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ABSTRACT oL K -
The theory of sampling signals with finite rate of innovation i 1 T ﬂ | a(t) o(—t/T) y(®) 7§ Yn
(FRI) has shown that it is possible to perfectly recoversgas - -------- ’ (RN
of non-bandlimited signals such as streams of Diracs from
uniform samples. Most of previous papers, however, have to Fig. 1: Acquisition device.

some extent only focused on the sampling of periodic or finite
duration signals.

In this paper we propose a novel method that is able to re- I this paper we propose a novel approach to reconstruct
construct infinite streams of Diracs, even in high noiseacen infinite streams of Diracs, in high noise scenarios, with no
ios. We sequentially process the discrete samples andtoutgtlear separation between bursts. We sequentially prosess t
locations and amplitudes of the Diracs in real-time. We firsdiscrete samples and output locations and amplitudes of the
establish conditions for perfect reconstruction in thesateiss ~ Diracs in real-time. We first establish conditions for petfe
case and then present the sequential algorithm for the noiggconstruction in the noiseless case and then present-the se
scenario. We also show that we can achieve a high recoffuential algorithm for the noisy scenario. We show through

struction accuracy of000 Diracs for SNRs as low as 5dB. ~ simulations that the algorithm is able to proce8800 sam-
ples in aboutl00 seconds and that it can retrieve with high

accuracyl 000 Diracs even in very low SNR regimes.

The paper is organised as follows. In Section 2 we review
the case of sampling and reconstructing a finite streaid of
1. INTRODUCTION Diracs as presented in [3]. In Section 3 we explain our se-
guential algorithm in detail. We treat the noiseless an@yoi

Streams of Diracs are the canonical example of signals witRcenario separqtely, the former to estgbli;h ::_onditian_pem
finite rate of innovation (FRI) in that they are completely féCt reconstruction, the latter for application in moreliste
specified by a finite number of parameters per unit of timesituations. To end, we validate our algorithm with simwiat
Periodic streams of Diracs are sampled and perfectly recof) Section 4 and conclude in Section 5.

structed in [1] using the sinc kernel. Authors in [2, 3] irede

propose the use of kernels that reproduce polynomials or ex- 2. SAMPLING FRI SIGNALS

ponentials and also propose a sequential algorithm to gsampl

and perfectly reconstruct infinite streams of Diracs. The seWe consider the case of a stream &f Diracs z(t) =
quential algorithm, however, was designed to deal only Withz]kK:1 a0 (t —tr), ak,tp € R, where{t, ak}szl are un-
noiseless samples. The family of sum of sincs (SoS) kernelsnown delays and amplitudes. The continuous-time signal is
was introduced in [4] for the sampling of periodic streamfiltered with a kernel with impulse respons&) = ¢(—t/T)

of pulses such as Diracs, authors also consider the case afid uniformly sampled at regular intervals of time= nT.
infinite streams of Diracs. However, their method requiresThe acquisition process is illustrated in Figure 1. The dasp
that the stream of Diracs be ‘bursty’. Specifically, a groéip o y,, can be expressed as

K Diracs must be followed by a long period of absence of

Diracs in order for the method to work. They also assume Yn = {x(t), (& —n)). 1)

that the reconstruction algorithm is synchronised with the
sampling process in order to be automatically in phase Witl??,(t
the time window containing the burst of Diracs.

Index Terms— Analog-to-digital conversion, finite rate
of innovation, sampling theory, annihilating filter.

FRI theory [1-4] shows that for a properly chosen filter
), the signak:(¢) can be perfectly reconstructed from the
samplesy,,. We restrict our setup to exponential reproducing

This work was supported by the European Research CouncBjs@rt-  K€rnels [3]1 which are functions that are able to reproduce
ing investigator award Nr. 277800 (RecoSamp). exponentlals:




