIGNALS

We consider the case of a stream ofK Diracs xptq �

°K

k�1
ak δ pt� tkq , ak, tk P R, wherettk, aku

K

k�1
are un-

known delays and amplitudes. The continuous-time signal is
filtered with a kernel with impulse responsehptq � ϕp�t{T q

and uniformly sampled at regular intervals of timet � nT .
The acquisition process is illustrated in Figure 1. The samples
yn can be expressed as

yn �
�

xptq , ϕp t
T
� nq

D

. (1)

FRI theory [1–4] shows that for a properly chosen filter
hptq, the signalxptq can be perfectly reconstructed from the
samplesyn. We restrict our setup to exponential reproducing
kernels [3], which are functions that are able to reproduce
exponentials:
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Fig. 2: Sampling kernelshptq � ϕp�t{T q obtained from E-splines
of orderP � 15 and scaled withT � 1{16. Note that functionϕptq
is made anticausal in order to have causal sampling kernels.The
modified E-spline (eMOMS) corresponds exactly to half period of
the Dirichlet kernel of order2pP � 1q.

¸

nPZ

cm,n ϕpt� nq � eαmt, m � 0, 1, . . . , P, (2)

wherecm,n P C andtαmu
P
m�0

are design parameters and are
chosen to be purely imaginary and in complex conjugate pairs
in order to have a real valued kernelϕptq. More specifically,
we useαm � j π

P
pm �

P
2
q for m � 0, . . . , P . There ex-

ist many functions of compact support in time that satisfy the
exponential reproducing property (2), such as for example E-
splines [3] and the modified E-splines introduced in [5]. The
latter, which are a variation of the maximal-order minimal-
support kernels presented in [6], are the exponential repro-
ducing kernels that are most resilient to noise [5, 7] and are
the kernels of choice for our simulations. They are called
eMOMS. Note that these kernels have supportP � 1.

In order to recover parametersttk, aku
K

k�1
, first the sam-

plesyn are linearly combined with coefficientscm,n from (2).
This leads to a new set of measurements

sm �

¸

nPZ

cm,n yn, m � 0, 1, . . . , P. (3)

Combining (1) and (2) it follows thatsm can be expressed as
a power sum series [3]:

sm �

A

xptq , eαmt{T
E

�

Ķ

k�1

bk u
m
k , (4)

wherebk � ak e
α0tk{T anduk � ejπtk{PT . The FRI re-

covery is thus turned into an amplitude and frequency esti-
mation problem. This is a well-known problem in spectral
analysis and can be solved, for instance, with the annihilating
filter method [8]. The critical number of measurementssm
required to recover the2K parametersttk, aku

K

k�1
is exactly

2K [3]. It thus follows thatP � 1 ¥ 2K in order to achieve
perfect reconstruction.

2.1. FRI reconstruction in the presence of noise

The solution explained so far is only ideal, since noise is gen-
erally present in the acquisition process. We assume the only
source of noiseεn is added to the samplesyn. In addition,
we considerεn are i.i.d. Gaussian random variables, of zero
mean and standard deviationσ. Thus, measurements (3) be-
comes̃m �

°

nPZ cm,n pyn � εnq � sm � dm, and alterna-
tive methods are needed to retrieve the pairsptk, akq. We may
solve the problem by using the total least-squares method and
Cadzow denoising algorithm [9] introduced for FRI in [10]
or matrix pencil method [11] used for FRI in [12]. Further
alternative methods can be found in [13–15].

3. SAMPLING AN INFINITE STREAM OF DIRACS

We now consider the case of an infinite train of Diracs

xptq �
¸

kPZ

ak δ pt� tkq . (5)

The signalxptq is assumed to have a finite local rate of in-
novation, as defined in [1], of2K{τ . This means that, if we
consider a sliding window of sizeτ , the number of Diracs that
we see inside the window is always at mostK. We propose a
sequential algorithm that estimates the locations of the Diracs
of (5) by using a sliding window that sequentially covers the
interval of time

t P sti, ti � τ s . (6)

The sliding window step is ofT seconds, which equals the
sampling period. We assume thatτ is an integer multiple of
T , specificallyτ � NT . In what follows, we first establish
some conditions on the number of samplesN , the sampling
periodT and the order of the E-splines necessary to achieve
perfect reconstruction of the infinite stream (5). Second, we
present a novel approach that is able to recover Diracs in high
noise scenarios processing the stream (5) sequentially.

