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I. INTRODUCTION

Deep Neural Networks (DNNs) are computational models which
are composed of multiple layers of linear transforms and point-wise
non-linearities. Back-propagation algorithm [1] is usually applied to
optimize this highly non-linear and non-convex system. However, a
clear understanding of the functioning of the linear transforms and the
non-linearites is still lacking. Contrary to DNNs, the sparse represen-
tation theory [2] is much more established. Therefore building a deep
model [3]–[6] using sparse representation and redundant dictionaries
could be a way to facilitate the interpretation of DNNs.

II. PROPOSED DEEP DICTIONARY MODEL

We propose a deep dictionary model [7], [8] for regression
tasks. The proposed L-layer deep dictionary model is composed
of L − 1 layers of analysis dictionary and soft-thresholding pairs
{Ωi ∈ Rdi×di−1 ,λi ∈ Rdi}L−1

i=1 and a synthesis dictionary
D ∈ RdL×dL−1 . We assume that the analysis dictionaries are over-
complete, that is di−1 < di for 1 ≤ i ≤ L−1. Therefore the forward
model can be expressed as:

y =DSλL−1(ΩL−1SλL−2(· · ·Ω2Sλ1(Ω1x) · · · )), (1)

where x ∈ Rd0 and y ∈ RdL are the vectorized input and estimated
signal, respectively, and Sλ(·) is the soft-thresholding operator.

We note that the soft-thresholding thresholds can not all be too
large. Let us consider a single layer model y =DSλ1(Ω1x), if all
thresholds are sufficiently large (i.e. λj > δ for j ∈ [1, d1]), there
exists a convex polyhedron in the feature space in which non-zero
input x has Sλ1(Ω1x) = 0 and thus y = 0. The information within
x will then be completely lost. There should be at least k analysis-
thresholding pairs for information preserving if the input data spans
a k dimensional subspace of the output data.

In order not to lose essential information, each analysis dictionary
Ωi is designed to consist of two sub-dictionaries Ωi = [ΩIi;ΩCi].
The information preserving analysis dictionary (IPAD) ΩIi aims at
passing key information from its previous layer and is associated
with relatively small thresholds λIi. The clustering analysis dictionary
(CAD) ΩCi with its thresholds λCi is to facilitate the separation of
key feature in the signal. The threshold λCi can be relatively large.
Fig. 1 shows the analysis and the thresholding operations at layer i.

The ith layer IPAD and threshold pair (ΩIi,λIi) passes the key
information from layer i − 1 to layer i + 1. IPAD ΩIi is obtained
by applying an extension of the geometric analysis operator learning
method [7], [9] with its input training data Xi. The learned ΩIi is
able to sparsify while preserve information from its input data. As
ΩIiXi can be well characterized by an i.i.d. zero-mean Laplacian
distribution, the threshold λIi is set to be proportional to the inverse
of the standard deviation σ of the Laplacian distribution. The soft-
thresholding Sλi(Ωix) can be interpreted as a denoising operation.

The CAD and threshold pair (ΩCi,λCi) is to generate discrimina-
tive features for the representation of its input. The hope is that each
pair of atom and threshold (ωCij , λCij) can identify a cluster of data
in its input feature space and thus facilitate prediction. The key idea of
learning (ΩCi,λCi) is to model its input training data as a mixture of

Gaussians [10] and learn (ωCij , λCij) pairs which can identify data
belonging to different Gaussian models. With mixture of Gaussian
modelling, the training data has been clustered with labels. The
learning objective of an atom ωCij is formulated as maximizing the
absolute value of the inner product between it and the data belonging
to one Gaussian model while minimizing the absolute value of the
inner product between it and the data belonging to other Gaussian
models. Fig. 2 shows the histogram of the absolute value of the inner
product with a learned atom for two groups of data. The threshold
λCij is set to achieve the maximum separation between these two
groups of data.

The multi-layer analysis dictionary and threshold pairs
{(Ωi,λi)}L−1

i=1 are learned in a greedy manner. Although the
decision boundary of analysis and thresholding at each layer is
linear, it will introduce non-linear decision boundaries if there are
more than one layer and leads to discriminative representation. The
synthesis dictionary D is obtained using least squares.

III. SIMULATION RESULTS

In this section, we report the simulation results of our proposed
method against alternative approaches. For image super-resolution
task, the standard 91 training images [11] are applied for training and
Set14 [12] is used for evaluation. The up-scaling factor is set to 2.
The low-resolution and high-resolution patch size is 3×3. The input
low-resolution feature is the raw pixel values with removed mean. For
comparison, DNNs with the same structure are learned using the same
training data. Let us denote DNN-R and DNN-S as the DNN with
ReLU non-linearity and soft-thresholding non-linearity, respectively.
The implementation is based on Pytorch with Adam optimizer, batch
size 256, initial learning rate 0.01, learning rate decay step 100, and
decay rate 0.1. The total number of epoch for training is 500.

Table I reports the PSNR (dB) of different methods. Our proposed
DDM method achieves a similar average PSNR when compared to
the DNN-R method. This validates the effectiveness of our proposed
deep dictionary model and shows that the simultaneous information
preserving and clustering model could be a good interpretation of the
workings of DNNs. The DNN-S method achieves the highest average
PSNR which is around 0.2 dB higher than that of the DDN-R method
and our proposed DDM method. This suggests that DNNs with soft-
thresholding as non-linearity is more effective for image enhancement
applications. The result also indicates that our DDM method can be
further improved. In particular, an optimization strategy needs to be
devised to determine the ratio between the number of information
preserving atoms and the number of clustering atoms.

IV. CONCLUSION

In this paper, we proposed a novel method to learn a pair of
analysis dictionary and soft-threshold which is used to construct
the deep dictionary model for regression tasks. The learned analysis
dictionaries together with the corresponding soft-thresholds can si-
multaneously preserve important information from the previous layer
as well as facilitate discrimination of key features. Simulation results
show that our proposed deep dictionary model achieves comparable
performance with DNNs.



Fig. 1. The layer i of the proposed deep dictionary architecture which consists
of an analysis dictionary followed by soft-thresholding. The analysis dictionary
Ωi consists of an information preserving dictionary ΩIi and a clustering
dictionary ΩCi. The soft-thresholds corresponding to ΩCi are much higher
than those used for ΩIi.

Fig. 2. The histogram of |ωTx| for the data from a Gaussian (orange) and
from other Gaussians (blue).

Image Bicubic DNN-R DNN-S DDM
baboon 24.86 25.46 25.48 25.42
barbara 27.88 28.41 28.41 28.43
bridge 26.62 27.37 27.45 27.40

coastguard 29.26 30.17 30.21 30.17
comic 24.63 27.28 27.45 27.19
face 34.73 35.33 35.42 35.37

flowers 30.20 31.72 31.97 31.73
foreman 35.21 37.36 38.11 37.56

lenna 34.57 35.87 36.04 35.86
man 29.16 30.16 30.29 30.15

monarch 32.77 35.12 35.67 35.25
pepper 34.98 36.23 36.50 36.28
ppt3 24.66 28.31 28.47 28.12
zebra 28.03 32.61 32.84 32.59

Average 29.83 31.53 31.74 31.54
TABLE I

PSNR (DB) BY DIFFERENT METHODS EVALUATED ON SET 14 [12].
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