025 1 2.1. FRIreconstruction in the presence of noise
0.8
0.2
e 04 The solution egplained so_f{;\r is only ideal, since noise isge
. erally present in the acquisition process. We assume the onl
* , source of noise,, is added to the samples,. In addition,
008 02 we considek,, are i.i.d. Gaussian random variables, of zero
% or es o5 o8 1 %% oz s o5 o8 1 mean and standard deviatien Thus, measurements (3) be-

comes,, = ZneZ Cm,n (yn + En) = $m, + di,, and alterna-
tive methods are needed to retrieve the pdirsar). We may
Fig. 2: Sampling kernel& (t) = o(—t/T) obtained from E-splines solve the problem by using the total least-squares methad an
of orderP = 15 and scaled witf” = 1/16. Note that function (¢) Cadzow denoising algorithm [9] introduced for FRI in [10]
is made anticausal in order to have causal sampling kerrigie. ~ OF matrix pencil method [11] used for FRI in [12]. Further
modified E-spline (eMOMS) corresponds exactly to half b~ alternative methods can be found in [13-15].

the Dirichlet kernel of orde2(P + 1).

(a) E-spline (b) Modified E-spline

3. SAMPLING AN INFINITE STREAM OF DIRACS

We now consider the case of an infinite train of Diracs

Z Cmn p(t—n)=e*' m=0,1,....,P, (2)
net 2(t) = Y ax 6 (t—ty). (5)
k€Z
wherec,, , € C and{a,, f’z are design parameters and are . . . .
chosento be purely{ima}éiiﬁ;ry andin conrw)plex conjugate pair-ghe §|gnala:(t) IS ass.umed to have a .f|n|te local ratg of in-
in order to have a real valued kerng(t). More specifically, nova%on, asl_ggfme(_j '(;] [1]’f(ﬁ.K/T'h This rrtl)ean?[t)hat, i \r/]ve
we usea,, = j5(m — L) form = 0,...,P. There ex- consider a sliding window of sizg the number of Diracs that

ist many functions of compact support in time that satisy th we see inside the window is always at méStWe propose a

exponential reproducing property (2), such as for example Esequentlal algorithm that estimates the locations of thiad3i

splines [3] and the modified E-splines introduced in [5]. The2| (%) Y using asliding window that sequentially covers the

latter, which are a variation of the maximal-order minimal-mterval of time
support kernels presented in [6], are the exponential repro teltiti +7]. (6)

ducing kernels that are most resilient to noise [5, 7] and are, sliding window step is o' seconds, which equals the
the kernels of choice for our simulations. They are called '

eMOMS. Note that these kernels have support 1 sampling period. We assume thats an integer multiple of
In oraerto recover parametef, }K first t.he sam T, specificallyr = NT. In what follows, we first establish
, A k=1 -

| i | bined with coefficients. .. f 5 some conditions on the number of samplésthe sampling
pesyn are finearly combined with CoeMcIents, » rom (2). periodT and the order of the E-splines necessary to achieve
This leads to a new set of measurements

perfect reconstruction of the infinite stream (5). Seconel, w
present a novel approach that is able to recover Diracs m hig
Sm = Z Cmmn Yn, m=0,1,...,P. (3) noise scenarios processing the stream (5) sequentially.

neZ

Combining (1) and (2) it follows that,,, can be expressed as 3.1. Noiseless case

a power sum series [3]: ] o i )
We analyze the ideal scenario in the first place to determine

1% the conditions on the number of samples of the sliding win-
S = <:c(t) ’ eamt/T> - Z b ull, (4) dowN, the sampling period” and the suppor® + 1 of the
el sampling kernel that allows our algorithm to be able to pro-
vide perfect reconstruction of (5). In our approach we se-
whereb, = aj,e®®/T andu;, = e/ /P The FRI re- quentially analyse sets @f samplesy, that cover the tem-
covery is thus turned into an amplitude and frequency estiporal interval (6). Due to the fact that we consider a finite
mation problem. This is a well-known problem in spectralnumber of samples, there exist border effects that may stop u
analysis and can be solved, for instance, with the annihgat from achieving perfect reconstruction. The sampling kerne
filter method [8]. The critical number of measuremests  ¢(t/T") has compact suppofP+1)T". Consequently, a Dirac
required to recover theK parametersty, ak}szl is exactly influencesP+1 samples. This means that a Dirac located just
2K [3]. It thus follows thatP + 1 > 2K in order to achieve before the window of interest will generate non-zero sasiple
perfect reconstruction. that will leak inside the window. Moreover, a Dirac locatéd a
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Fig. 3: Border effects. (a) A nearby Dirac located before the ob-Fig. 4: Noisy scenario. (a) Plot of the sequentially retrieved {oca

servation windowr influences the samplag, of the window. (b) tions, the horizontal axis indicates the index of the slidimindow