3.1. Noiseless case

We analyze the ideal scenario in the first place to determine
the conditions on the number of samples of the sliding win-
dowN , the sampling periodT and the supportP � 1 of the
sampling kernel that allows our algorithm to be able to pro-
vide perfect reconstruction of (5). In our approach we se-
quentially analyse sets ofN samplesyn that cover the tem-
poral interval (6). Due to the fact that we consider a finite
number of samples, there exist border effects that may stop us
from achieving perfect reconstruction. The sampling kernel
ϕpt{T q has compact supportpP�1qT . Consequently, a Dirac
influencesP�1 samples. This means that a Dirac located just
before the window of interest will generate non-zero samples
that will leak inside the window. Moreover, a Dirac located at
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Fig. 3: Border effects. (a) A nearby Dirac located before the ob-
servation windowτ influences the samplesyn of the window. (b)
A Dirac inside the window but close to the right border generates
non-zero samples outside the window.

the end of the window of interest will generate non-zero sam-
ples beyond theN samples we are considering and therefore
cannot be reconstructed. This is illustrated in Figure 3.

Since the algorithm operates sequentially we can assume
that when operating on the windowt P sti, ti � τ s we have
already perfectly recovered Diracs up to the time instantti.
Therefore their contributions can be removed and in this way
we can overcome the border effect on theleft of the window.

To overcome the border effect of theright side we deter-
mine certain conditions on the number of samplesN , the or-
derP of the kernel and the sampling periodT . We have seen
in Sec. 2 that exact recovery ofK Diracs requiresP � 1 ¥

2K. Now, let us put ourselves in the worst case scenario,
where we haveK Diracs evenly spaced with constant separa-
tionτ{K. Each Dirac influencesP�1 samples due to the sup-
port of the kernel. Therefore,K Diracs influenceKpP � 1q

samplesyn. In this worst case scenario, we have to guaran-
tee thatN ¥ KpP � 1q and combining this condition with
P � 1 ¥ 2K we arrive at

N ¥ 2K2. (7)

As previously mentioned, when a Dirac is near the end of
the interval, we are not able to perfectly reconstruct it. The
size of this area isPT . Therefore, we can only perfectly
recoverK Diracs when all of them are in a region of size
pN � P qT . Again, in the case of constant separationτ{K,
we have to guarantee that there will be a position of the slid-
ing window such that theK Diracs are in the perfect recon-
struction area. Since they can occupy an interval of maximum
sizepK � 1q

τ
K

and to make sure they are within the perfect
reconstruction area for a certain window, we restrict this in-
terval to be smaller than or equalpN � P � 1qT . Combining
these conditions and choosing the smallest possible number
of samplesN � 2K2 we obtain

pK � 1q
NT

K
¤ pN � P � 1qT

� P ¤ 2K � 1.

(8)

In addition, we know thatP has to satisfyP ¥ 2K � 1.
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Fig. 4: Noisy scenario. (a) Plot of the sequentially retrieved loca-
tions, the horizontal axis indicates the index of the sliding window
and the vertical axis the location in time. (b) Histogram of the loca-
tions shown in (a). Horizontally aligned dots in (a) lead to peaks in
the histogram in (b).

Consequently, we have that

P � 2K � 1. (9)

The sampling periodT is given by the temporal interval
NT � τ and the number of samplesN ¥ 2K2. We thus
haveT ¤

τ
2K2 .

The reconstruction algorithm processes the stream of
samples sequentially, retrieving the locations of each setof
maximumK Diracs fromN samples by applying the an-
nihilating filter method. Provided we satisfy the previously
described conditions, all Diracs will be located in the perfect
reconstruction interval of a certain position of the sliding
window, and thus recovered. From the recovered Diracs of
the current window, we recalculate theN samples that corre-
spond to this window, and only if the reconstructed samples
are identical to the original ones, the Diracs are stored. The
maximum number of DiracsK within a window has to be
estimated. This is done by trying for all possible values ofK,
and only when the correct value is estimated the reconstructed
samples will coincide with the original ones.

3.2. Noisy scenario

In the presence of noise, perfect reconstruction is not possi-
ble and the algorithm previously described becomes unstable.
Moreover, the strict conditions onN andP impose critical
sampling, since we have exactly2K values of thesm mea-
surements to retrieveK Diracs. In the noisy case we relax
this condition and allow higher values ofP . This makes the
denoising algorithms mentioned in Sec. 2.1 more effective.

We thus develop a new strategy that is also based on using
a sliding window and processing sets ofN samples in sequen-
tial order. For each window and each group ofN samples, we
retrieveK Diracs using the algorithm in Sec. 2 coupled with
matrix pencil. We then store all the locations and amplitude
retrieved in that window. We then slide the window byT and
repeat the process. When the found locations correspond to
real Diracs, they will be consistent among different positions
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Fig. 5: Sequential perfect reconstruction of a noiseless stream of
1000 Diracs with 10220yn samples. Only a small section of the
stream is shown. RateK � 5 Diracs perτ � 3.125 s. N � 50,
T � 1{16 andP � 9.

of the sliding window that capture these Diracs. Otherwise,
locations that are not correct and correspond to noise will nor-
mally be not consistent. For example, in Figure 4-(a) we plot
the retrieved locations for different windows. The horizontal
axis represents the index of the window corresponding to a
retrieved location, and the vertical axis the Dirac location in
time. Consistent locations appear as horizontal alignments of
dots, overlapping the blue lines.