A Dirac inside the window but close to the right border getesa and the vertical axis the location in time. (b) Histogramha toca-

non-zero samples outside the window. tions shown in (a). Horizontally aligned dots in (a) lead &aks in
the histogram in (b).

the end of the window of interest will generate non-zero sam-
ples beyond thév samples we are considering and thereforeConsequently, we have that
cannot be reconstructed. This is illustrated in Figure 3.

Since the algorithm operates sequentially we can assume P=2K —1. 9)
that when operating on the windawe |¢;,t; + 7] we have
already perfectly recovered Diracs up to the time instant The sampling periodl’ is given by the temporal interval
Therefore their contributions can be removed and in this way¥ 7' = 7 and the number of sample§ > 2K?. We thus
we can overcome the border effect on bk of the window. aveT < 5.

To overcome the border effect of thight side we deter- The reconstruction algorithm processes the stream of
mine certain conditions on the number of samgleshe or-  samples sequentially, retrieving the locations of eaclobet
der P of the kernel and the sampling peridd We have seen Maximum K Diracs from N' samples by applying the an-
in Sec. 2 that exact recovery &f Diracs requiregi) +1> n|h|lat|ng filter method. Provided we Satisfy the preViqUSI
2K. Now, let us put ourselves in the worst case scenarigdescribed conditions, all Diracs will be located in the petf
where we havés Diracs evenly spaced with constant separaleconstruction interval of a certain position of the slglin
tionT/K . Each Dirac influenceB+1 samples due to the sup- Window, and thus recovered. From the recovered Diracs of
port of the kernel. Therefordy Diracs influencek (P + 1)  the currentwindow, we recalculate thésamples that corre-
samp|e9gn_ In this worst case scenario, we have to guaranspond to this window, and Only if the reconstructed Samples
tee thatN > K (P + 1) and combining this condition with are identical to the original ones, the Diracs are storede Th

P +1 > 2K we arrive at maximum number of Dirac#( within a window has to be
estimated. This is done by trying for all possible value&of
N > 2K2. (7) andonlywhenthe correctvalue is estimated the reconstiuct

_ ) o samples will coincide with the original ones.
As previously mentioned, when a Dirac is near the end of

the interval, we are not able to perfectly reconstruct ite Th
size of this area i?T. Therefore, we can only perfectly

recover k' Diracs when all of them are in a region of size |y the presence of noise, perfect reconstruction is notiposs
(N — P)T. Again, in the case of constant separatigli’, e and the algorithm previously described becomes urestabl
we have to guarantee that there will be a position of the S“dMoreover, the strict conditions oN and P impose critical
ing window such that thé( Diracs are in the perfect recon- sampling, since we have exacily< values of thes,, mea-
struction area. Since they can occupy an interval of maximungrements to retriev& Diracs. In the noisy case we relax
size(K — 1)z and to make sure they are within the perfectyis condition and allow higher values & This makes the
reconstruction area for a certain window, we restrict this i denoising algorithms mentioned in Sec. 2.1 more effective.
terval to be smaller than or equaV’ — P — 1)T'. Combining We thus develop a new strategy that is also based on using
these conditions and choosing the smallest possible ”“mbﬁrsliding window and processing setsfamples in sequen-
— 92 i . !
of samplesV = 2K~ we obtain tial order. For each window and each group\osamples, we
NT retrieve K Diracs using the algorithm in Sec. 2 coupled with
(K — 1)7 <(N-P-1)T ®) matrix pencil. We then store all the locations and amplitude
retrieved in that window. We then slide the windowByand
repeat the process. When the found locations correspond to
In addition, we know thaf’ has to satisfyP > 2K — 1.  real Diracs, they will be consistent among different posisi

3.2. Noisy scenario

< P <2K —1.
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Fig. 5: Sequential perfect reconstruction of a noiseless stream of

1000 Diracs with 10220, samples. Only a small section of the Fig- 6: Noisy samples with &NR = 10 dB and reconstructed
stream is shown. Rat& = 5 Diracs perr = 3.125s. N = 50,  Stream from the peaks of the histogram of the retrieved ioosit

T =1/16andP = 9. In all these simulations we used eMOMS as sampling kernel.

of the sliding window that capture these Diracs. Otherwisesmaller than a threshold. Here we have set this threshold to
locations that are not correct and correspond to noise wit n  1'/2. We randomly generate the locations of a stream of 1000
mally be not consistent. For example, in Figure 4-(a) we ploPiracs. We then take s_amples, conta}mlnate t_hem Wlt.h noise
the retrieved locations for different windows. The horitain @nd apply the sequential reconstruction algorithm. Figure
axis represents the index of the window corresponding to &"0Ws one realisation of the procedure explained before.
retrieved location, and the vertical axis the Dirac locatiio To further analyse the performance variation for different
time. Consistent locations appear as horizontal alignseft levels of noise we run the algorithm over 100 different i&li
dots, overlapping the blue lines. tions of noise for various levels of SNR. Table 1 summarises
In order to detect which locations are consistent, a secondf€ obtained performances.

step is to construct a histogram of detected locations. Onl¥
the peaks of the histogram are assumed to correspond to re

. . . . econds) and0220 samples]” = 1/16 s, N = 50, P + 1 = 23.
Diracs. For a peakin the hlstqgram abqve a_certaln th_reshol he detection rate is given in percentage of detected treecBi The
the Iocat'o,n ofthe Corlrespondlng D"_’ac IS es“mated ayagag false positives are the average number of detected Diratsithnot
all the retrieved locations that contribute to this peakisT®  correspond to true Diracs. The precision is the standartatien of

illustrated in Figure 4-(b). the retrieved locations with respect to the true locations.

le 1: Algorithm’s performance. Stream of 1000 Diracs (630

Algorithm 1 Sequential FRI retrieval of Diracs

- [SNR@B) | 5 [ 10 [ 15 [ 20 |
Input: (yn ), 21" : stream of samples . Detection rate | 97.69 % | 99.97 % | 100.00 % | 100.00 %
OL.Jtput. {(tx, ar)}: Dirac locations and amplitudes False positives| 3517 378 05 03
Sforng =110 Nrop = N + 1 do)niw_l Precision (s) | 0.0086 | 0.0049 | 0.0028 | 0.0018

1

2 Retrieve{ (t%,a% )} from (y»
3: end for
4

5

n=n;

: Construct histogram from retrieved locatioft§ }
: Estimate Diracs from peaks of the histogram The algorithm has been implemented in MATLAB and
tested using a commercial laptop (2.5 GHz Intel Core i5
CPU). The average time required to procég8220 samples
corresponding to a stream of 630 seconds containing 1000

Diracs is about 105 seconds.

4. SIMULATION RESULTS

We have tested both versions of the algorithm: the noise-
less case for which perfect reconstruction is possiblethad

noisy scenario, where locations are estimated from the his-
togram of the retrieved locations. In the noiseless case wi@ this paper we have presented a fast sequential algorithm
always perfectly reconstruct the streams of Diracs with rant0 retrieve infinite streams of Diracs in noiseless and noisy
domly generated locations and amplitudes. This is illtstta €nvironments. In the noiseless case perfect reconstructio

in Figure 5. The stream of Diracs is generated to satisfy this achieved. In the noisy scenario we propose to retrieve
maximum rate of<’ Diracs perr interval. groups of K Diracs sequentially and to retain only those

In the noisy scenario not all the Diracs are always reDiracs whose locations have been consistently estimated in
trieved, and false positives may also happen. Note also thaverlapping sliding windows.
there is an uncertainty in the retrieved location. A regiv We showed that the algorithm is able to procEs&” sam-
Dirac is considered to correspond to a true Dirac if the diffe Ples in about00 seconds and can retrieve with high accuracy
ence between the real location and the estimated location {§00 Diracs even in very low SNR regimes.

5. CONCLUSIONS AND FUTURE WORK
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