In order to detect which locations are consistent, a second
step is to construct a histogram of detected locations. Only
the peaks of the histogram are assumed to correspond to real
Diracs. For a peak in the histogram above a certain threshold,
the location of the corresponding Dirac is estimated averaging
all the retrieved locations that contribute to this peak. This is
illustrated in Figure 4-(b).

Algorithm 1 Sequential FRI retrieval of Diracs

Input: pynq
NTOT

n�1
: stream of samples

Output: tptk, akqu: Dirac locations and amplitudes
1: for ni � 1 to NTOT �N � 1 do
2: Retrieve

 �

ti
k
, ai

k

�(

from pynq
ni�N�1

n�ni

3: end for
4: Construct histogram from retrieved locations

 

ti
k

(

5: Estimate Diracs from peaks of the histogram

4. SIMULATION RESULTS

We have tested both versions of the algorithm: the noise-
less case for which perfect reconstruction is possible; andthe
noisy scenario, where locations are estimated from the his-
togram of the retrieved locations. In the noiseless case we
always perfectly reconstruct the streams of Diracs with ran-
domly generated locations and amplitudes. This is illustrated
in Figure 5. The stream of Diracs is generated to satisfy the
maximum rate ofK Diracs perτ interval.

In the noisy scenario not all the Diracs are always re-
trieved, and false positives may also happen. Note also that
there is an uncertainty in the retrieved location. A retrieved
Dirac is considered to correspond to a true Dirac if the differ-
ence between the real location and the estimated location is
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Fig. 6: Noisy samples with aSNR � 10 dB and reconstructed
stream from the peaks of the histogram of the retrieved locations.
In all these simulations we used eMOMS as sampling kernel.

smaller than a threshold. Here we have set this threshold to
T {2. We randomly generate the locations of a stream of 1000
Diracs. We then take samples, contaminate them with noise
and apply the sequential reconstruction algorithm. Figure6
shows one realisation of the procedure explained before.

To further analyse the performance variation for different
levels of noise we run the algorithm over 100 different realisa-
tions of noise for various levels of SNR. Table 1 summarises
the obtained performances.

Table 1: Algorithm’s performance. Stream of 1000 Diracs (630
seconds) and10220 samples,T � 1{16 s,N � 50, P � 1 � 23.
The detection rate is given in percentage of detected true Diracs. The
false positives are the average number of detected Diracs that do not
correspond to true Diracs. The precision is the standard deviation of
the retrieved locations with respect to the true locations.

SNR (dB) 5 10 15 20

Detection rate 97.69 % 99.97 % 100.00 % 100.00 %
False positives 351.7 37.8 0.5 0.3
Precision (s) 0.0086 0.0049 0.0028 0.0018

The algorithm has been implemented in MATLAB and
tested using a commercial laptop (2.5 GHz Intel Core i5
CPU). The average time required to process10220 samples
corresponding to a stream of 630 seconds containing 1000
Diracs is about 105 seconds.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a fast sequential algorithm
to retrieve infinite streams of Diracs in noiseless and noisy
environments. In the noiseless case perfect reconstruction
is achieved. In the noisy scenario we propose to retrieve
groups ofK Diracs sequentially and to retain only those
Diracs whose locations have been consistently estimated in
overlapping sliding windows.

We showed that the algorithm is able to process10K sam-
ples in about100 seconds and can retrieve with high accuracy
1000 Diracs even in very low SNR regimes.



6. REFERENCES

[1] M. Vetterli, P. Marziliano, and T. Blu, “Sampling sig-
nals with finite rate of innovation,”IEEE Transactions
on Signal Processing, vol. 50, no. 6, pp. 1417–1428,
June 2002.

[2] P. L. Dragotti, M. Vetterli, and T. Blu, “Exact sampling
results for signals with finite rate of innovation using
Strang-Fix conditions and local kernels,” inIEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP 2005), vol. 4, March 2005, pp.
iv/233–iv/236.

[3] ——, “Sampling moments and reconstructing signals of
finite rate of innovation: Shannon meets Strang-Fix,”
IEEE Transactions on Signal Processing, vol. 55, no. 5,
pp. 1741–1757, May 2007.

[4] R. Tur, Y. C. Eldar, and Z. Friedman, “Innovation rate
sampling of pulse streams with application to ultra-
sound imaging,”IEEE Transactions on Signal Process-
ing, vol. 59, no. 4, pp. 1827–1842, April 2011.
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